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Shared-Memory Parallel Programming

Basic assumptions:

• Shared memory hardware support

-There are multicores without shared memory 
also, but that’s a different course

• An operating system that can provide

- Processes with individual address spaces

- Threads that share address space 
within a process

- The OS schedules threads for execution 
on the cores
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Shared Address Space

Processes vs. Threads

• A process is a container for a program 
in execution, with state, capabilities, 
and access rights to resources shared
by all its threads:

- Address space

- Code

- Data (static data, heap data)

- Opened files

• A thread is a unit of control flow and 
CPU scheduling

- Each thread has its own PC and stack

- Any program starts its execution as a 
single thread calling main()

- New threads can be created
through OS calls

 Multithreaded process
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Concurrency vs. Parallelism

As defined by Sun/Oracle:

• Concurrency: A condition that exists when at least 
two tasks (threads, processes) are making progress. 
A more generalized form of parallelism that can 
include time-slicing as a form of virtual parallelism.

- A property of the program/system

• Parallelism: A condition that arises when at least two 
tasks are executing simultaneously.

- A run-time behaviour of executing a concurrent program

- Requires more than one execution unit (CPU, core)
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In other words…

• Concurrency: A condition of a system in which 
multiple tasks are logically active at one time.

• Parallelism: A condition of a system in which multiple 
tasks are actually active at one time. 

All programs

Concurrent
programs

Parallel 
programs



OpenMP

• A standardized (portable) way for writing concurrent
programs for shared memory multiprocessors

- For C/C++/Fortran
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Abstract machine model:
• Concurrent threads

(~cores)
• A shared address space
• Private memory to each

thread



OpenMP

• A standardized (portable) way for writing concurrent
programs for shared memory multiprocessors

- For C/C++/Fortran
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T TT T T A more concrete model:
• Threads are scheduled

to processors by the OS
• The private memory

(for thread-private data) is
located in the shared
address space

• There may be local memory
to each processor
• Caches
• NUMA 



The evolution of OpenMP

4.5

2015

2015

Taskloops, task 
priorities, …

2016

2016 2017 2018 2019

2017 2018 2019

Improved accelerator 
programming support, 

Unified memory, 
Multilevel memory

(HBM, NUMA), 
Fully declarative loop 

construct, 
APIs to connect with
external debugging
and performance

analysis tools, 
C++17, Fortran2008

…
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Agenda

Wednesday (today)

• 9-10 The basic concepts of OpenMP

• 10-12 Core features of OpenMP

» Parallel for (do) loops

» Synchronization

• 13-14 Memory model

Thursday (tomorrow)

• 9-10 Tasks, task dependencies and accelerators

» OpenMP 3.0 - 4.5

• 10-12 Looking forward

» Alternatives to OpenMP

+ OpenMP programming
exercises, by S. Markidis

+ OpenMP advanced
project, by S. Markidis



Caveat

• All programming examples are in C (C++)

• I can not provide equivalent examples in Fortran

• Ask if you are unsure about C
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• OpenMP Worksharing and the Task Model
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• Summary
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OpenMP* Overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL  REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok) 

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP  SINGLE PRIVATE(X)

C$OMP SECTIONS 

C$OMP MASTER
C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP  BARRIER

OpenMP:  An API for Writing Multithreaded 
Applications

• A set of compiler directives and library routines  for 
parallel application programmers

• Greatly simplifies writing multi-threaded (MT) 
programs in Fortran, C and C++

• Standardizes last 20 years of SMP practice

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.
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OpenMP Basic Defs: Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,

Compiler
OpenMP library

Environment 

variables

Application

End User

Shared Address Space

Proc3Proc2Proc1 ProcN
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OpenMP core syntax

• Most of the constructs in OpenMP are compiler directives.

#pragma omp construct [clause [clause]…]

- Example

#pragma omp parallel num_threads(4)

• Function prototypes and types in the file:  

#include <omp.h>

• Most OpenMP constructs apply to a “structured block”.
- Structured block: a block of one or more statements with one point of 

entry at the top and one point of exit at the bottom. 

- It is OK to have an exit() within the structured block.
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Exercise 1, Part A: Hello world
Verify that your environment works

•Write a program that prints “hello world”.

int main()

{

int ID = 0;

printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID);

}
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Exercise 1, Part B: Hello world
Verify that your OpenMP environment works

•Write a multithreaded program that prints “hello world”.

void main()

{

int ID = 0;

printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID);

}

#pragma omp parallel

{

}

#include “omp.h” Switches for compiling and linking

gcc -fopenmp gcc

icc –openmp intel (linux)

cc –xopenmp Oracle cc
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Exercise 1: Solution

A multi-threaded “Hello world” program

• Write a multithreaded program where each thread prints “hello world” 
and its thread ID.

#include “omp.h”

void main()

{

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID);

}

}

Sample Output:

hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include file

Parallel region with default 

number of threads

Runtime library function to return 

a thread ID.End of the Parallel region
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OpenMP Overview:
How do threads interact?

• OpenMP is a multi-threading, shared address model.

• Threads communicate by sharing variables.

• Unintended sharing of data causes race conditions:

• Race condition: the program’s outcome may change as the threads 
are scheduled differently.

– No problem if all threads do read-only accesses

– Write access  conflicts (data race) with reads and other writes
(order of accesses matters)

• To control race conditions:

• Use synchronization to protect data conflicts.

• Synchronization is expensive, so:

• Change how data is accessed to minimize the need for synchronization. 
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Outline
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OpenMP Programming Model: 

Fork-Join Parallelism: 
Master thread spawns a team of threads as needed.

Parallelism added incrementally until performance goals are met: 
i.e. the sequential program evolves into a parallel program.

Parallel Regions
Master 

thread 

in red

A Nested 

Parallel 

region

Sequential Parts
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Thread Creation: Parallel Regions

• You create threads in OpenMP* with the parallel construct.

• For example, to create a 4-thread Parallel region:

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread 

executes  a 

copy of the 

code within the 

structured block

Runtime function to 

request a certain 

number of threads

Runtime function 

returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board
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Thread Creation: Parallel Regions

• You create threads in OpenMP* with the parallel construct.

• For example, to create a 4-thread Parallel region:

double A[1000];

#pragma omp parallel num_threads(4)

{

int ID = omp_get_thread_num();

pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread 

executes  a 

copy of the 

code within the 

structured block

clause to request a certain 

number of threads

Runtime function 

returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board
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Thread Creation: Parallel Regions 
example

•Each thread executes the 
same code redundantly.

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID, A);

}

printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single 

copy of A is 

shared 

between all 

threads.

Threads wait  here  for all threads to finish 

before proceeding (i.e. a barrier)
* The name “OpenMP” is the property of the OpenMP Architecture Review Board



What an OpenMP compiler does

• The OpenMP compiler generates code 
logically analogous to that on the right 
of this slide, given an OpenMP pragma 
such as that on the top-left

• Here, only three threads are created 
because the last parallel section will be 
invoked from the parent thread.

• All known OpenMP implementations use 
a thread pool, so full cost of threads’ 
creation and destruction is not incurred 
anew for each executed parallel region.

#pragma omp parallel num_threads(4)

{

foobar ();

}

void body1()

{

foobar ();

}

pthread_t tid[4];

for (int i = 1; i < 4; ++i)

pthread_create( &tid[i],

0, body1, 

0);

body1(); // by master thread

for (int i = 1; i < 4; ++i)

pthread_join( tid[i] );



Shared vs Private Variables

#pragma omp parallel shared ( varlist )

#pragma omp parallel private ( varlist )
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Exercises 2 to 4:  
Numerical Integration


4.0

(1 + x2)
dx =  

0

1

 F(xi) x  
i = 0

N

Mathematically, we know that:

We can approximate the integral of 

a function F as a sum of rectangles:

Where each rectangle has 

width x = x / N   and height F(xi) at 

the middle xi of interval i.

4.0

2.0

1.0

X
0.0

F
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Exercises 2 to 4: Serial PI 
Program
static long num_steps = 100000;

double step;

void main ()

{

int i;

double  x, pi, sum = 0.0;

step = 1.0 / (double) num_steps;

for (i=0; i< num_steps; i++) {

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}



30

Exercise 2

• Create a parallel version of the pi program
using the parallel construct.

• Pay close attention to shared versus private variables.

• In addition to a parallel construct, you will need these 
runtime library routines:

- int omp_get_num_threads();

- int omp_get_thread_num();

- double omp_get_wtime();

Time in seconds since a fixed 

point in the past

Thread ID or rank

Number of threads in the 

team
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Outline
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Discussed 

later

Synchronization

• High level synchronization:

• critical

• atomic

• barrier

• ordered

• Low level synchronization

• flush

• locks (both simple and nested)

Synchronization is used to 
impose order constraints 
and to protect access to 
shared data
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Synchronization: critical  

• Race condition, critical section/region: 

float res;

#pragma omp parallel

{     float B;

int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for (i=id; i<niters; i+nthrds)  {

B =  big_job(i);

#pragma omp critical 

res = res + B;

}

}

Threads wait their 

turn – only one at 

a time (atomically) 

adds its B to res

Example:
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Race Conditions lead to Nondeterminism

 Example:  res = res + B     (res is shared,  B is private)

 could be implemented in machine code as

39: register1 = res                          // load
40: register1 = register1 + B          // add 
41: res = register1         // store

 Consider this execution interleaving, with “res = 5” initially:

39: thread1 executes register1 = res                 { T1.register1 = 5 }
39: thread2 executes register1 = res                 { T2.register1 = 5 } 
40: thread1 executes register1 = register1 + 2 { T1.register1 = 7 } 
40: thread2 executes register1 = register1 – 3 { T2.register1 = 2 } 
41: thread1 executes res = register1 { res = 7 } 
41: thread2 executes res = register1 { res = 2 }

 Compare to a different interleaving of memory accesses in time,  
e.g., 39,40,41, 39,40,41…

 Result depends on relative speed of the accessing threads
(race condition) – can differ for different executions

Not 

atomic!



35 TDDB68 Concurrent Programming and Operating SystemsC. Kessler, IDA, Linköpings universitet.

Background:  Critical Section

 Critical Section: A set of instructions, operating on
(possibly modifying) shared data or resources, 
that should, in principle, be executed by a 
single thread at a time without interruption

 Atomicity of execution

 Consistency: inconsistent intermediate states of
shared data shall not be visible to other threads
outside

A sufficient method to guarantee atomic execution is:

Mutual exclusion: At most one thread should
be allowed to operate inside at any time.

 General structure, with structured control flow:

... (non-critical section) …

Entry of critical section C

… critical section C: operation on shared data

Exit of critical section C

…
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Synchronization: critical  

• Mutual exclusion: 
Only one thread at a time can enter a critical region.

float res;

#pragma omp parallel

{     float B;

int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for (i=id; i<niters; i+nthrds)  {

B =  big_job(i);

#pragma omp critical 

res = res + B;

}

}

Threads wait their 

turn – only one at 

a time (atomically) 

adds its B to res
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Synchronization: critical  

• Mutual exclusion: 
Only one thread at a time can enter a critical region.

Queue Q;

#pragma omp parallel

{     float B;

int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for (i=id; i<niters; i+nthrds)  {

B =  big_job(i);

#pragma omp critical 

enqueue(Q,B);

}

}

Threads wait their 

turn – only one at 

a time calls 

enqueue(Q,B)

Another Example:



#pragma omp parallel

{ 

double tmp, B;

B =  DOIT();

#pragma omp atomic 

X += big_ugly(B);

}

#pragma omp parallel

{ 

double tmp, B;

B =  DOIT();

tmp = big_ugly( B );

#pragma omp atomic

X +=  tmp;

}

Atomic only protects the 

read/update of X

38

Synchronization: Atomic

• Atomic provides mutual exclusion 
but only applies to the update of a memory location 
(the update of X in the following example)



39

Exercise 3

• In Exercise 2, you probably used an array to create 
space for each thread to store its partial sum.

• If array elements happen to share a cache line, 
this leads to false sharing.

• Non-shared data in the same cache line, 
so each update invalidates the cache line … 
in essence, “sloshing independent data” back and forth 
between threads.

• Modify your “pi program” from Exercise 2 
to avoid false sharing due to the sum array.
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Outline
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Discussed later

SPMD vs. worksharing

• A parallel construct executes its body (the parallel region) 
in SPMD (“Single Program Multiple Data”) style … 
i.e., each thread in the team redundantly executes the 
same code,
and no new threads are created or removed dynamically.

• How do you split up pathways through the code between 
threads within a team?
- This is called worksharing

• By hand (as in Exercise 2) ?
Possible, but cumbersome, low-level, error-prone …

• By the work-sharing constructs in OpenMP
– Parallel loop construct

– Parallel sections/section constructs

– Single construct

– …

– Task construct …. Available in OpenMP 3.0
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The loop worksharing construct 

• The loop worksharing construct splits up loop iterations 
among the threads in a team

#pragma omp parallel

{

#pragma omp for 

for (i=0; i<N; i++) {

NEAT_STUFF( i );

}

}

Loop construct name:

• C/C++: for

• Fortran: do

The loop index variable i is made “private” 

to each thread  by default.  You could do 

this explicitly with a “private( i )” clause
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Loop worksharing construct
A motivating example

for( i=0; i<N; i++)   { a[i] = a[i] + b[i];}

#pragma omp parallel

{

int id, i, Nthrds, istart, iend;

id = omp_get_thread_num();

Nthrds = omp_get_num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;

if (id == Nthrds-1) iend = N;

for (i=istart; i<iend; i++)   { a[i] = a[i] + b[i];}

}

#pragma omp parallel

#pragma omp for

for (i=0;i<N;i++)   { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel 

region with

hand-programmed

worksharing

OpenMP parallel 

region and a 

worksharing for

construct
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Loop worksharing construct:
The schedule clause

The schedule clause (after for/do)
affects how loop iterations are mapped onto threads

- schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

- schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have been handled.

- schedule(guided[,chunk])

– Threads dynamically grab blocks of iterations. The size of the block starts large and 
shrinks down to size “chunk” as the calculation proceeds.

- schedule(runtime)

– Schedule  and chunk size taken from the OMP_SCHEDULE environment variable (or the 
runtime library … for OpenMP 3.0).

- schedule (auto)

– Schedule is up to the run-time to choose (does not have to be any of the above).



Why different schedules?

•Consider a loop with 12 iterations with the following
execution times

- 10, 6, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1

•Assume four threads (cores)

4

10

6

T 0      1        2        3

static, 3

10

0      1        2        3

dynamic, 1

10

0       1        2        3

static, 1

Makespan = 20

(total time)

Makespan = 13 Makespan = 10
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Schedule 
Clause

When To Use

STATIC Iteration times known by the 
programmer to be (almost) 
equal

DYNAMIC Unpredictable, highly variable 
work per iteration – need for 
dynamic load balancing

GUIDED Special case of dynamic 
scheduling to reduce 
scheduling overhead

AUTO The run-time system tries to 
“learn” from previous 
executions of the same loop

Loop work-sharing constructs:
The schedule clause

No overhead at 

runtime: 

scheduling done 

at compile-time

Most work at 

runtime: 

complex 

scheduling logic 

used at run-time
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Combined parallel/worksharing
constructs

• OpenMP shortcut: Put the “parallel” and   
the worksharing directive on the same line

double  res[MAX];
int i;

#pragma omp parallel 
{

#pragma omp for
for (i=0;i< MAX; i++) {

res[i] = huge();
} 

}

These are equivalent 

double  res[MAX];
int i;

#pragma omp parallel for
for (i=0;i< MAX; i++) {

res[i] = huge();
} 
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Working with loops

Basic approach

- Find compute-intensive loops (use a profiler)

- If the loop iterations are independent (without loop-carried 
dependencies)
(or the loop can be rewritten to have independent iterations), 
they can safely execute in any order or in parallel

• Place the appropriate OpenMP directive and test

int i, j, A[MAX];
j = 5;
for (i=0; i<MAX; i++) {

j +=2;
A[i] = big(j); 

} 

int i,  A[MAX];
#pragma omp parallel for
for (i=0; i<MAX; i++) {

int j = 5 + 2*(i+1);
A[i] = big(j); 

} Remove loop 

carried 

dependence

Note: loop index 

“i” is private by 

default



Nested loops

•For perfectly nested rectangular loops we can parallelize
multiple loops in the nest with the collapse clause:

•Will form a single flat loop of length NxM iterations
and then parallelize that.

•Useful if N almost equals no. of threads
so that parallelizing the outer loop only 
would make balancing the load difficult

#pragma omp parallel for collapse(2)

for (int i=0; i<N; i++) {

for (int j=0; j<M; j++) {

.....

}

}

Number of loops to be
parallelized, counting
from the outside
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Sequencing parallel loops (1)

Static: Guarantee that the same schedule is used in the two loops

• nowait clause suppresses the implicit barrier synchronization at the 
end of the annotated loop

#pragma omp for schedule(static) nowait

for (i=0; i<n; i++){

a[i] = ....

}

#pragma omp for schedule(static) 

for (i=0; i<n; i++) {

.... = a[i] 

}



51

Sequencing parallel loops (2)

Static: Guarantee that the same schedule is used in the two loops

• nowait clause suppresses the implicit barrier synchronization at the 
end of the annotated loop

#pragma omp for schedule(static) nowait

for (i=0; i<n; i++){

a[i] = ....

}

#pragma omp for schedule(static) 

for (i=0; i<n; i++) {

.... = a[i] 

}

Remark:  There may be a more cache-efficient solution for this case. Which one?
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Reduction

•We combine values in a single accumulation variable (sum) 

- There is a true dependence (data flow dependence) 
between loop iterations (i.e., a loop-carried dependence)
that can’t be trivially removed

•This is a very common situation 

- it is called a reduction.

•Support for reduction operations is included in most parallel 
programming environments.

double ave, s=0.0, A[MAX];    
int i;
for (i=0; i< MAX; i++) {

s += A[i];
} 
ave = s / MAX; 

 How do we handle this case?

S Global sum is 

a + -reduction

A

s
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Reduction

•OpenMP reduction clause:   
reduction (op : list)

•Inside a parallel or a work-sharing construct:

• A local copy of each list variable is made and initialized 
depending on the “op” (e.g., 0 for “+”).

• Updates occur on the local copy. 

• Afterwards, local copies are reduced into a single value 
and combined with the original global value.

•The variables in “list” must be shared in the enclosing 
parallel region.  

double ave, s=0.0, A[MAX];    int i;
#pragma omp parallel for reduction (+:s)
for (i=0; i< MAX; i++) {

s + = A[i];
} 
ave = s / MAX; 
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Reduction operands and initial-values

• Many different associative operators can be used with reduction

• Initialization values are the ones that make sense mathematically.

Operator Initial value

+ 0

* 1

- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value

& ~0

| 0

^ 0

&& 1

|| 0

Fortran Only

Operator Initial value

.AND. .true.

.OR. .false.

.NEQV. .false.

.IEOR. 0

.IOR. 0

.IAND. All bits on

.EQV. .true.
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Exercise 4: Pi with loops

• Go back to the serial pi program and parallelize it with a 
loop construct

• Your goal is to minimize the number of changes made to 
the serial program.



Serial Pi program

static long num_steps = 100000;

double step;

void main ()

{

int i;

double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0; i< num_steps; i++) {

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}



Parallel Pi program

static long num_steps = 100000;

double step;

void main ()

{

int i;

double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

#pragma omp parallel for reduction(+:sum)

for (i=0; i< num_steps; i++) {

double x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}
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Synchronization: Barrier

• Barrier: Each thread waits until all threads arrive.

#pragma omp parallel shared (A, B, C) private( id )

{

id=omp_get_thread_num();

A[id] = big_calc1(id);

#pragma omp barrier

#pragma omp for

for(i=0;i<N;i++) { C[i]=big_calc3(i,A); }

#pragma omp for nowait

for(i=0; i<N; i++) {

B[i]=big_calc2(C,  i);

}

A[id] = big_calc4(id);

}
implicit barrier at the end of a 

parallel region

implicit barrier at the end of 

a for worksharing construct

no implicit barrier 

due to nowait

explicit barrier
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Recall: Sequencing parallel loops (1)

Static guarantees that the same schedule is used in the two loops

• nowait clause suppresses the implicit barrier synchronization at the 
end of the annotated loop

#pragma omp for schedule(static) nowait

for (i=0; i<n; i++){

a[i] = ....

}

#pragma omp for schedule(static) 

for (i=0; i<n; i++) {

.... = a[i] 

}
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Recall: Sequencing parallel loops (2)

Static guarantees that the same schedule is used in the two loops

• nowait clause suppresses the implicit barrier synchronization at the 
end of the annotated loop

#pragma omp for schedule(static) nowait

for (i=0; i<n; i++){

a[i] = ....

}

#pragma omp for schedule(static) 

for (i=0; i<n; i++) {

.... = a[i] 

}

Remark:  There may be a more cache-efficient solution for this case. Which one?
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Master Construct

The master construct denotes a structured block that is only executed 
by the master thread. 

• The other threads just skip it (no synchronization is implied).

• Is not considered a work-sharing construct, and could thus be nested 
inside other worksharing constructs (e.g. parallel loops).

#pragma omp parallel

{

do_many_things();

#pragma omp master

{

exchange_boundaries();

}

#pragma omp barrier

do_many_other_things();

}
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Use Case of master Directive: 

Hybrid MPI + OpenMP Parallelization

 Common: hybrid supercomputer architecture, 
cluster with SMP (e.g., multi-core) nodes

 Hybrid MPI + OpenMP parallelization in 2 steps:

(1) Parallelize for ordinary MPI (single-threaded)

(2) Multi-thread each MPI process with OpenMP

All communication on master thread

– use omp master 

 An alternative to running one MPI process per core
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Single worksharing Construct

The single construct denotes a block of code that is executed by 
only one thread (not necessarily the master thread).

• A barrier is implied at the end of the single block 
(can remove the barrier with a nowait clause).

#pragma omp parallel

{

do_many_things();

#pragma omp single

{  

exchange_boundaries(); 

}

do_many_other_things();

}
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Sections worksharing construct

•The sections worksharing construct gives a different 
structured block to each thread.  

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

x_calculation();

#pragma omp section

y_calculation();

#pragma omp section

z_calculation();

}

}

By default, there is a barrier at the end of the “omp sections”.  

Use the “nowait” clause after sections to turn off the barrier.
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Synchronization: ordered

The ordered region executes in the sequential order of loop iterations.

• Allows for some parallelism by partly overlapping iterations 

• ordered relates to the (dynamically) closest surrounding OpenMP
loop construct.

#pragma omp parallel private (tmp)

#pragma omp for ordered reduction(+:res)

for (i=0; i<N; i++) {

tmp = neat_stuff( i );

#pragma omp ordered

{

res += consume( tmp );

}

}
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Synchronization: Lock routines

•Simple Lock routines:

- A simple lock is available if it is unset.

– omp_init_lock(), omp_set_lock(), 
omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

•Nested Locks

- A nested lock is available if it is unset or if it is set but owned 
by the thread executing the nested lock function

– omp_init_nest_lock(), omp_set_nest_lock(), 
omp_unset_nest_lock(), omp_test_nest_lock(), 
omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the 

lock, so you don’t need to use a flush on the lock variable.

A lock operation also implies 
a memory fence (a “flush”) 
of all thread visible variables
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Synchronization: Simple Locks

• Protect resources with locks.

omp_lock_t lck;
omp_init_lock( &lck );
#pragma omp parallel private (tmp, id)
{

id = omp_get_thread_num();
tmp = do_lots_of_work(id);
omp_set_lock(&lck);

printf(“%d %d”, id, tmp);
omp_unset_lock(&lck);

}  
omp_destroy_lock(&lck);  

Wait here for your 
turn.

Release the lock so the 
next thread gets a turn.

Free-up storage when done.



OpenMP
Runtime Library Routines
and Environment Variables
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Runtime Library routines

Runtime environment routines:

• Modify/Check the number of threads

– omp_set_num_threads(), 
omp_get_num_threads(), 
omp_get_thread_num(), 
omp_get_max_threads()

• Are we in an active parallel region?

– omp_in_parallel()

• Do you want the system to dynamically vary the number 
of threads from one parallel construct to another?

– omp_set_dynamic,   omp_get_dynamic();

• How many processors in the system?

– omp_num_procs()

…plus a few less commonly used routines.
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Runtime Library routines

•To use a known, fixed number of threads in a program, 
(1) tell the system that you don’t want dynamic adjustment 
of the number of threads,  (2) set the number of threads, 
then (3) save the number you got.

#include <omp.h>

void main()

{   int num_threads;

omp_set_dynamic( 0 );

omp_set_num_threads( omp_num_procs() );

#pragma omp parallel

{     int id = omp_get_thread_num();

#pragma omp single

num_threads = omp_get_num_threads();   

do_lots_of_stuff( id ); 

}

}

Protect this op since memory 

stores are not atomic

(2) Request as many threads as 

you have processors.

(1) Disable dynamic adjustment of the 

number of threads.

(3) Even in this case, the system may give you fewer 

threads than requested.  If the precise number of threads 

matters, test for it and respond accordingly.
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Environment Variables

• Set the default number of threads to use.

– OMP_NUM_THREADS int_literal

• Control how “omp for schedule(RUNTIME)” loop iterations are 
scheduled.

– OMP_SCHEDULE “schedule[, chunk_size]”

… plus several less commonly used environment variables.



Orphaning of Directives
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Orphaning of Directives

 An orphaned directive relates to another 
directive, usually the most recent omp
parallel or omp for, that is not located 
in the same function but in a dynamic 
predecessor.

 It thus needs not occur in the lexical 
(static) extent of the directive it refers to.

 Most OpenMP directives can orphan:

 omp for  omp parallel,

 omp sections  omp parallel,

 omp single  omp parallel,

 omp master  omp parallel,

 omp barrier omp parallel,

 omp ordered omp for,

 omp atomic  all threads

 omp critical all threads

void foo( void )

{

#pragma omp parallel

{  ...

work();

}

...

}

...

void work( void ) 

{

...

#pragma omp for

for (...)

...

}
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Data environment:
Default storage attributes

Shared Memory programming model: 

• Most variables are shared by default

Global variables are SHARED among threads

• Fortran: COMMON blocks, SAVE variables, MODULE variables

• C: File scope variables, static

• Both: dynamically allocated memory (ALLOCATE, malloc, new)

•But not everything is shared...

• Stack variables in subprograms(Fortran) or functions(C) called 
from parallel regions are PRIVATE

• Automatic variables within a statement block are PRIVATE.
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double A[10];

int main()

{

int index[10];

#pragma omp parallel  

work( index );

printf(“%d\n”, index[0]);

}

extern double A[10];

void work (int *pindex) 

{

double temp[10];

static int count;

...

}

Data sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are 

shared by all threads.

temp is local to each thread

file2.cmainfile.c
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Data sharing:
Changing storage attributes

One can selectively change storage attributes for 
constructs using the following clauses*

• shared

• private

• firstprivate

•The final value of a private inside a parallel loop can be 
transmitted to the shared variable outside the loop with:

• lastprivate

•The default attributes can be overridden with:

• default (private | shared | none)

*All the  clauses on this page apply 

to the OpenMP construct, NOT to 

the entire region.

All data clauses apply to parallel constructs and worksharing constructs 

except “shared” which only applies to parallel constructs.

default(private) is Fortran only



Default sharity settings (for now,  details come later):

• Global variables (in Fortran: common block) are shared by default.

• Variables allocated before entering the parallel region are shared

• Loop index variables of do/for loops in parallel regions are private by 

default.

i = 1;
z[ i ] = a * x[ i ] + y;
#pragma omp parallel private(i)
{

#pragma omp for
for (i=2; i<n; i++)
z[ i ] = a * x[ i ] + y; 

}
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Data Sharing: Private Clause

void wrong()
{

int tmp = 0;

#pragma omp parallel for private(tmp)

for (int j = 0; j < 1000; ++j) 

tmp += j;

printf(“%d\n”, tmp);

}

•private(var)  creates a new local copy of var for each thread.

• The value is uninitialized

• In OpenMP 2.5 the value of the shared variable was undefined after 
the region

tmp was not 

initialized

tmp: 0 in 3.0, 

unspecified in 2.5
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Data Sharing: Private Clause -
When is the original variable valid?

int tmp;   // shared

void danger() 
{

tmp = 0;

#pragma omp parallel private(tmp)

work();

printf(“%d\n”, tmp);

}

•The original variable’s value is unspecified in OpenMP 2.5.

• In OpenMP 3.0, if it is referenced outside of the construct

• Implementations may reference the original variable or a copy ….. 
A dangerous programming practice!

extern int tmp;

void work() 
{

tmp = 5;

}

unspecified which copy of 

tmp is accessed.

(To make sure, pass a pointer to the 

privatized tmp if that was intended.)

Refers to “original” tmp.

OpenMP2.5: unspecified value
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Data Sharing: Firstprivate Clause

•Firstprivate is a special case of private.

• Initializes each private copy with the corresponding 
value from the master thread.

tmp: 0 in 3.0, unspecified in 2.5

void useless() 
{

int tmp = 0;

#pragma omp parallel for firstprivate(tmp)

for (int j = 0; j < 1000; ++j) 

tmp += j;

printf(“%d\n”, tmp);

}

Each thread gets its own tmp

with an initial value of 0
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Data sharing: Lastprivate Clause

•Lastprivate passes the value of a privatized global variable 
from the thread executing the sequentially last iteration (here, 
999) of a workshared for-loop to the corresponding global 
variable (here, tmp).

tmp is defined as its value at the “last 

sequential” iteration (i.e., for j=999)

void closer()
{

int tmp = 0; 

#pragma omp parallel for firstprivate(tmp) \

lastprivate(tmp)

for (int j = 0; j < 1000; ++j)

tmp += j;

printf(“%d\n”, tmp);

}

Each thread gets its own tmp

with an initial value of 0
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Data Sharing: 
A data environment test

• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C local to each thread or shared inside the parallel region?

• What are their initial values inside and values after the parallel region?

variables A, B, and C = 1

#pragma omp parallel private(B) firstprivate(C)

{ ….. }

Inside this parallel region ...

 “A” is shared by all threads; equals 1

 “B” and “C” are local to each thread.

– B’s initial value is undefined

– C’s initial value equals  1

Outside this parallel region ...

 The values of “B” and “C” are unspecified in OpenMP 2.5, and in 
OpenMP 3.0 if referenced in the region but outside the construct.
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Data Sharing: Default Clause

•Note that the default storage attribute is default(shared)
(so no need to use it)

- Exception: #pragma omp task

•To change default: default(private)

- each variable in the construct is made private as if specified in a 
private clause

- mostly saves typing  

•default(none): no default for variables in static extent.
 Must list storage attribute for each variable in static extent. 
Good programming practice!

Only the Fortran API supports default(private).  

C/C++ only has default(shared) or default(none).
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Exercise 6: Molecular dynamics

The code supplied is a simple molecular dynamics 
simulation of the melting of solid argon. 

Computation is dominated by the calculation of force pairs in 
subroutine forces (in forces.c)

•Parallelise this routine using a parallel for construct 
and atomics. Think carefully about which variables 
should be shared, private or reduction variables. 

•Use tools to find data races

•Experiment with different schedules kinds.
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Exercise 6 (cont.)

•Once you have a working version, move the parallel 
region out to encompass the iteration loop in main.c

- code other than the forces loop must be executed 
by a single thread (or workshared).

- how does the data sharing change? 

•The atomics are a bottleneck on most systems. 

- This can be avoided by introducing a temporary 
array for the force accumulation, with an extra 
dimension indexed by thread number.

- Which thread(s) should do the final accumulation 
into f? 
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Data sharing: Threadprivate

•Makes global data private to a thread
- Fortran: COMMON blocks

- C: File scope and static variables, static class members

•Different from making them PRIVATE

- with PRIVATE global variables are masked. 

- THREADPRIVATE preserves global scope within each thread

•Threadprivate variables can be initialized using COPYIN

or at time of definition (using language-defined 
initialization capabilities).
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A threadprivate example (C)

int counter = 0;

#pragma omp threadprivate( counter )

int increment_counter()

{

counter++;

return (counter);

}

Use threadprivate to create a counter for each thread.
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Data Copying: Copyin

#define N 1000

int A[N];

#pragma omp threadprivate(A)

/* Initialize the A array */

init_data(N,A);

#pragma omp parallel copyin(A)

{

… Now each thread sees threadprivate array A initialied

… to the global value set in the subroutine init_data()

}

You initialize threadprivate data 
using a copyin clause. 

Allocate a new 

local copy of

shared array A 

on each thread

The original shared array A 

is seen outside parallel regions

Each thread copies shared

array A to its local copy
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Data Copying: Copyprivate

#include <omp.h>

void input_parameters(int, int); // fetch values of input parameters 

void do_work(int, int); 

void main()

{

int Nsize, choice;

#pragma omp parallel private (Nsize, choice)

{

#pragma omp single copyprivate (Nsize, choice)

{
input_parameters( &Nsize, &choice );

}

do_work( Nsize, choice );

}

}

Used with a single region to broadcast values of privates 
from one member of a team to the rest of the team.  

Here the local values of Nsize

and choice are copied

into the other threads’ copies
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OpenMP Memory Model

 Multiple copies of data may be present in various levels of cache, or 
in registers.

 OpenMP supports a shared memory model.

 All threads share an address space, but it can get complicated: 

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

. . .
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OpenMP and Relaxed Consistency

OpenMP supports a relaxed-consistency shared 
memory model.

- Threads can maintain a temporary view of shared 
memory which is not consistent with that of other 
threads.

- These temporary views are made consistent only at 
certain points in the program.

- The operation which enforces consistency 
is called the flush operation.
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Flush operation

•Defines a sequence point at which a thread is guaranteed to 
see a consistent view of memory

- All previous read/writes by this thread have completed and 
are visible to other threads

- No subsequent read/writes by this thread have occurred

- A flush operation is analogous to a fence in other shared 
memory API’s

– Sometimes also referred to as a memory barrier
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Flush and Synchronization

A flush operation is implied by OpenMP synchronizations, 
e.g.

- at entry/exit of parallel regions

- at implicit and explicit barriers

- at entry/exit of critical regions

- whenever a lock is set or unset

….

(but not at entry to worksharing regions
or entry/exit of master regions) 
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Example: 
producer-consumer pattern

Thread  0

a = foo(); 

flag = 1; 

Thread  1

while (!flag) ; 

b = a;

This is incorrect code!

 The compiler and/or hardware may re-order the reads/writes to a and 
flag, or flag may be held in a register.

• NB - It might nevertheless work sometimes, depending on the OpenMP
implementation, underlying hardware, scheduler decisions, …  

• This is why concurrency bugs can go undetected for years…

 OpenMP provides the #pragma omp flush directive,
which specifies an explicit flush operation

• can be used to make the above example work  

• … but its use is difficult and prone to subtle bugs
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OpenMP memory model

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

. . .

 A memory model is defined in terms of:

• Coherence: Behavior of the memory system when a single address 
is accessed by multiple threads.

• Consistency: Orderings of reads, writes, or synchronizations (RWS) 
with various addresses and by multiple threads.

 OpenMP supports a shared memory model.

 All threads share an address space, but it can get complicated:
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Source code

Program order

memory

a b
Commit order

private view

(cache/regs)

thread thread

private view

(cache/regs) thread-privatethread-privatea ab b

Wa Wb  Ra Rb . . . 

OpenMP Memory Model: Basic Terms

compiler

Executable code

Code order

Wb Rb Wa Ra . . . 

R/W’s in any 

semantically 

equivalent order
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Consistency: 
Memory Access Re-ordering

•Re-ordering:

- Compiler re-orders program order to the code order

- Machine re-orders code order to the memory commit order

•At a given point in time, the “private view” seen by a 
thread may be different from the view in shared 
memory.

•Consistency Models define constraints on the orders of 
Reads (R), Writes (W) and Synchronizations (S) 

- … i.e. how do the values “seen” by a thread change
as you change how ops (R,W,S) follow other ops.

- Possibilities include:

• R→R,  W→W,  R→W,   R→S,  S→S,  W→S
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Some Consistency Models

•Sequential Consistency:

- In a multi-processor, ops (R, W, S) are sequentially 
consistent if:

• They remain in program order for each processor.

• They are seen to be in the same overall order by 
each of the other processors.

- Program order = code order = commit order

- The strongest consistency model available in practice,
but not deterministic!                                                         



•Relaxed consistency:

- Remove some of the ordering constraints for memory 
ops (R, W, S).
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OpenMP and Relaxed Consistency

OpenMP defines consistency as 
a variant of weak consistency:

- S ops must be in sequential order across threads.

- Can not reorder S ops with R or W ops on the same 
thread

• Weak consistency guarantees 

S→W,   S→R , R→S, W→S, S→S

•The Synchronization operation relevant to this 
discussion is flush.
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Flush

•Defines a sequence point at which a thread is guaranteed to see 
a consistent view of memory with respect to the “flush set”.

•The flush set is:

- “all thread visible variables” for a flush construct without an 
argument list.

- a list of variables when the “flush(list)” construct is used.

•The action of flush is to guarantee that:

• All R,W ops that overlap the flush set and occur prior to the 
flush complete before the flush executes

• All R,W ops that overlap the flush set and occur after the flush 
don’t execute until after the flush.

• Flushes with overlapping flush sets can not be reordered.

Memory ops: R = Read,  W = write, S = synchronization
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Synchronization: flush example

 Flush forces data to be updated in memory so other threads see 
the most recent value

double A;

A = compute();

flush(A);   // flush to memory to make sure other

// threads can pick up the right value

Note: OpenMP’s flush is analogous to a fence in other shared 

memory API’s.
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What is the Big Deal with Flush?

•Compilers (and processors with out-of-order execution) 
routinely reorder instructions implementing a program

- This helps better exploit the functional units, keep machine busy, 
hide memory latencies, etc.

- See only a single instruction stream, 
unaware of asynchronous side effects due to multithreading

•Compiler generally cannot move instructions:

- past a barrier

- past a flush on all variables

•But it can move them past a flush with a list of variables so 
long as those variables are not accessed

•Keeping track of consistency when flushes are used can be 
confusing … especially if “flush(list)” is used.

Note: the flush operation does not actually synchronize different threads. It 

just ensures that a thread’s values are made consistent with main memory.
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Exercise 10: producer consumer

•Parallelize the “prod_cons.c” program.         

This is a well known coordination pattern 
called the producer consumer pattern

- One thread produces data objects (e.g., values)
that another thread consumes.

- Often used with a stream of produced data 
to implement “pipeline parallelism”

•The key is to implement pairwise synchronization 
between threads.
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Exercise 10: prod_cons.c

int main()
{

double *A, sum, runtime;  
int flag = 0;

A = (double *) malloc( N*sizeof(double) );

runtime = omp_get_wtime();

fill_rand(N, A);        // Producer: fill an array with data

sum = Sum_array(N, A);  // Consumer: sum the array

runtime = omp_get_wtime() - runtime;

printf(" In %lf seconds, The sum is %lf \n", runtime, sum);
}
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Pair-wise synchronization 
in OpenMP

OpenMP lacks synchronization constructs that work 
between pairs of threads.

•When this is needed, you have to build it yourself.

•Pair-wise synchronization

- Use a shared flag variable

- Reader spins waiting for the new flag value

- Use flushes to force updates to and from 
memory
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Exercise 10: producer consumer
int main()
{

double *A, sum, runtime;
int numthreads, flag = 0;
A = (double *) malloc( N*sizeof(double) );

#pragma omp parallel sections
{

#pragma omp section
{  // producer:

fill_rand(N, A);
#pragma omp flush
flag = 1;
#pragma omp flush(flag)

}
#pragma omp section
{  // consumer:

#pragma omp flush(flag)
while (flag != 1){

#pragma omp flush(flag)
}
#pragma omp flush 
sum = Sum_array(N, A);

}
}

}

Use shared variable flag to signal 

when the “produced” value is ready

Flush forces refresh to memory.  

Guarantees that the other thread 

sees the new value of A

Notice you must put the flush inside the 

while loop to make sure the updated flag 

variable is seen

Flush needed on both “reader” and “writer” 

sides of the communication
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A motivational example: List traversal

How to parallelize this code
with known constructs of OpenMP?

• Remember, the loop worksharing construct only works 
with loops for which the number of loop iterations can 
be represented by a closed-form expression at 
compile time.

- Must be known at loop entry (and remain fixed)

• While-loops are not covered  

p = head;

while (p) {

process(p);

p = p->next;

}



List traversal with for-loops

• Find out the length of list

• Copy pointer to each node in 
an array

• Process nodes in parallel with a 
for loop 

while (p != NULL) {

p = p->next;

count++;

}

p = head;

for(i=0; i<count; i++) {

parr[i] = p;

p = p->next;

}

#pragma omp parallel for 

for(i=0; i<count; i++)

processwork(parr[i]);
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OpenMP tasks 

• Introduced with OpenMP 3.0

• A task has

- Code to execute

- A data environment (it owns its data)

- An assigned thread that executes the code and uses the data

• Two activities: packaging and execution

- Each encountering thread packages a new instance of a task 
(code and data)

- Some thread in the team executes the task at some later 
time



Managing Task Parallelism

Sequential

thread(s)

create-task

Task dependency

graph
Ready

queue

Worker 1

Worker 2

Worker 3

…

Workers

(threads)

New created tasks

Task pool for 

ready tasks

in the OpenMP runtime system.
(Explicit dependences were added later in OpenMP 4.0).



An example of task-parallelism

The need for synchronization:
• The return statement must be 

executed after both recursive calls 
have been completed because of 
data-dependence on a and b.

The (naïve) sequential Fibonacci calculation

int fib( int n ) {

if( n<2 ) return n;

else {

int a,b;

a = fib(n-1);

b = fib(n-2);

return a+b;

}

}

Parallelism in fib:
• The two recursive calls are 

independent and can be computed 
in any order and in parallel

• It helps that fib is side-effect free, 
but disjoint side-effects are OK

Starting code, e.g. in main():

...

fib(N);

...



int fib( int n ) {

if ( n<2 ) return n;

else {

int a,b;

#pragma omp task shared(a) if (n>10)

a = fib(n-1);

#pragma omp task shared(b) if (n>10)

b = fib(n-2);

#pragma omp taskwait

return a+b;

}

}

A task-parallel fib in OpenMP 3.0

Starting code (e.g. in main):

...  

#pragma omp parallel

#pragma omp single

fib(N);

...
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Definitions

• Task construct – task directive plus structured block

• Task – the package of code and instructions for allocating 
data created when a thread encounters a task construct

• Task region – the dynamic sequence of instructions 
produced by the execution of a task by a thread
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Tasks and OpenMP

•Tasks have been fully integrated into OpenMP (3.0)

•Fundamental concept - OpenMP has always had tasks, we just 
never called them that.

- Thread encountering a parallel construct packages up a set of 

implicit tasks, one per thread    

- Team of threads is created.

- Each thread in team is assigned to one of the tasks (and tied to it).

- Barrier holds original master thread until all implicit tasks are 
finished.

•We have simply added a way to create a task explicitly for the 
team to execute.

- Every part of an OpenMP program is part of one task or another!
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task Construct

#pragma omp task [clause[[,]clause] ...]

structured-block

if (expression) 

untied

shared (list)

private (list) 

firstprivate (list)

default( shared | none )

where clause can be one of:
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The if clause

 When the if clause argument is false

The task is executed immediately by the encountering thread.

The data environment is still local to the new task...

 ...and it’s still a different task with respect to synchronization.

 It’s a user directed optimization

Control task granularity:
Sequentialize execution when the cost of deferring the task is 
too large compared to the cost of executing the task code

Control cache and memory affinity

#pragma omp task shared(a) if (n>10)
a = fib(n-1);
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When/where are tasks completed?

 At thread barriers, explicit or implicit

• applies to all tasks generated in the current parallel region up to 
the barrier

• matches user expectation

 At task barriers

• i.e., wait until all tasks defined in the current task have completed.  

#pragma omp taskwait

• Note: applies only to tasks generated directly in the current task, 
not to “descendants”.
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Example – pointer chasing 
on a list using tasks

#pragma omp parallel

{ 

#pragma omp single private(p)

{ 

p = listhead;

while (p) { 

#pragma omp task

process(p);

p = next(p);

} 

} 

}

p is firstprivate inside 

this task
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Example – pointer chasing on 
multiple lists using tasks

#pragma omp parallel 

{ 

#pragma omp for private(p)

for ( int i =0; i<numlists; i++) { 

p = listheads[ i ] ;

while (p ) { 

#pragma omp task

process(p);

p=next(p) ;

}

}

}
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Example: Post-order tree traversal

void postorder( node *p ) 

{ 

if (p->left)

#pragma omp task

postorder(p->left);

if (p->right)

#pragma omp task

postorder(p->right);

#pragma omp taskwait // wait for descendants

process(p->data);

}

 Parent task suspended until children tasks complete

Task scheduling point
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Task switching

•Certain constructs have task scheduling points 
at defined locations within them

•When a thread encounters a task scheduling point, 
it is allowed to suspend the current task and 
execute another (called task switching)

•It can then return to the original task and resume 
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Task switching example

#pragma omp single

{

for (i=0; i<ONEZILLION; i++)

#pragma omp task

process( item[i] );

}

 Too many tasks generated in an eye-blink

• Generating task will have to suspend for a while

 With task switching, the executing thread can:

• execute an already generated task (draining the “task pool”)

• dive into the encountered task (could be very cache-friendly)
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Thread switching

#pragma omp single

{

#pragma omp task

for (i=0; i<ONEZILLION; i++)

#pragma omp task

process( item[i] );

}

 Eventually, too many tasks are generated

• Generating task is suspended and executing thread switches to a long 
and boring task

• Other threads get rid of all already generated tasks, and start starving…

 With thread switching (enabled by untied clause), the generating task can be 
resumed by a different thread, and starvation is over

• Too strange to be the default: the programmer is responsible!

untied
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Data Sharing for Tasks (OpenMP 3.0)

•The default for tasks is usually firstprivate, 
because the task may not be executed until later 
(and variables may have gone out of scope).

•Variables that are shared in all constructs starting from the 
innermost enclosing parallel construct are shared by the task,
because the barrier guarantees task completion.

#pragma omp parallel shared(A) private(B)

{

...

#pragma omp task

{

int C;

compute(A, B, C);

}

}

A is shared

B is firstprivate

C is private
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Recall: Explicit tasks
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• Threads are task workers.

• The code in a parallel region 
constitutes an implicit task for 
each thread in the team.

• When an implicit task is done, 
the worker fetches a new task 
from the task pool, if any.

parallel

single

w
h
il
e

Implicit barrier

#pragma omp parallel

#pragma omp single

{ p = head;

while( p ) {

#pragma omp task firstprivate(p)

process(p);

p = p->next;

}

}

Task 
pool



Revisit OpenMP worksharing constructs:
Example: parallel for loops

134

•for:  Threads are assigned
independent sets (chunks)  
of iterations
= implicitly defined tasks

 Work-sharing constructs
can be seen as special compact
ways to implicitly define tasks

parallel

Work sharing

i=0
i=1
i=2
i=3

i=4
i=5
i=6
i=7

i=8
i=9
i=10
i=11

i=12
i=13
i=14
i=15

Implicit barrier

#pragma omp parallel

#pragma omp for

for (i=0; i < 16; i++)

c[i] = b[i] + a[i];
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What is new in OpenMP 3.1-4.5

Lots…

•Task dependences

•Accelerator support  (target construct, OpenMP 4.0)

•Taskloops   (OpenMP 4.5)

•Read/write/update atomics

•Task priorities (OpenMP 4.5) 

•SIMD support for loops  (simd construct, OpenMP 4.0)

•Cancellation

•Vectorization support

•User-defined reducers

•Plus some odds and ends I’m not that familiar with…



OpenMP4.0 Task dependences



Task dependences

• The task dependence is fulfilled 
when the predecessor task has completed

- in dependency-type: 
the generated task will be a dependent task of all previously 
generated sibling tasks that reference at least one of the list items 
in an out or inout clause.

- out and inout dependency-type: 
The generated task will be a dependent task of all previously 
generated sibling tasks that reference at least one of the list items 
in an in, out, or inout clause.

- The list items in a depend clause may include array sections.

C/C++ 

#pragma omp task depend(dependency-type: list)

... structured block ...



Concurrent execution with dependences

void process_in_parallel) 

{

#pragma omp parallel

#pragma omp single

{

int x = 1;

...

for (int i = 0; i < T; ++i) {

#pragma omp task shared(x, ...) depend(out: x) // T1

preprocess_some_data(...);

#pragma omp task shared(x, ...) depend(in: x) // T2

do_something_with_data(...);

#pragma omp task shared(x, ...) depend(in: x) // T3

do_something_independent_with_data(...);

}

} // end omp single, omp parallel

}

• T1 must complete
before T2 and T3 can be executed. 

• T2 and T3 can be executed in parallel.

T3

T2

T1

x



A more realistic example

void blocked_cholesky( int NB, float A[NB][NB] ) 

{ 

int i, j, k; 

for (k=0; k<NB; k++) { 

#pragma omp task depend(inout:A[k][k]) 

spotrf (A[k][k]) ; 

for (i=k+1; i<NT; i++) 

#pragma omp task depend(in:A[k][k]) depend(inout:A[k][i]) 

strsm (A[k][k], A[k][i]); 

// update trailing submatrix

for (i=k+1; i<NT; i++) { 

for (j=k+1; j<i; j++) 

#pragma omp task depend(in:A[k][i],A[k][j]) depend(inout:A[j][i]) 

sgemm( A[k][i], A[k][j], A[j][i]); 

#pragma omp task depend(in:A[k][i]) depend(inout:A[i][i]) 

ssyrk (A[k][i], A[i][i]); 

} 

} 

} 
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Outlook: More Task Control Features in OpenMP

 Task Groups

 Task Cancellation for early termination of tasks

 Tasks have special cancellation points where they can be killed

 Cancellation constructs

omp cancel taskgroup

A task that receives a kill signal executes up to its next 

cancellation point.

A killed task that never started executing will be discarded.

 Details omitted here.



OpenMP 4.x:  Accelerator programming
with the target directive
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Heterogeneous Systems
e.g. CPU-GPU based systems   (more in lecture on CUDA programming)

 Often, distributed memory  

 Accelerator (e.g., traditional GPU in graphics card) 
cannot access main memory

 Standard programming models for GPUs (CUDA, OpenCL) require 
explicit data transfer to/from device memory for operands

 High-level progr. frameworks (e.g. SkePU, OpenACC, OpenMP4.x) can 
generate data transfers automatically if the access mode (read, write, 
readandwrite) for each operand is given

Accelerator e.g. Graphics Card
Offload

heavy

computation

Data

transfer

Device

memory

Core

Core

Core

Core

Main Memory

CPU

GPU
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OpenMP 4  Target Directive

 Transfer control from the host to a 
programmable accelerator device (e.g. GPU, Xeon-Phi, …)

 ”offloading” a computation to device

 Default: Synchronous offloading, host waits for completion by device

Use nowait or pack it into its own task for asynchronous offloading

 Syntax (C/C++)

#pragma omp target [clause[[,] clause],…]

structured-block

 Clauses

 device( scalar-integer-expression )

 map( alloc | to | from | tofrom: list )                             

 if( scalar-expr )

 OpenMP compiler attempts best-effort translation of structured-block
to the target programming model (e.g., CUDA or OpenCL for GPU)

 If target is not present or not supported, structured-block is executed by the 
host (CPU)

Host
Device

e.g. GPU
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Map Clause

 Map a variable or an array section

to a device data environment

 Syntax:

map ( alloc | to | from | tofrom: list )

 Map-types

 alloc: allocate storage for corresponding variable

 to: alloc and assign value of original variable to 

corresponding variable on entry

 from: alloc and assign value of corresponding variable

to original variable on exit

 tofrom: default, both to and form

Host
Device

e.g. GPU

Main

Memory

Device

Memory



146

void vec_mult( float *C, float *A,

float *B, int N )

{

int i;

#pragma omp target map( to: A[0:N], B[0:N] ) \

map( from: C[0:N] )

#pragma omp parallel for

for (i=0; i<N; i++)

C[i] = A[i] + B[i];

}

Example

Adapted from:  E. Stotzer, OpenMP 4 Tutorial, IWOMP’14

Variable N is implicitly

mapped from the

surrounding scope

Note:  Map is not necessarily a Copy.

On systems where host and device (coherently) share memory, 

both see and modify the same memory locations.

OpenMP 5.0 introduces the requires directive which e.g. allows to mark where sharing memory with 

a device is critical for correct execution.

Compiler will best-effort

translate this OpenMP

code into an equivalent

kernel for the device

TO DO:

The 

structured. It creates a

data 

constructs, and is 

convenient for providing 

persistent data throughout

multiple 

The 

target exit data 

are 

they 

and do not support a 

"structure" (a region) for

enclosing 

as does the 

construct.
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Beyond OpenMP Map

 Other hardware and software abstractions have been proposed to 

automatically manage and optimize data transfers to/from device,

e.g.:

 CUDA Unified Memory (for certain Nvidia GPUs)

Hardware distributed-shared memory (page-wise)

Supported in OpenMP 5.0

 ”Smart Containers” 

Data abstractions (e.g. C++ STL-like Vector<..>) for operand data, 

transparently performing software caching on device(s)

Lazy copying – delay transfer and suppress redundant transfers. 

Considerable speedup for iterative computations using GPU.

 E.g.: U. Dastgeer, C. Kessler: Smart containers and skeleton programming for 

GPU-based systems. International Journal of Parallel Programming 44(3):506-

530, June 2016. DOI: 10.1007/s10766-015-0357-6.
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void vec_mult( float *C, float *A, float *B, int N )

{

int i;

#pragma omp task

{ 

#pragma omp target map( to: A[0:N], B[0:N] ) \

map( from: C[0:N] )

#pragma omp parallel for

for (i=0; i<N; i++)

C[i] = A[i] + B[i];

}

#pragma omp task

{  

//… some independent host code here

}

#pragma omp taskwait

}

Asynchronous Offloading

In OpenMP 4.0, target is by default synchronous*.

• By packing the target directive in an omp task construct,

the host can work concurrently with the device code TO DO:

In 

directive always defines a 

task for asynchronous 

execution

Such code with explicit task 

creation remains valid, 

though.

Also changed in 4.5:

Scalar and pointer 

operands of 

firstprivate

* An alternative method is to set the nowait clause for target.

In OpenMP 4.5, target always defines a task for asynchronous

execution. But such code with explicit task creation remains valid.
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Outlook: More Accelerator Control Features

 More target clauses:  teams and distribute

 Many accelerators are many-core accelerators

 teams: creates leagues of independent thread teams

Synchronization across teams is highly restricted

– E.g., thread blocks in CUDA GPUs

 distribute: shares loop iterations among these teams

 declare target 

 annotate functions that may be called from within a target region

 Compiler needs to generate a target specific variant

 Cf. __device__ functions in CUDA

 Details omitted here



OpenMP 4:  SIMD Loop vectorization
and Multithreading+SIMD
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SIMD Instructions

AVX, Xeon-Phi, ARM Neon, Cell SPE, …

SIMD: Single instruction stream, multiple data streams

Trend:  CPU SIMD width is increasing: e.g.

SSE (128bit), AVX (256bit), Xeon-Phi (512bit)

*  Use special vector registers



152

Using SIMD Instructions

64bit LOAD

64bit STORE

64bit LOAD

+ 32 + 32

64bit register

63 63

63

b

c

a

Example: Doing two 32-bit float additions in one instruction

Original code:

a[0] = b[0] + c[0];

a[1] = b[1] + c[1];

Vectorized (pseudo)code:

V_LOAD( b, vrb );

V_LOAD( c, vrc );

V_ADD2F( vrb, vrc, vra);

V_STORE( vra, a );

ADD2F:

64
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Using SIMD Instructions

float

• Manual vectorization …

using SIMD intrinsics (low-level; architecture specific)

or Fortran Array syntax (no such portable equivalent for C)

• Modern compilers can sometimes exploit SIMD instructions

automatically – for straightline code and for (simple) loops.

• Requires well-analyzable code and (basically) absence of

loop-carried (cross-iteration) data dependences
(details and exceptions omitted here for brevity)

• Certain program transformations e.g. loop unrolling may help: 

Vectorized (pseudo)code:

V_LOAD( b, vrb );

V_LOAD( c, vrc );

V_ADD2F( vrb, vrc, vra);

V_STORE( vra, a );
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Using SIMD Instructions

• Automatic vectorization of loops can fail for many reasons

• Example: The compiler cannot statically decide

if the loop’s upper bound is loop-invariant or not, 

nor if there may be a loop-carried data dependence or not:

typedef struct {   // user-defined vector data type

float *elem;

unsigned int length;

} fvec;

void v_add ( fvec a, b, c )

{

int i;

for (i=0;  i < a->length;  i++ )

a->elem[i] = b->elem[i] + c->elem[i];

}

Compiler cannot prove

statically that the memory

locations that may be

denoted by a->length,

a->elem[i] etc. in some execution

will never overlap (possibility

of pointer arithmetics in C)
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Loop Vectorization in OpenMP 4

 #pragma omp simd [clause [, clause ]* ]

… for-loop (nest) …

 Asserts that the loop can be vectorized

 The OpenMP compiler can cut the loop into chunks each consisting of

as many iterations as fit in one SIMD word of the target CPU,

and generates SIMD instructions for each chunk of the loop.

typedef struct {   // user-defined vector data type

float *elem;

unsigned int length;

} fvec;

void v_add ( fvec a, b, c )

{

int i;

#pragma omp simd

for (i=0;  i < a->length;  i++ )

a->elem[i] = b->elem[i] + c->elem[i];

}

The simd directive is 

descriptive, not prescriptive:

the compiler is free to ignore it,

i.e., to not vectorize the loop
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SIMD loops with reduction

 Vectorization for reduction loops

 1. Summing element-wise up

over chunks, using SIMD-add

 2. The final chunk is summed up

sequentially (non-SIMD)

typedef struct {   // user-defined vector data type

float *elem;

unsigned int length;

} fvec;

void v_sum ( fvec a )

{

int i;   float sum = 0.0;

#pragma omp simd reduction(+ : sum)

for (i=0;  i < v->length;  i++ )

sum += a->elem[i];

}
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SIMD loop clauses

 safelen, simdlen, linear, aligned, collapse(n),

private, lastprivate, …

 Details omitted here for brevity, see OpenMP 4.x documentation

for reference
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SIMD Vectorization of Loops with Function Calls

 Function inlining by the compiler 

would allow to fully vectorize the loop, but is not always applicable 

(e.g., if the called function is in a different compilation unit)

 declare simd guides generation of vector function variants

 uniform( varlist ) marks scalar (non-vector) function parameters

#pragma omp declare simd uniform(c)

double scale ( double v, double c )

{

return v * c;

}

void example ( double *v, size_t n )

{

#pragma omp simd

for (size_t i = 0; i<n; i++)

v[i] = scale( v[i], (double) 0.5 );

}

// simplif. processor-specific SIMD pseudocode

//  – generated, not visible to programmer:

double * scale_8 ( double *v, double c )

{

_vec_8d vv = _intrinsic_vload_8d( v );

_vec_8d vc = _intrinsic_vrepl8_8d( c ); 

_vec_8d vv = _intrinsic_vmult_8d( vv, vc );

_intrinsic_vstore_8d( vv, v ); // return by pointer

}

...   now called with pointer argument for vectors:

for (size_t i = 0; i<n; i+=8)

scale_8( v+i, (double) 0.5 )

Compiler generates custom SIMD variant(s) 

for vector-sized groups of elements:

Example adapted from: B. de Supinski et al.: The Ongoing Evolution of OpenMP. Proc. IEEE, Nov. 2018.
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SIMD Worksharing Construct

 #pragma omp for simd [clause [, clause]* ]

… for-loop (nest) …

 Parallelize and vectorize the for-loop(s) 

 1. multithread the loop in chunks, as in omp for

 2. vectorize each chunk, as in omp simd

…

void par_v_sum ( fvec a )

{

int i;   float sum = 0.0;

#pragma omp for simd reduction(+ : sum)

for (i=0;  i < v->length;  i++ )

sum += a->elem[i];

}

Remark:

For better performance, the 

chunk size should be a multiple

of the SIMD operation (i.e., 

register) length.  (why?)

One can add a simd modifier

to a schedule clause in order 

to enforce this by automatically

rounding up the chunk size.  
(Details omitted for brevity)



160

SIMD Remarks

 simd construct is descriptive, not prescriptive

 declare simd helps with vectorization of loops that involve user-
defined functions (instead of only standard operators)

 Initialization of SIMD vectors from scalars via uniform() clause

 For certain SIMD operations there is no good high-level support, 
e.g. instructions for permuting the elements within a SIMD vector

 Still need to use intrinsic functions for that

 OpenMP worksharing constructs and some less common control
flow constructs of C (e.g. setjmp/longjmp) are forbidden in SIMD 
regions

 Warning: 
Loop vectorization does not always improve performance.

Details omitted here for brevity.



OpenMP4.5 Taskloop construct



Loops and tasks

• Loop scheduling used to be special (still is in OpenMP)

- Often static:

• iteration 0..9 on processor 0,

• iteration 10..19 on processor 1,

• ...

• Can be unified with task scheduling

- Recursively divide iterations, 
making loop look like recursive divide and conquer

- Run loop sequentially for small number of iterations



The task tree of a loop

0..39

10..19

0..19

0..9

0..4 15..195..9 10..14 20..24 25..29 30..34 35..39

20..39

20..29 30..39



Task loops (OpenMP 4.5)

#pragma omp taskloop [clause[[,] clause] ...] new-line

for-loops

where clause is one of the following:

shared( list )

private( list )

default( shared | none )

firstprivate( list )

lastprivate( list )

grainsize( grain-size )

num_tasks( num-tasks )

collapse( n )

if( [taskloop:] scalar-expr )

final( scalar-expr )

priority( priority-value )

nogroup

untied

mergeable

When a thread encounters 
a taskloop construct, the 
construct partitions the 
associated loops into tasks 
for parallel execution of 
the loops’ iterations.
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Task Loop Example

#define N_TASKS 256

void saxpy_with_taskloop ( float *a, float *b, float s, size_t n )

{

#pragma omp taskloop simd \

numtasks( N_TASKS ) \

shared(a,b) firstprivate(s)

for ( size_t i=0; i<n; i++)

a[i] = a[i] + s * b[i];

}

Example adapted from: B. de Supinski et al.: The Ongoing Evolution of OpenMP. Proc. IEEE, Nov. 2018.



OpenMP 3.1:  Read/Write Atomics



Read/write/update atomics

Atomic was expanded in 3.1 to cover the full range of common scenarios 
where you need to protect a memory operation so it occurs atomically:

#pragma omp atomic [read | write | update | capture]

• Atomic can protect loads

#pragma omp atomic read

v = x;

• Atomic can protect stores

#pragma omp atomic write

x = expr;

• Atomic can protect updates to a storage location 
(this is the default behavior … i.e. when not providing a clause)

#pragma omp atomic update

x++; // or ++x; or x--; or –-x; 

or x binop= expr; or x = x binop expr;

Recall: OpenMP only 
guarantees weak

memory consistency.



OpenMP 5.0 (Nov. 2018) Major Additions

• Full support for accelerator devices, including
- mechanisms to require unified shared memory between host and devices, 

- the ability to use device-specific function implementations, 

- better control of implicit data mappings, 

- the ability to override device offload at runtime. 

- Also: reverse offload, implicit function generation, and easy copying of object-
oriented data structures.

• Improved debugging and performance analysis.
- Two new tool interfaces enable the development of third party tools.

• Support for important features of Fortran2008, C11, and C++17

• Fully descriptive loop construct
- lets the compiler optimize a loop while not forcing any specific implementation.

• Support for multilevel memory systems.
- Can place data in different kinds of memories, such as high-bandwidth memory 

(HBM), NVRAM. Also easier to deal with the NUMA-ness of modern HPC systems.

- Task affinity hints for locality-aware scheduling

• Enhanced portability. Declare-variant directive, meta-directive;
- allow programmers to improve performance portability 

by adapting OpenMP pragmas and user code at compile time.
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Outline

• Introduction to OpenMP

• Creating Threads

• Synchronization

• Parallel Loops

• Synchronize single masters and stuff

• Data environment 

• Threadprivate Data 

• Memory Consistency Model 

• OpenMP Tasks

• OpenMP Worksharing and the Task Model

• OpenMP 4.0: Task Dependences, Accelerators, SIMD ...

• Alternatives to OpenMP

• Summary



Some Alternatives to OpenMP

• C11 / C++11/14/17/...

- Threading built into the base language

- Async and lambda functions in C++ provide a task-like functionality

- High-level parallel extensions of C++ e.g. SkePU, FastFlow, GrPPI

- STL for aggregate data abstractions e.g. vector<...>

• Intel Cilk Plus (C/C++)

- Task-centric approach

- Array syntax for vector acceleration

• Intel Threading Building Blocks (TBB) for C++

- Similar to OpenMP/Cilk tasks, plus some high-level constructs
(dataparallel loops, reductions, pipeline)

• Java fork-join framework

- Similar to OpenMP/Cilk tasks

• MS TPL (C#, .NET)

- Similar to OpenMP/Cilk tasks

• PGAS languages e.g. X10, Chapel, UPC, Co-Array Fortran

- If data locality matters (e.g. on clusters)

• OpenACC, SYCL, SkePU, ... 

- for portable programming of accelerators (GPU, Xeon-Phi, ...)



Summary

• OpenMP is the currently most widely spread
shared memory programming model

- With a higher abstraction level than explicit threading

- Increasing support for programming accelerator devices

• Widespread industrial support

- https://www.openmp.org/resources/openmp-compilers-tools/

• Easy to get started

• Difficult to master

• Supports incremental parallelization

• Geared towards ”good enough” performance



172

Learn More about OpenMP

•We have covered much of OpenMP, but omitted some 
advanced issues of OpenMP >3.0 and some minor details

•Download the spec to learn more … 
- www.openmp.org

- Contains lots of instructive examples 
that can support your continued exploration of OpenMP.

•Open-source implementations available, e.g. gcc -fopenmp
- GCC >4.9 supports OpenMP 4.0 for C/C++/Fortran,

- GCC >6.1 supports OpenMP 4.5 for C/C++, 

- GCC 9.1 (May 2019) has partial support for OpenMP 5.0

•Also, recommended reading 
(OpenMP design principles, OpenMP 5.0, outlook):

B. de Supinski et al.:
“The Ongoing Evolution of OpenMP”.
Proceedings of the IEEE 106(11):2004-2019, Nov. 2018.
IEEE. DOI: 10.1109/JPROC.2018.2853600



APPENDIX



An Example OpenMP 1.0 
Implementation

 

C preprocessor 

OpenMP 
translator 

C-compiler 

Pre-linker 

Source code files with 
C-preprocessor directives 

C-files with OpenMP directives 

C-files with calls to Intone RTL 

Object files 

Executable file 

Intone run-
time library 

C/C++ file 
with 

OpenMP 

C/C++ file 
with 

OpenMP 

C/C++ file 
with 

OpenMP 
C/C++ file 

with 
OpenMP 

C/C++ file 
with 

OpenMP 

Header file 
with 

OpenMP 

Database Database Database 

Linker 

Init file 
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The OpenMP Translator

The OpenMP translator deals with three things:

•Transformation of OpenMP constructs
- Parses constructs
- Performs some semantic and syntactic checks
- Instruments the code with calls to the run-time library

•Handling of data clauses
- Parses data clauses
- Performs checks
- Possibly alter variable declarations

•Instrumentation of OpenMP constructs
- Interface to performance monitoring tools
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The Run-Time Library

The run-time library deals with:

•Thread creation

•Thread synchronization

- Locks 

- Barriers

•Work-sharing

- Distribution of loop iterations among threads

•Memory consistency

- Flush operations
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The parallel OpenMP construct

•The parallel construct forces threads to be created

- The parallel region is executed in parallel

- One level of parallelism is supported
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#pragma omp parallel
{
foo(omp_get_thread_num());

}

in_tone_c_pf0( ... ) {
foo(omp_get_thread_num());

}

in_tone_spawnparallel(in_tone_c_pf0, ... );



What about shared variables?

• Variables with global scope 
are normally shared by all threads

• Private variables with a global scope 
are allocated on each thread’s stack during the parallel 
region and references are modified by the compiler

• Stack allocated variables that are shared
are accessed through pointer references

• Stack allocated variables that are private
are accessed through the stack pointer
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int s, p1;
#pragma omp parallel private(p1)
{

float p2;
foo(omp_get_thread_num(), &p1);

}



Work-sharing constructs –
the for-loop

•The run-time library’s work-sharing primitives 
directly support for-loops

•The for-loop is translated into:
- A call to the run-time system that initializes the for loop
- A while-loop that requests iterations until there are 

none left and does the work
- A call to the run-time system ending the for-loop
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#pragma omp for schedule(dynamic,2) lastprivate(lp1)
for (i = 0; i < MAX; i = i + 3)
{

/* Body of the parallel loop */
}



The single construct

•The single construct is treated as a for-loop with 
a single (1) iteration

•The nowait clause causes the compiler to not emit 
the code for the otherwise implicit barrier

180

#pragma omp single nowait
{

foo( );
}
#pragma omp single
{

bar( );
}



The section construct

•Each section is treated as an iteration 
and the sections construct is transformed to a 
for-loop
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#pragma omp sections
{

#pragma omp section
{

A( );
}
#pragma omp section
{

B( );
}

}



The critical construct

•The critical section is enclosed with lock 
primitives
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#pragma omp critical
{

rdx = rdx + a;
rdx2 = rdx2 *2;

}

in__tone_set_lock(&in__tone_critical_lock_);
in__tone_global_flush( );
{

rdx = rdx + a;
rdx2 = rdx2 * 2;

}
in__tone_global_flush( );
in__tone_unset_lock(&in__tone_critical_lock_);



The atomic construct

•The atomic update is replaced with a call to 
the run-time which does the actual update 
atomically:
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...
#pragma omp atomic

rdx = rdx + foo();
...

...
in__tone_atomic_update(&rdx,

in_tone_type_f_float,
in_tone_op_plus, foo());

...

• Support for the final reduction of reduction 
variables is also implemented in a similar way



Acknowledgment

• Slides mostly based on Mats Brorsson’s slides from 2014

- With some minor updates

• Many slides were developed by Tim Mattson and others at 
Intel under the creative commons license

• Thanks!


