CUDA - Recap and Higher Dimension Grids

Stefano Markidis
KTH Royal Institute of Technology

Recap - What is a GPU?

A specialized processor initially designed for
graphics-like workload (videogames, video
processing and CAD)

* Lots of cores, fewer control units:
very good in compute-heavy
applications with little synchronization

Now present in several supercomputers

« Power efficiency: lot of parallelism
but lower clock frequency

GPU consists of one or more SMs, each one

comprising several cores (K80 almost 5k
cores!)

Control

CPU

ALU ALU

ALU ALU

GPU

Recap - What is CUDA?

It is an extension of the C language that provide basic
mechanisms to:

» Create allocate variable on GPU memory

Question: Which CUDA function?

* Move data from CPU to GPU memory and vice-versa
Question: Which CUDA function?

» Define kernel and launch a kernel

Question: Which qualifier | have to use? What is the difference
between a kernel and a function.

* Synchronize threads
Question: Which CUDA function?

Recap - Lab

e HelloWorldin CUDA

Problem: not printing because of the asynchronous nature of
the kernel launch

« saxpy in CUDA

Problem: ARRAY SIZE was not a multiple of BLOCK SIZE
Problem: create variable on GPU and move data to/GPU.
Easy to get it wrong:

In C, the size of the data to be created or moved is in byte
(Fortran the size is the number of array elements)

How do | choose TPB or execution configuration?

To choose the specific execution configuration that will produce the best
performance involve both art and science

* To choose some multiple of 32 is reasonable since it matches
up somehow with the number of CUDA cores in an SM

» There are limits: a single block cannot contain more than
1,024 threads

« Forlarge problems, reasonable to test are 128, 256 and 512

Careful with Integer Arithmetic!

The kernel execution configuration is specified so that each block has
TPB threads, and there are N/TPB blocks.

1D Computational Grid

Problem: What happens if N = 65 ? IIIIIIII

We get 65/32 = 2 blocks of 32 threads. In this case, the last entry in the
array would not get computed because there is no thread with the

corresponding index.

The simple trick is to change the number of blocks as (N+TPB-1) /TPB to
ensure that the number of blocks is rounded up.

Back to CUDA — CUDA Vector Types

CUDA extends the standard C data types, like int and float, to be
vector with 2, 3 and 4 components, like int2, int3, int4, float2,
float3 and float4. Other vector types are also supported.

For example, you can declare an integer vector d with three components
and initialize with 128, 1 and 1 element in the x, y and z direction:

int3 d = 1nt3(128, 1, 1);

Question: does this look reminiscent of something you saw in the lab?

CUDA Vector types

Vector types CUDA extends the standard C data types of length up to 4.
floatd4d £ = (floatd4) (1.0f£, 2.0f, 3.0f, 4.0f%f);

Individual components are accessed with the suffixes .x, .y, .z,
and .w. Accessing components beyond those declared for the
vector type is an error.

float3 pos;
pos.z = 1.0f; // is legal
pos.w = 1.0f; // is illegal

CUDA dim3 type for Dimension Variables

The dim3 type is equivalent to uint3 with unspecified entries set
to 1.

CUDA uses the vector type dim3 for the dimension variables,
gridDim and blockDim.

We use dim3 variables for specifying execution configuration.

CUDA Type dim3

CUDA uses the vector type dim3 for the dimension variables, gridDim and
blockDim.

The dim3 type is equivalent to uint3 with unspecified entries set to 1.
As you probably noticed in the Lab1 for the lab, we could use either:

dim3 grid(1,1,1); // 1 block in the grid
dim3 block(32,1,1); // 32 threads per block

Or set block and thread per block as scalar quantity in the <<< = >>>
(execution configuration)

Type of blockIdx and threadIdx

CUDA uses the vector type uint3 for the index
variables, blockIdx and threadIdx.

A uint3 variable is a vector with three unsigned integer
components.

We used threadIdx.x and blockIdx.x to retrieve
indices in 1D grid.

2-Dimensional CUDA Grids

Why do we need higher dimensions CUDA grids?

Several applications points regularly distributed on a 2D plane. A first example can
be a matrix. A second example involves digital image processing.

A digital raster imagine consists of a collection of picture elements (pixel)
arrlanged in a uniform 2D rectangular grid with each pixel having an intensity
value.

Example of 3x3 .bmp image file (see lab today)

Header
(0,00 B0:;1) 4 (0,2) (0,3) N(OG4)= (0,5) (0,6) HO;7)~ (0,8)
(1,00 NE&1) Y (1,2) (1,3) NE4) (1,5) (1,6) M) (1,8)

(2,0) B&HN (2,2) (2,3) M&4)N (2,5) (2,6) H&ON (2,8)

Computing data for an image involves W columns and H rows, and we can
organize the computation into 2D blocks with TX threads in the x-direction
and TY threads in the y-direction.

v

dim3 blockSize (TX, TY); // Equivalent to dim3 blockSize (TX, TY, 1)

2D Grid Kernel — Number of blocks in x and y
Questions: how do we choose the number of blocks in x and y ? If
we follow the 1D example, what would be N or the ARRAY SIZE
equivalent?

We compute the number of blocks (bx and by) needed in each direction exactly as
in the 1D case:

int bx = (W + TX - 1)/TX;
int by = (H + TY - 1)/TY;

The syntax for specifying the grid size (in blocks) is

dim3 gridSize = dim3 (bx, by);

2D Grid Kernel Launch

We are ready now to launch (no difference with 1D grid):

kernelName<<<gridSize, blockSize>>>(args)

Determine global indices

To identify our pixel in the image we will
use to global indices c and r.

Question: How you calculate ¢ and r for
the red pixel?

int ¢ = blockIdx.x*blockDim.x + threadIdx.x;
int r = blockIdx.y*blockDim.y + threadIdx.y;

Flattening global indices to 1D global index

In several cases, it is convenient to express our 2D data as
1D data (flattening): use simply a 1D array of length w*H

Row-maijor order
o 1 2 3

We place values in the 1D array in row-major order: we

store the data from row 0, followed by data from row 1 and .
SO on.

a {_\ T

Question: Why row-major order and not column-major order in C?

Question: How do you calculate i, 1D index? int i = r*w + c;

« We calculaterand c —
« \We flatten r and c as: SEESEESEN iREEENESE @

e Int 1 = r*wW + C;

CUDA code for distance between points in 2D

#define W 32

#define H 32

#define TX 8 // number of threads per block along x-axis

#define TY 8 // number of threads per block along y-axis < W

v

ref-point
N I

int divUp(int a, int b) { return (a + b - 1) / b; }

int main(Q) {
float *out = (float*)calloc(W*H, sizeof(float)); // set all the points to @
float *d_out = NULL;
cudaMalloc(&d_out, W*H*sizeof(float));

float2 pos = { 1.0, 0.0}; // ref. point r
dim3 blockSize(TX, TY);

dim3 gridSize(divUp(W, TX), divUp(H, TY)); H
distanceKernel<<<gridSize, blockSize>>>(d_out, W, H, pos); v

cudaMemcpy(out, d_out, W*H*sizeof(float), cudaMemcpyDeviceToHost);
cudaFree(d_out);

free(out);

return 0;

CUDA Kernel and device code

__global__ void distanceKernel(float *d_out, int w, int h, float2 pos)

{
const int ¢ = blockIdx.x * blockDim.x + threadIdx.x; // column
const int r = blockIdx.y * blockDim.y + threadIdx.y; // row
const int 1 = ¢ + r*w;
if ((c >=w) || (r >= h)) return;
d_out[i] = distance(c, r, pos); // compute and store result
by
__device__ float distance(int c, int r, float2 pos)
{

return sqrtf((c - pos.x)*(c - pos.x) + (r - pos.y)*(r - pos.y));

}

3D GRIDS

%D ciﬁ’;a set can be thought as image stack composed of 3D voxels is a volume W*H*D (D =
ep

An execution configuration in 3D will require to define the number of threads in the x, y and
z direction, i.e TX, TY and TZ

dim3 blockSize (TX, TY, TZ);

As usual, the block grid size is then calculate depending on the input size:

int bx = (W + blockSize.x - 1)/blockSize.x;
int by = (H + blockSize.y - 1)/blockSize.y;
int bz = (D + blockSize.z — 1)/blockSize.z;

Indices 3D

In addition to row (r) and column (c) global indices, we need a new
integer variable to have a global index in the stack (s for stack or
Stratum):

int s = blockIdx.z*blockDim.z + threadIdx.z;

The flattened 1D index becomes:

int 1 = ¢ + r*w + s*w*h;

