
CUDA – Recap and Higher Dimension Grids
Stefano Markidis
KTH Royal Institute of Technology

Recap - What is a GPU?
• A specialized processor initially designed for

graphics-like workload (videogames, video
processing and CAD)

• Lots of cores, fewer control units:
very good in compute-heavy
applications with little synchronization

• Now present in several supercomputers
• Power efficiency: lot of parallelism

but lower clock frequency
• GPU consists of one or more SMs, each one

comprising several cores (K80 almost 5k
cores!)

2

GPU vs CPU !
Central Processing Unit Graphic Processing Unit

GPU devotes more transistors to data processing

Chip Design ALU: Arithmetic Logic Unit

GPU vs CPU !
Central Processing Unit Graphic Processing Unit

GPU devotes more transistors to data processing

Chip Design ALU: Arithmetic Logic Unit
CPU GPU

CUDA Hardware model
• CUDA GPUs contain numerous

fundamental computing units called
cores
• Each core includes and ALU and

FPU
• Cores are collected into groups

called streaming multiprocessors
(SMs)

• Kepler K20 has 192 CUDA cores
per SM and 15 SMs = 2880 cores!

• Each SM has fast cache shared
memory

5

Hardware View

Kepler GPU

SM SM SM SM

L2 cache

SM SM SM SM

L1 cache /

shared memory

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅

Lecture 1 – p. 10

CUDA Hardware model
• CUDA GPUs contain numerous

fundamental computing units called
cores
• Each core includes and ALU and

FPU
• Cores are collected into groups

called streaming multiprocessors
(SMs)

• Kepler K20 has 192 CUDA cores
per SM and 15 SMs = 2880 cores!

• Each SM has fast cache shared
memory

5

Hardware View

Kepler GPU

SM SM SM SM

L2 cache

SM SM SM SM

L1 cache /

shared memory

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅

Lecture 1 – p. 10

CUDA Hardware model
• CUDA GPUs contain numerous

fundamental computing units called
cores
• Each core includes and ALU and

FPU
• Cores are collected into groups

called streaming multiprocessors
(SMs)

• Kepler K20 has 192 CUDA cores
per SM and 15 SMs = 2880 cores!

• Each SM has fast cache shared
memory

5

Hardware View

Kepler GPU

SM SM SM SM

L2 cache

SM SM SM SM

L1 cache /

shared memory

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅

Lecture 1 – p. 10

CUDA Hardware model
• CUDA GPUs contain numerous

fundamental computing units called
cores
• Each core includes and ALU and

FPU
• Cores are collected into groups

called streaming multiprocessors
(SMs)

• Kepler K20 has 192 CUDA cores
per SM and 15 SMs = 2880 cores!

• Each SM has fast cache shared
memory

5

Hardware View

Kepler GPU

SM SM SM SM

L2 cache

SM SM SM SM

L1 cache /

shared memory

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅

Lecture 1 – p. 10 DRAM

Recap - What is CUDA?
It is an extension of the C language that provide basic
mechanisms to:
• Create allocate variable on GPU memory
Question: Which CUDA function?
• Move data from CPU to GPU memory and vice-versa
Question: Which CUDA function?
• Define kernel and launch a kernel
Question: Which qualifier I have to use? What is the difference
between a kernel and a function.
• Synchronize threads
Question: Which CUDA function?

3

Recap - Lab
• HelloWorld in CUDA
Problem: not printing because of the asynchronous nature of
the kernel launch
• saxpy in CUDA
Problem: ARRAY_SIZE was not a multiple of BLOCK_SIZE
Problem: create variable on GPU and move data to/GPU.
Easy to get it wrong:
In C, the size of the data to be created or moved is in byte
(Fortran the size is the number of array elements)

4

How do I choose TPB or execution configuration?

To choose the specific execution configuration that will produce the best
performance involve both art and science

• To choose some multiple of 32 is reasonable since it matches
up somehow with the number of CUDA cores in an SM

• There are limits: a single block cannot contain more than
1,024 threads

• For large problems, reasonable to test are 128, 256 and 512

5

Careful with Integer Arithmetic!
The kernel execution configuration is specified so that each block has
TPB threads, and there are N/TPB blocks.

6

Problem: What happens if N = 65 ?

We get 65/32 = 2 blocks of 32 threads. In this case, the last entry in the
array would not get computed because there is no thread with the
corresponding index.

The simple trick is to change the number of blocks as (N+TPB-1) /TPB to
ensure that the number of blocks is rounded up.

1D Computational Grid

Back to CUDA – CUDA Vector Types

CUDA extends the standard C data types, like int and float, to be
vector with 2, 3 and 4 components, like int2, int3, int4, float2,
float3 and float4. Other vector types are also supported.

For example, you can declare an integer vector d with three components
and initialize with 128, 1 and 1 element in the x, y and z direction:

int3 d = int3(128, 1, 1);

Question: does this look reminiscent of something you saw in the lab?

7

CUDA Vector types

Vector types CUDA extends the standard C data types of length up to 4.
float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);

Individual components are accessed with the suffixes .x, .y, .z,
and .w. Accessing components beyond those declared for the
vector type is an error.
float3 pos;

pos.z = 1.0f; // is legal

pos.w = 1.0f; // is illegal

8

CUDA dim3 type for Dimension Variables
The dim3 type is equivalent to uint3 with unspecified entries set
to 1.

CUDA uses the vector type dim3 for the dimension variables,
gridDim and blockDim.
We use dim3 variables for specifying execution configuration.

9

CUDA Type dim3
CUDA uses the vector type dim3 for the dimension variables, gridDim and
blockDim.

The dim3 type is equivalent to uint3 with unspecified entries set to 1.

As you probably noticed in the Lab1 for the lab, we could use either:

dim3 grid(1,1,1); // 1 block in the grid
dim3 block(32,1,1); // 32 threads per block

Or set block and thread per block as scalar quantity in the <<< >>>
(execution configuration)

10

Type of blockIdx and threadIdx

CUDA uses the vector type uint3 for the index
variables, blockIdx and threadIdx.
A uint3 variable is a vector with three unsigned integer
components.

We used threadIdx.x and blockIdx.x to retrieve
indices in 1D grid.

11

2-Dimensional CUDA Grids

12

Why do we need higher dimensions CUDA grids?
Several applications points regularly distributed on a 2D plane. A first example can
be a matrix. A second example involves digital image processing.

A digital raster imagine consists of a collection of picture elements (pixel)
arranged in a uniform 2D rectangular grid with each pixel having an intensity
value.

13

CUDA Laboratory 1 / Introduction to High-Performance Computing 2017/08/18

Block B

For the second block of exercises, we are going to play with images and perform some basic
image processing to create the base for an edge detector using the Sobel operator. Our goal is
to make you understand how to index 2D matrices, while doing something fun and practical. As
a matter of fact, the result of the exercises below represent some of the main image processing
techniques used in Computer Vision that allow for object and text recognition. If you would like
to get a feeling on how the final output would look like, check the cover of this document!

As a piece of advice, we encourage you to really understand the concepts explained within the
first block of exercises. If you do, then this section will be trivial for you to solve, you will see.

Exercise 3 - Experimental Setup
We will use a different CUDA source code file to implement the exercises below. This source
code file, named lab01_ex3_6.cu , is included inside the .tar.gz file that you downloaded
and extracted for the previous block of exercises.

We also need a reference image file to process on each step. We will use the file lab01.bmp ,
located inside the images folder. This file is stored using the Bitmap (BMP) image format, a
popular uncompressed format widely used by the Windows operating system. Each BMP file
contains an encoded header that specifies the {width, height} of the image, the number of
bits per plane, and more. After the header, a subsequent string of interleaved BGR values
follow. Here is a simplified example of how a 3x3 image looks like inside the file:

Header

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7) (0,8)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)

Each BGR, from Blue / Green / Red, represents an 8-bit pixel value in the image that encodes
the intensity of each channel. The values span from 0 to 255 in the case of BMP 24bpp , being 4

0 the absence of representation by this color and 255 the full representation. This means that
we could create a completely white image by setting all the pixel values to 255, or the opposite,
a completely black image setting them to 0. One aspect of BMP files is that it is common to
encounter that the pixel values are stored bottom-up (i.e., as if the image pixels were flipped).

4 Other Bitmap formats, such as BMP 32bpp, can contain an extra Alpha channel for transparency.

12

Example of 3x3 .bmp image file (see lab today)

2D Grid Kernel – Thread per block in x and y
Computing data for an image involves W columns and H rows, and we can
organize the computation into 2D blocks with TX threads in the x-direction
and TY threads in the y-direction.

14

W

H

dim3 blockSize(TX, TY); // Equivalent to dim3 blockSize(TX, TY, 1);

TX = 16
TY = 13

2D Grid Kernel – Number of blocks in x and y
Questions: how do we choose the number of blocks in x and y ? If
we follow the 1D example, what would be N or the ARRAY_SIZE
equivalent?

15

We compute the number of blocks (bx and by) needed in each direction exactly as
in the 1D case:

int bx = (W + TX - 1)/TX;
int by = (H + TY – 1)/TY;

The syntax for specifying the grid size (in blocks) is

dim3 gridSize = dim3 (bx, by);

2D Grid Kernel Launch
We are ready now to launch (no difference with 1D grid):

kernelName<<<gridSize, blockSize>>>(args)

16

Determine global indices

To identify our pixel in the image we will
use to global indices c and r.
Question: How you calculate c and r for
the red pixel?

17

W

int c = blockIdx.x*blockDim.x + threadIdx.x;
int r = blockIdx.y*blockDim.y + threadIdx.y;

H

(0,0) (1,0)

(0,1) (1,1)r

c

Flattening global indices to 1D global index
In several cases, it is convenient to express our 2D data as
1D data (flattening): use simply a 1D array of length W*H

We place values in the 1D array in row-major order: we
store the data from row 0, followed by data from row 1 and
so on.

18

Row-major order

Question: Why row-major order and not column-major order in C?

Question: How do you calculate i, 1D index? int i = r*w + c;

Question: How do you calculate i, 1D index?

• We calculate r and c
• We flatten r and c as:

• int i = r*W + c;

19

W

H

(0,0) (1,0)

(0,1) (1,1)r

c

CUDA code for distance between points in 2D
#define W 32
#define H 32
#define TX 8 // number of threads per block along x-axis
#define TY 8 // number of threads per block along y-axis

int divUp(int a, int b) { return (a + b - 1) / b; }
…
int main() {
float *out = (float*)calloc(W*H, sizeof(float)); // set all the points to 0
float *d_out = NULL;
cudaMalloc(&d_out, W*H*sizeof(float));
float2 pos = { 1.0, 0.0}; // ref. point
dim3 blockSize(TX, TY);
dim3 gridSize(divUp(W, TX), divUp(H, TY));
distanceKernel<<<gridSize, blockSize>>>(d_out, W, H, pos);
cudaMemcpy(out, d_out, W*H*sizeof(float), cudaMemcpyDeviceToHost);
cudaFree(d_out);
free(out);
return 0;

}

20

W

H

r

c
ref.point

CUDA Kernel and device code
__global__ void distanceKernel(float *d_out, int w, int h, float2 pos)
{
const int c = blockIdx.x * blockDim.x + threadIdx.x; // column
const int r = blockIdx.y * blockDim.y + threadIdx.y; // row
const int i = c + r*w;
if ((c >= w) || (r >= h)) return;

d_out[i] = distance(c, r, pos); // compute and store result
}

__device__ float distance(int c, int r, float2 pos)
{
return sqrtf((c - pos.x)*(c - pos.x) + (r - pos.y)*(r - pos.y));

}

21

3D GRIDS
3D data set can be thought as image stack composed of 3D voxels is a volume W*H*D (D =
Depth)

An execution configuration in 3D will require to define the number of threads in the x, y and
z direction, i.e TX, TY and TZ

dim3 blockSize(TX, TY, TZ);

As usual, the block grid size is then calculate depending on the input size:

int bx = (W + blockSize.x - 1)/blockSize.x;
int by = (H + blockSize.y – 1)/blockSize.y;
int bz = (D + blockSize.z – 1)/blockSize.z;

22

Indices 3D
In addition to row (r) and column (c) global indices, we need a new
integer variable to have a global index in the stack (s for stack or
stratum):

int s = blockIdx.z*blockDim.z + threadIdx.z;

The flattened 1D index becomes:

int i = c + r*w + s*w*h;

23

