
Introduction to MPI I/O
Niclas Jansson
PDC Center for High Performance Computing

“A supercomputer is a device for
converting a CPU-bound problem
into an I/O bound problem”

Ken Batcher

Introduction

2019-08-28 3

• Performance of magnetic disks
– Latency 2-10 ms (time it take the disk

to spin under read/write/head)
– 1,000x slower than internode

communication
– 10,000,000x slower than processors
– Bandwidth over 100 MB/s

> But only for large transfers!

• Performance of SSD?
– Single I/O controller!

• Improve performance with striping
– Distribute work across controllers
– File system still limited by network

bandwidth (single node file system)

Single disk

RAID

Parallel File Systems

2019-08-28 4

A parallel file system breaks up a dataset and distributes (or stripes)
it across multiple storage devices, which can be located in local
and/or remote servers
• Users don’t know the physical location of the data blocks

• Parallel file systems often use a metadata server to store
information about the data, such as filename, location owner etc

DATADATAMETAMETA

Interconnect

Clients

Parallel File Systems

2019-08-28 5

K. Sakai et al.: High Performance and Highly Reliable File System for the K
computer, FUJITSU Sci. Tech. J., Vol 48, No. 3, 2012

Rather complex at scale, e.g. the 380 GB/s file system on K

Great Parallel I/O Performance

2019-08-28 6

The Reality…

2019-08-28 7

The Parallel I/O Software Stack

2019-08-28 8

• POSIX defines a standard way for an application to obtain basic
services from the operating system

• Used by almost all serial applications to perform I/O (created in
the dark ages when a single computer owned its own file system)
– No ability to describe collective I/O accesses

• Rather expensive schematics to guarantee on large clusters
– After a write, any read, from any other process, must see that write

I/O Hardware

Parallel File System

POSIX I/O

Serial I/O

2019-08-28 9

• One process performs I/O (serial)
– Data aggregation (e.g. using MPI)
– Single I/O process, single file

• Simple to implement, but does not scale!

Parallel I/O – One file per process

2019-08-28 10

• All processes performs I/O
– One file per process, how does it scale?
– File system limitations

> Large amount of concurrent file operations, does not scale!
> Number of files per directory, does not scale!

Parallel I/O – Shared file

2019-08-28 11

• All processes performs I/O
– Single shared file (file system is happy)
– Not easy to implement (not supported directly by POSIX!)
– Performance highly depends on the implementation

The Parallel I/O Software Stack

2019-08-28 12

I/O Hardware

Parallel File System

POSIX I/O

Parallel I/O Middleware (MPI I/O)

MPI I/O

2019-08-28 13

• Defined in the MPI standard since 2.0
– Uses MPI datatypes to describe files
– Uses send/receive like operations to read/write data
– Common interface for all platform/languages

• Provides high-performance (parallel) I/O operations
– POSIX-like operations: processes can open, close, seek, read and write

files, as usual
– Non-Contiguous access: Selective access to different parts of a file
– Collective I/O operations: Optimised read/write by multiple processes

into shared files
– Non-Blocking I/O: Similar to non-blocking MPI send/receive, but for I/O

operations

• Large and complex API, will only scratch the surface

Refer to the I/O chapter in the MPI standard:
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node304.htm

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node304.htm

The Parallel I/O Software Stack

2019-08-28 14

I/O Hardware

Parallel File System

POSIX I/O

Parallel I/O Middleware (MPI I/O)

High-Level I/O Libraries (HDF5, NetCDF,…)

Applications(CFD, Combustion, ...)

High-Level I/O Libraries

2019-08-28 15

• HDF5 (Hierarchical Data Format)
– Hierarchical data organisation in a single file
– Typed, multidimensional array storage
– C,C++ and Fortran interfaces
– Portable data format

• Parallel NetCDF (Network Common Data Format)
– Collection of variables in a single file
– Typed, multidimensional array variables
– C and Fortran interfaces
– Portable data format

• Most of these High-level libraries are built on top of MPI I/O

• These libraries are perfect if an application’s data layout is
similar to their data model

The Parallel I/O Software Stack

2019-08-28 16

I/O Hardware

Parallel File System

POSIX I/O

Parallel I/O Middleware (MPI I/O)

Applications(CFD, Combustion, ...)

MPI I/O – File Manipulation

2019-08-28 17

• COMM: MPI communicator, File is
open on all processes in the
communicator

• FILENAME: Path to the file
• AMODE: File access mode (e.g. create,

read-only, read/write etc)

• INFO: Hints for the MPI
implementation

• FH: File handle, similar to a POSIX file
pointer

• IERROR: Return value (Fortran
specific)

Opening/Closing files very similar to POSIX I/O

MPI I/O – File Manipulation

2019-08-28 18

File access mode:
• MPI_MODE_RDONLY – read only
• MPI_MODE_RDWR – reading and writing
• MPI_MODE_WRONLY – write only

• MPI_MODE_CREATE – create the file if
it does not exist,

• MPI_MODE_EXCL – error if creating file
that already exists,

• MPI_MODE_DELETE_ON_CLOSE –
delete file on close,

• MPI_MODE_UNIQUE_OPEN – file will
not be concurrently opened elsewhere,

• MPI_MODE_SEQUENTIAL – file will only
be accessed sequentially,

• MPI_MODE_APPEND – set initial
position of all file pointers to end of file.

MPI Info Hints:
Complex hints for the implementation on
how to e.g. organize the data. However,
it’s a hint, thus some implementations
simply ignores them.
In most cases using MPI_INFO_NULL is
sufficient.

For more information see:

https://www.mcs.anl.gov/research/projects
/mpi/mpi-standard/mpi-report-
2.0/node182.htm#Node182

https://www.mcs.anl.gov/research/projects/mpi/mpi-standard/mpi-report-2.0/node182.htm

MPI I/O

2019-08-28 19

The MPI interface supports two types of I/O modes

Independent I/O

• Basic interface
• Similar to POSIX I/O,

but with support for
derived data types

Collective I/O

• I/O by all processes
• High-Performance API
• Vendor optimised

strategies

MPI I/O

2019-08-28 20

The MPI interface supports two types of I/O modes

Independent I/O

• Basic interface
• Similar to POSIX I/O,

but with support for
derived data types

Independent I/O

2019-08-28 21

• Read/Write/Seek operations very similar to normal Point-to-point
communication in MPI

• All Read/Write operations are blocking

• All operations advances the file pointer’s position

• fh: File handle

• buf: Buffer to read/write

• count: Number of elements of type
datatype (MPI type)

• status: Status object, same as in
MPI_Recv, e.g. for counting

• offset: File offset (bytes), from
current position or from whence

Independent I/O

2019-08-28 22

Assume you want to open a file on a specific rank, and write some
information at a specific offset.

• Setting the MPI communicator to MPI_COMM_SELF,opens the file
the file on the calling process. (How about MPI_COMM_WORLD?)

• File access/synchronisation is the programmer’s responsibility!

Independent I/O

2019-08-28 23

• Still serial I/O, how to parallelize it?

Independent I/O

2019-08-28 24

Assume we want to write each data chunk into a shared file

• Possible in independent I/O mode (with proper data access)
– Open the file in MPI_COMM_WORLD
– Give each rank a different offset/section to write at

Independent I/O

2019-08-28 25

• Explicit offsets Read/Write, low level routines with _at suffix,
read/write data starting at a given offset

• Seek+I/O in one call, does not advance the file pointer’s position

• Straightforward implementation, but tedious (and possibly error
prone) bookkeeping of file offsets

• Difficult to handle non-contiguous data
– Requires multiple read/writes with different offsets

• fh: File handle

• buf: Buffer to read/write

• count: Number of elements of type
datatype (MPI type)

• status: Status object, same as in
MPI_Recv, e.g. for counting

• offset: File offset (bytes), from the
beginning of the file

Independent I/O

2019-08-28 26

Example: output four times the MPI rank into a shared file, ordered
and in parallel:

0 0 0 0 1 1 1 1 n n n n…

MPI_File_write_at

MPI_COMM_WORLD
Which offset?

Independent I/O

2019-08-28 27

Example: output four times the MPI rank into a shared file, ordered
and in parallel:

0 0 0 0 1 1 1 1 n n n n…

Independent I/O

2019-08-28 28

• Use MPI File Views to tell each process which part of the file to
Read/Write into

• Creative filetype’s can be used to write non-contiguous data

• fh: File handle

• disp: Displacement (in bytes) from
the start of the file

• etype: MPI datatyxpe

• filetype: Specifies which portion of
the file is visible to the process

• datarep:Data representation

• info: Hints for the
implementationMPI

Independent I/O

2019-08-28 29

• A naïve implementation is very similar to using explicit offsets

• Best use of file views is when one defines (creative) derived MPI
datatypes (for filetype)

Derived datatypes

2019-08-28 30

MPI provides methods for creating derived datatypes, that can be
based on primitive types (e.g. MPI_INTEGER) or custom structures
combining several different types. Some examples:

• Contiguous: Simple constructor that replicates a datatype into
contiguous locations

• Indexed: Non-contiguous data layout with non equal
displacements (user provided) between blocks

• Vector: Constructor that replicates a datatype into equally spaced
blocks

• Struct: General type, equivalent to a structure in C

• Resized: Padded custom or primitive types

Note: once created these types can be used for any kind of MPI
operations not only I/O, for example send/recv of complex data
structure in a single MPI call (very handy indeed!)

Derived datatypes

2019-08-28 31

Example: output the MPI rank twice, followed by two blanks into a
shared file, ordered and in parallel:

0 0 1 1 n n…

MPI_type_contiguous

MPI_type_resized

Derived datatypes

2019-08-28 32

To create a contiguous derived type, we need to define it, and
commit it before it can be used by MPI

• count: Number of instances of old
datatype

• oldtype: Base datatype

• newtype: New, derived datatype

Derived datatypes

2019-08-28 33

To create a contiguous derived type, we need to define it, and
commit it before it can be used by MPI

To pad a derived type we need to create a new, resized type

• count: Number of instances of old
datatype

• oldtype: Base datatype

• newtype: New, derived datatype

• oldtype: Base datatype

• lb: lower bound of new type

• extent: Extent of new datatype

• newtype: New datatype with an
upper bound of lb + extent

Independent I/O

2019-08-28 34

• Recall the file pattern: 0 0 1 1 n n…

Contiguous type, hold two int

Pad it with two blanks

Only write the contiguous type

MPI I/O

2019-08-28 35

The MPI interface supports two types of I/O modes

Collective I/O

• I/O by all processes
• High-Performance API
• Vendor optimised

strategies

Collective I/O

2019-08-28 36

• Independent I/O

• Collective I/O

P0 P1 P2 P3 P4 Pn…

P0 P1 P2 P3 P4 Pn…

Collective I/O

2019-08-28 37

• A critical optimisation in parallel I/O

• All ranks, associated with a file handle (communicator) must call
the collective I/O routine
– One I/O call instead of many smaller ones
– Allows for internal optimisation within the MPI runtime
– I/O requests from different ranks may be merged together

P0

P1

P2

P3

P4

P5

Message passing
Large I/O access

Collective I/O

2019-08-28 38

• Read/Write operations more or less similar to independent I/O,
except that all ranks associated with a file must call them

• All collective functions ends with _all, otherwise same
arguments as before

• Similarly for the collective explicit offsets Read/Write

• Note offset can be different on each rank, despite being a
collective call

• File views works exactly the same as before

Additional topics

2019-08-28 39

MPI I/O topics we haven’t covered in this lecture

• Non-blocking read/write, MPI_File_iread/MPI_File_iwrite
– Works similar to non-blocking send/receive
– Synchronised with MPI_Wait

• Shared file pointers
– MPI maintains exactly one shared file pointer per collective file handle

(shared in the communicator group)
– MPI I/O calls ends with _shared
– File views/offsets must be the same on all ranks
– Allows for ordered (per rank) reads/writes using functions ending with
_ordered

• Various house keeping routines e.g. delete/query/allocate etc.

Refer to the I/O chapter in the MPI standard:
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node304.htm

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node304.htm

Exercises

2019-08-28 40

• Read a file containing n entries each with a double and an integer

• MPI derived type struct

…

double integer

• count: number of struct entries

• array_of_blocklengths: number
of elements for each struct entry

• array_of_displacements: Byte
displacement of each struct entry
(start of)

• array_of_types: MPI type of each
struct entry (can be derived ones!)

• newtype: New datatype describing
the struct

Exercises

2019-08-28 41

Exercises

2019-08-28 42

• For performance reasons we want each of the MPI rank to read a
large contiguous chunk of data

• We can for example use a simple load balanced linear distribution
to compute n_local = (n + size – rank – 1) / size

• Given n_local, we need to determine at which offset a rank should
start reading entries
– Perform a partial reduction to compute the offset

> MPI_Scan or even better MPI_Exscan (w/o local contrib.)

• And finally compute a byte offset for explicit offsets (or file views),
– Followed by a collective MPI_File_read_at_all

• What if the file contains a header?

…

Header

MPI_File_read_all MPI_File_read_at_all

Exercises

2019-08-28 43

• Certain compilers has the ”bad” habit of padding structures

• Compiler specific attributes can fix this

• However, even if a derived type is created based on a packed
struct the MPI struct might (most likely will!) be padded

• To solve this, resize the derived type using
MPI_Type_create_resized

typedef struct {
double d;
int i;

} foo_t;

typedef struct {
double d;
short i;

} bar_t;

typedef struct {
double d;
short i;

}__attribute__((packed)) babar_t;

sizeof(foo_t) = 16

sizeof(babar_t) = 10

sizeof(bar_t) = 16

Derived datatypes

2019-08-28 44

To create a contiguous derived type, we need to define it, and
commit it before it can be used by MPI

To pad a derived type we need to create a new, resized type

• count: Number of instances of old
datatype

• oldtype: Base datatype

• newtype: New, derived datatype

• oldtype: Base datatype

• lb: lower bound of new type

• extent: Extent of new datatype

• newtype: New datatype with an
upper bound of lb + extent

Exercises

2019-08-28 45

