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An introduction to 
parallel debugging
JOACHIM HEIN, LUNARC & CENTRE OF MATHEMATICAL SCIENCES

Overview

• Introduction to debugging and parallel debugging

• Running the ARM DDT parallel debugger

Joachim Hein
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Introduction to debugging

Traditional standard way to debug:
“printf debugging”

• Add extra print statements to the code
– Indicate whether the code reaches a certain stage
– Print the values of key variable

• Issues with this approach
– Need to modify the source code, recompile

– Iterative approach, frequent recompiles
• Debuggers are more convenient

– Allows working with unmodified source
– Allows line by line execution
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Debuggers

• Linux system come with gdb as a debugger
– Command line execution
– GUIs exist
– Often integrated into development platforms

Parallel debugging
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Parallel debugging

• Parallel applications offer new levels of complexity

• Before starting, try to simplify the task
– Problem still there if you reduce the problem size?
– Problem still there if you reduce the task/thread count?

• “printf debugging” even more problematic than in serial
– More output (different tasks/threads printing)
– Identification of task/thread printing required
– UNIX grep helpful to filter output 

Parallel debuggers

• Licenses are expensive
– Being able to do “printf” is an essential skill

• Parallel debuggers more convenient to use over the years

• I am aware of two products
– Totalview for HPC (https://www.roguewave.com/)
– ARM DDT - part of ARM FORGE

» Formerly known as ALLINEA DDT/FORGE
» There is a SNIC wide license

https://www.roguewave.com/)
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Preparations and starting DDT

Preparations

• HPC system needs to display the gui on your monitor
– VNC solution (e.g. ThinLinc based)
– Connect with X-forwarding (ssh –X ... )

• Recompile your application with the flags: -g -O0
mpif90 -g -O0 -o hello_mpi hello_mpi.f90

• Comments:
– Code might run very slow (in particular C++)
– Problem might disappear – hint for overrun array
– You can use optimisation 

» Though match code line to instruction might not work
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Start the gui

• Best to start the gui on the login node and keep it running

module load allinea-forge
ddt &

ARM FORGE gui
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Starting code on the compute nodes

• Transfer to the backend node
– Jobscript (currently not working on Beskow)
– Interactive allocation (salloc … )

• Make sure relevant modules are loaded
– compiler, MPI lib, other libs, ARM DDT/FORGE

• Prefix job launcher with: ddt --connect

ddt --connect srun –n 4 hello_mpi

Accept the “Reverse Connect request”
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Start running your program

Start debugging in the gui
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Starting over – frequently required
Use “Restart session option”

Demo

• hello world

• matrix matrix multiply

• OpenMP code
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Memory debugging
A KILLER FEATURE OF DDT

Problematic memory access

• Codes often suffer from memory problems
– Writing in memory locations they shouldn’t
– Illegal deallocation (double, bad pointer position, ...)
– Memory leaks

• Typical signatures of memory problems

– Seg-faults
– Code behaviour changes when:

»Editing (e.g. printf debugging)
»Changing compilers or optimisation flags



2019-08-28

11

Activating memory debugging in DDT

• Replace the malloc library with ARM’s dmalloc

• Comes in 4 versions:
– C/Fortran no threads
– C/Fortran threads

– C++ no threads
– C++ threads

Select memory debugging 



2019-08-28

12

Selecting Memory Debugging Option

Dynamic linking
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Static linking

• If you link statically or if dynamic linking fails
• Add a line like (check user guide)

-Wl,--allow-multiple-definition,--undefined=malloc /path/lib/64/libdmalloc.a

to the link line before anything else
– Often required on CRAYs

Guard pages (aka “electric fences”)

4 kBytes
(typically)

MEMORY ALLOCATION GUARD
PAGE

GUARD
PAGE

MEMORY ALLOCATIONGUARD
PAGE

GUARD
PAGE

• A powerful feature…:
• Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

• … to be used carefully:
• Kernel limitation: up to 32k guard pages max 
• Beware the additional memory usage cost

• Choice of before/after
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Activate guard pages

When it finds something you get:



2019-08-28

15

Demo

• Locating memory issue

Recap/Summary

• Starting the gui

• Demonstrating how to run it

• Memory debugging feature

– This saved me so much time in the years
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Measuring performance
JOACHIM HEIN, LUNARC & CENTRE OF MATHEMATICAL SCIENCES

Overview

• CPU and wall clock timers

• Best practices when using timers
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Timing code

Timers

Performance assessment requires timing

Broadly speaking: two different types of timers:

• CPU time

• Wall clock time
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CPU timer

CPU time is
• Time spend by CPU on behalf of a process (or thread)
• May be useful of timing on a shared cpu core
• Often subdivided into

– User time (time spend on user code)

– System time (time spend in system calls)
– Else

• Often not clear what goes to user time and to system time

• For an HPC (exclusive access) typically not required

Wall timer

• Time after a specified or unspecified point in the past
• Timing similar to a stop watch extenal to the computer

– ”What a clock on the wall would report”

• Useful when having exclusive access to resource

– Typically given in an HPC scenario
• No uncertainty about time being ignored

– E.g.: Attributed to system time
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Return data from a good timer

• Return type should be larger than
> 4 Byte 

• Rationale:
– 4 byte unsigned integer: up to 4294967295

– Require resolution of a 1 µsec
– Timer will turn over after about 4295 sec 

» Just over one hour !!!

• Timer is either not precise or turns over to quickly

A few timers
Timer Comment
Fortran system_clock Wall timer

F95: returns a default integer (4 byte on x86)  
Fortran 2003: longer integer types possible

UNIX gettimeofday() Returns time from OS
Returns seconds and µs since EPOCH (1 Jan ’70)
Affected by discontinuities and NTP

UNIX clock_gettime Returns time from the OS
Choice of timers (CLOCK_REALTIME required)
• CLOCK_REALTIME: sec and ns since EPOCH, 

affected by discontinuities and NTP
• Other optional timers: CLOCK_MONOTONIC, 

CLOCK_MONOTONIC_RAW, 
CLOCK_PROCESS_CPUTIME_ID

MPI MPI_Wtime() Wall timer, returns double. 
OpenMP omp_get_wtime() Wall timer, returns double.
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Wrap your timer if needed

• There might not be a universal timer
• Wraping a timer makes it easier to select another one

• Example from STREAM benchmark:

#include <sys/time.h> 
double mysecond() 
{

struct timeval tp; 
struct timezone tzp; 
int i; 
i = gettimeofday(&tp,&tzp); 
return ((double) tp.tv_sec + (double) tp.tv_usec*1.e-6); 

}

Using Timers in a Benchmark
HOW TO USE THEM
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Limited precision

• Clocks have a tick, which sets a resolution
• They count 1, 2, 3, … ticks
• Measured period should be many ticks

– Judgement call, what is many
• Most timers come with query functions for the tick size

– Examples: MPI_Wtick(), clock_getres()

– Return type is not a good indication of precision

Issues when benchmarking

• Computer systems are typically noisy
– Even when having exclusive access to hardware

»E.g.: system daemons

– Worse on partially shared systems (network, I/O)
• First calls are often slower

– Initialisation

– Cold caches
• MPI codes can have issues with task wake-up

• Small tests and benchmarks particularly affected
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Case study: MPI Ping-Pong

call MPI_Barrier(paircomm, merror)
start_time = MPI_Wtime()

do irep = 1, repetitions
if (rankworld .eq. 0) then

call MPI_Send(sendbuf, probsize, MPI_DOUBLE_PRECISION, &
1, 0, paircomm, merror)

call MPI_Recv(recvbuf, probsize, MPI_DOUBLE_PRECISION, &
1, 0, paircomm, mstatus, merror)

sendbuf = recvbuf+1
elseif (rankworld .eq. 1) then
...

endif
enddo

end_time = MPI_Wtime()
av_time = (end_time – start_time) / (2.0D0*repetitions)
av_time = (end_time – start_time) / 2.0d0 

Testing of parallel jobs

• Synchronise tasks/threads by utilising barriers
– BEFORE starting the timer

• Each task/thread will have their own timing
• Use reductions (sum and/or min) to create a single result
• Looking at the spread between tasks can be useful

• Alternatively difference between average and min

• Comparing the sum of the times reported to the feedback 
from the UNIX time is an important sanity check
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Further comments on performance 
testing

• Most testing is done during user service
– Shared resources
– Nodes might be in a sub-optimal state

• Run your tests repeatedly (separate batch scripts)
• When comparing test_A and test_B, run:

test_A, test_B, test_A, test_B, test_A, test_B

– Info on stability of timings
– Handicaps will most likely affect both codes similarly

• Always question your results!

Summary

• Overview on timers available

• Best practice recommendation on
– How to user timers
– How to conduct benchmarking
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Memory system
JOACHIM HEIN, LUNARC & CENTRE OF MATHEMATICAL SCIENCES

Overview

• Memory subsystem

• Shared resources caches and memory bus

• Vector instructions

• How caches work and possible side effects
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Stream “Triad” test

The Stream Triad test

• Stream: standard benchmark regarding memory 
performance

• Website: https://www.cs.virginia.edu/stream/
• Contains 4 tests (Copy, Scale, Sum, Triad)
• For illustrations use a modified version (FORTRAN) of                

Stream Triad test:

do i = 1, n
a(i) = b(i) + s*c(i)

end do

https://www.cs.virginia.edu/stream/
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Benchmarking system

• 2 Intel Xeon E5-2650 v3 (Haswell)
– 2.3 Ghz
– 10-core/processor, 20 cores/node
– Cache/core: 32 kB L1, 256 kB L2, 1.5 MB LLC

• 64 GB RAM per node

– DDR4-2133
• 4xFDR InfiniBand

• GCC 7.3.0
• OpenMPI 3.1.1

Triad performance 
for different array sizes (1 task per node)
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Running more then one task per node
Tasks synced with MPI_Barrier()

Comments on MPI running

• For 4 or fewer tasks CPU clock up (L1 cache result)
• L1 core private
• L2 not widely shared, 

– Performance sustained 
• Low Level Cache (L3) accessible from all 10 cores on 

Processor
– Performance sustained

• Main memory performance decreases when more cores 
used � next slide
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Band width on Main memory for 
different task counts

Comments on memory bandwidth

• System can sustain 4 cores
• Utilising up to 8 cores still gets more data from memory
• From 12 cores: the memory busses are completely 

saturated

• Recommendation: 
– Work on cache memory
– Avoid reading memory from all tasks/threads at the 

same time
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Vector processing

Modern hardware has wide registers
Overview on x86 system
Instruction
set

Register 
width

Single prec.
words

Double prec.
words

Typical hardware

SSE, SSE2 128 bit 4 2 modern x86

AVX, AVX2 256 bit 8 4 x86 since 2011

AVX-512 512 bit 16 8 Skylake
Knights Landing

• Concept also exists in non-x86 hardware, examples:
– ARM: NEON
– IBM Power: VSX
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Example:
AVX2 FMA instruction

• AVX: 256 bit registers - 4 doubles
• Single instruction - 8 flops:

a1 + b1 * c1

a2 + b2 * c2
a3 + b3 * c3

a4 + b4 * c4

• Enable via compiler option:
– Without cross compilation:

»GCC: -march=native –O3
» Intel: -xHost –O3

– Cross compilation: explicit specification

*+

a b c

Basic example for SIMD deployment

do i=1, n

a(i) = b(i) + c(i)
enddo

• Execute multiple loop iterations simultaneously

• Reduce loop count accordingly
• Iterations need to be independent
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What the compiler will do for you
(Simplified)

do i=1, n, 4

a(i ) = b(i ) + c(i )
a(i+1) = b(i+1) + c(i+1)
a(i+2) = b(i+2) + c(i+2)

a(i+3) = b(i+3) + c(i+3)
enddo

• Execute multiple loop iterations simultaneously
• Iterations need to be independent
• Compiler might need to add a peel

Basic example for SIMD deployment

for (i=1; i<n; i++)

{
a[i] = b[i] + c[i]

}

• Execute multiple loop iterations simultaneously
• Reduce loop count accordingly
• Iterations need to be independent
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What the compiler will do for you
(Simplified)

for (i=1; i<n; i+=4)

{
a[i ] = b[i ] + c[i ]
a[i+1] = b[i+1] + c[i+1]

a[i+2] = b[i+2] + c[i+2]
a[i+3] = b[i+3] + c[i+3]

}
• Execute multiple loop iterations simultaneously
• Reduce loop count accordingly
• Compiler might need to add a peel

Automatic vectorisation

• Modern compilers vectorise many loops automatically
– Choose right instruction set and optimisation level

»GNU: -O3 -march=native
» Intel: -O3 –xHost

– Compilers can report on vectorisation
»GNU: -fopt-info, -fopt-info-missed
» Intel: -qopt-report -qopt-report-phase=vec

• Compiler needs help in complex situations
– Compiler specific directive L

– OpenMP SIMD construct: portable way to help J
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Vectorisation of Stream Triad

Discussion of vectorisation results

• Stream triad is simple to vectorise for the compiler
– Specify architecture (GCC 7.3.0 defaults to SSE)

• Performance
– 4x improvement on L1
– Substancial boost on L2

– Marginal boost on LLC
– No effect on main memory

• To get benefit of vectorisation: work on a low level cache
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Cache
HOW DOES IT WORK

Words and cacheline

• Cache organised in ”cachelines” 
• Each line holds a number of words/double words
• System will always load entire cache lines

• System has no time to do complex decisions

• Example x86 processor: 64 byte cache line holds
– 16 words (4 byte each): float/real
– 8 double words (8 byte each): double /double precision

double double double double double double double double
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Direct mapped cache
Example: 8 lines of 64 Bytes

• Each storage cell can only:

– Go to one cache line
– Sit in one position on the cache line

• Byte address of first element modulo 512 

• Number of cache lines: power of 2

• Example:

Elements at 80, 592 and 1104
2nd row, 3rd element in cache

0
64

128
192
256
320
384
448
512
576
640
704
768
832
896

Byte address
of first element

960
1024

Cache
0

64
128
192
256
320
384
448

Memory

1088
1152
1216
1280
1344
1408
1472

Basic use of cache

• You always load a cache line – not an individual element
• Once a cache line is loaded, try to use all elements 

before loading another one
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Problem with direct mapped cache

• Consider simple code
double precision, dimension(512) :: a, b, c
…
do i=1, 512

a(i) = b(i) + c(i)
enddo

• Assume arrays a, b and c are are located back-to-back in 
memory

• Poor performance due to cache trashing!

Problem with direct mapped cache
Visualisation

• Each loop iteration: 
– system locates b(i), c(i) and a(i)

on cache line 

• Next iteration, same again

• Solution: Pad array

– Dimension array as 512 + p * 8

– Experiment with p = 1, 2, 3, …
– Use first 512 elements only 

0
64

128
192
256
320
384
448
512
576
640
704
768
832
896

Byte address
of first element

960
1024

Cache
0

64
128
192
256
320
384
448

Memory

1088
1152
1216
1280
1344
1408
1472
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Set associative cache
Example: 2-way set associative

• We have 4 sets - 2 cache lines each

• Every element can sit in one of 2 positions
• Byte address of first element modulo 256 

• Example:

Elements at 80, 336, …                      

2nd set, 3rd element in the cache line

• Cache replacement policy: 
Random, Least Recent Use (LRU),         
First in First out (FIFO)

0
64

128
192
256
320
384
448
512
576
640
704
768
832
896

Byte address
of first element

960
1024

Cache
0

64
128
192

Memory

1088
1152
1216
1280
1344
1408
1472

Comments on set associative cache

• Fixes the issue with vector code for 3-way or better

• Can still encounter poor cache results on matrices
– E.g. rows in Fortran, columns in C/C++ 
– Problem if leading dimension matches product of 

cacheline size and number of sets
»E.g: multiple of 256 elements on prev. picture
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What to expect on current processors

• Modern Intel:
Processor L1 Data L2 L3

Haswell 32 kB/core
64 B/line

8-way

256 kB/core 
8-way

1.5 MB/core

Broadwell 32 kiB/core
64 B/line

8-way

256 kiB/core 
8-way

1.5 MB/core

Skylake (Server) 32 kiB/core
64 B/line

8-way

1 MiB/core
16-way

1.375 MiB/core
11-way

Cascade Lake 32 kiB/core
64 B/line

8-way

1 MiB/core
16-way

1.375 MiB/core
11-way

Strided data access
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Comments on strided access

• L2, L3 and main memory loose performance
• The caches effectively shrink

• Process stops when the strides are beyond a cacheline

• Though bad things happen for strides of a power of 2

Stride of 512 elements
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Observations

• Performance for stride 512 disastrous
– Cache drops by a almost two orders of magnitude
– Cache levels do not perform

• Adding/subtracting one or two cache lines improves

– When adding/subtracting two lines, caches shrink by 
a factor of 2

Analysis 

• On Haswell:
– L1D of 32 kB, 8 way, 8 doubles per line

» L1D turns over after 512 words 
» For stride 512 utilises only one set ot of 64
» The L1D stores only 8 words for stride 512

– L2 of 256 kB, 8 way, 8 doubles per line
» L2 turns over after 4096 words
» For stride 512 we utilise eight sets out of 512
» The L2 stores only 64 words for stride 512

– For strides 496, 528 we use every second line
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Relevance

• Strided access patterns are common in matrix operations
– E.g.: operation on

» rows in Fortran
» columns in C/C++

• Avoid badly strided access by
– Avoid array leading dimension equal to a power of 2

– Extending the leading dimension (example soon)
» This wastes a bit of memory
»Needs care in MPI functions

Extended leading array dimension
Fortran

integer, parameter :: clsz = 8

double precision, dimension(512+clsz, 1024) :: A

do j = 1, 1024

do i = 1, 512
A(i,j) = some_function(i,j)

enddo
enddo

...

Leading dimension
Extended by a cache line

Cache line size
as parameter
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Extended leading array dimension
C

const int clsz = 8;

double A[1024][512+clsz];

for (int j=1; j<1024; j++) 

for (int i=1; i<512; i++)
A[j][i] = some_function(j,i);

...

Leading dimension
Extended by a cache line

Cache line size
as parameter

Summary

• A high flop rate is typically a memory traffic problem:

– Work on low level cache
– Use vector instructions of architecture
– Access all data on a loaded cache line

– Strides/leading dimensions of a power of 2 are bad
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An introduction to profiling
JOACHIM HEIN, LUNARC & CENTRE OF MATHEMATICAL SCIENCES

Overview

• Overview on profilers
– Timer based
– Sampling based

• Getting started with ARM map
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Measuring performance

Analysing performance

• Questions 
– Where is a code spending time?
– Why is it spending time there?
– Is the time spend justified?
– If not, what can be done to reduce the time spent?
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Timers

• Discussed before
• Insert explicitly into the code
• Often build into applications for performance “monitoring”

• The “printf” solution of performance analysis

• For real impact you need a profiling tool
– Providing automatic instrumentation

Performance profilers

• Two kinds available:

– Timer based profilers
– Sampling based profilers

• Both have their strength and weaknesses
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Timer based profilers

• Start a timer when entering:
– Subroutine or function 
– OpenMP construct

• Stop the timer when exiting the above

• User can manually add instrumentation

• Gives very detailed information on task/thread activity
– Can be utilised for detailed problem reports

Timer based profilers (cont.)

• Starting/stopping timers gives overhead
• Works well when timed sections are long enough

– Typical FORTRAN coding
• Often challenged with OO style coding (e.g. C++)

– Methods are short 

– Overheads unacceptably large (10x in program time)
– Need exclusion lists (subroutines/functions)
– Alternatively files compiled without instrumentation
– Time gets attributed to the caller
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Timer based profilers

• The ones I have used (aimed at HPC):
– Craypat – comes with a Cray 
– Scalasca from FZJ in Germany - free

Scalasca GUI

Metric Call tree Process
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Sampling based profilers

• Regularly interrupts program execution
– Typical value about 100 times per second

• Records the call stack
• Puts a “black mark” against the routine it is in
• In the end you get an overview on the black marks

• Information on individual code lines/instructions

Sampling based profilers

• The ones I have used (aimed at HPC):

– Craypat – comes with a Cray
– ARM map – requires an expensive license
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ARM map

Three steps to a profile

1. Prepare your code

2. Run your application under the profiler

3. Analyse and display the results
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Using ARM map

Doing a map analysis

• Compile the code with –g and performance optimisation

mpicc –g –O3 –march=native –o program program.c

• Run the code (jobscript) with 
map --profile mpirun ./program

• View the resulting .map-file with the FORGE gui
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What does it do

• MAP is designed and configured with massive parallelism 
in mind

• Keeping about 1000 evently spaced samples per task
– Starting with a sample rate of 50Hz – every 20ms

– Reducing the sample rate as the runtime increases
– Control starting sample rate via env. variable, e.g.:

export ALLINEA_SAMPLER_INTERVAL=5

– Beneficial for short tests

Demo
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