Gamma-Ray Binary Systems

Dmitry Khangulyan

Max-Planck-Institut für Kernphysik

Nordita Programm Physics of relativistic flows 06.05.2009, Stockholm

Outline

Introduction

- Gamma-Ray Binary Systems
- Binary Pulsar System
- Microquasars
- Non-Thermal Emitter in Binary System
 - VHE emitter
 - Acceleration vs Losses (LS5039)
 - Multi-wavelength (LS5039)
- 3 Modeling
 - Binary Pulsars
 - Absorption

4 3 > 4 3

< 6 b

Outline

Introduction

Gamma-Ray Binary Systems

- Binary Pulsar System
- Microquasars

2 Non-Thermal Emitter in Binary System

- VHE emitter
- Acceleration vs Losses (LS5039)
- Multi-wavelength (LS5039)
- 3 Modeling
 - Binary Pulsars
 - Absorption

Image: A matrix and a matrix

Sketches of PSR B1259 & LS 5039 from *HESS* discovery papers

・ロト ・ 四ト ・ ヨト ・ ヨト

Gamma-Ray Binary Systems

Object	PSR B1259	LS 5039	LSI+61 303	Cyg X-1
Туре	B+Pulsar	O+?	B+?	O+BH
L _⋆ ,erg/s	3 · 10 ³⁷	7 · 10 ³⁸	10 ³⁸	1.3 · 10 ³⁹
Orbit Size, cm	10 ¹³ –10 ¹⁴	10 ¹² –3 · 10 ¹²	2 · 10 ¹² -10 ¹³	3 · 10 ¹²
Eccentricity	0.87	0.35	0.72	0
Inclination	35	10–75	30 ± 20	~ 30
HE Instrument	HESS	HESS EGRET	MAGIC VERITAS EGRET	MAGIC
TeV detection	$> 10\sigma$	\sim 100 σ	$> 10\sigma$	4σ
TeV signal	variable	periodic	periodic	flare

2

イロト イヨト イヨト イヨト

Outline

Introduction

- Gamma-Ray Binary Systems
- Binary Pulsar System
- Microquasars

2 Non-Thermal Emitter in Binary System

- VHE emitter
- Acceleration vs Losses (LS5039)
- Multi-wavelength (LS5039)
- 3 Modeling
 - Binary Pulsars
 - Absorption

Image: A matrix and a matrix

Crab Pulsar

Kennel&Coroniti, 1984

What is Crab?

- Pulsar ejects ultrarelativistic wind (Rees&Gunn, 1974)
- It interacts with SN remnant (Kennel&Coroniti, 1984)
- A non spherical structure (Bogovalov&Khangulyan, 2002)

Crab Pulsar (II)

Crab Nebula

Aharonian&Atoyan, 1998

D.Khangulyan (MPI-K)

 γ -ray binary systems

Nordita Programm 8 / 68

・ロト ・聞 ト ・ ヨト ・ ヨト

Physical scenario for Binary Pulsars

D.Khangulyan (MPI-K)

 γ -ray binary systems

Nordita Programm 9 / 68

イロト イヨト イヨト イヨト

Binary Pulsar

Relativistic Pulsar/Non-relativistic Stellar Wind Colliding System

It means

- NOT like PSR B1913+16 (the "Nobel Prize" system, 1993)
 - $P\sim$ 8 h; $a\sim R_{\odot}$
- NOT like PSR J0737-3039
 - Double Pulsar: two pulsar system
- NOT like IGR J17252-3616
 - Pulsar+Optical star system with accretion on the pulsar
- BUT PSR 1259 or PSR J0045
 - $P \sim 4 \text{ yr}; a \sim 10^{13} \text{ cm}$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Gamma-Ray Binary Systems
- Binary Pulsar System
- Microquasars

Non-Thermal Emitter in Binary System

- VHE emitter
- Acceleration vs Losses (LS5039)
- Multi-wavelength (LS5039)
- 3 Modeling
 - Binary Pulsars
 - Absorption

Microquasar

A microquasar is simply a Radio Emitting X-ray Binary displaying relativistic radio jets that can be imaged at a variety of angular scales using different interferometers (M. Ribó, astro-ph/0402134)

It means

- X-ray Binary: Powered by accretion
- Radio Emitting: Non-thermal population of particles
- Radio Jets: Jets are sites of particle acceleration

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Physical scenario for Microquasars

D.Khangulyan (MPI-K)

 γ -ray binary systems

Nordita Programm 13 / 68

æ

イロト イヨト イヨト イヨト

Gamma-Ray Binary Systems

Object	PSR B1259	LS 5039	LSI+61303	Cyg X-1
Туре	B+Pulsar	O+?	B+?	O+BH
L _* ,erg/s	3 · 10 ³⁷	7 · 10 ³⁸	10 ³⁸	1.3 · 10 ³⁹
Orbit Size, cm	10 ¹³ –10 ¹⁴	10 ¹² –3 · 10 ¹²	2 · 10 ¹² -10 ¹³	3 · 10 ¹²
Eccentricity	0.87	0.35	0.72	0
Inclination	35	10–75	30 ± 20	~ 30
HE Instrument	HESS	HESS EGRET	MAGIC VERITAS EGRET	MAGIC
TeV detection	$> 10\sigma$	$\sim 100\sigma$	$> 10\sigma$	4σ
TeV signal	variable	periodic	hints of periodicity	flare

æ

イロト イヨト イヨト イヨト

What is the compact object?

Conclusive tests:

- Mass of the CO
- Pulsed emission
- Thermal emission of the accretion disk
- Non-thermal radiation (?)

A B F A B F

What is the compact object?

Are they conclusive?

- Mass of the CO
 - Require precise spectrometric observations...
- Pulsed emission
 - May be absorbed in the dense stellar wind
- Thermal emission of the accretion disk
 - At which level?
- Non-thermal radiation (?)
 - Many impacting factors...

A B b 4 B b

Non-thermal Emission (example)

D.Khangulya	n (MPI-K)
-------------	-----------

γ -ray binary systems

Nordita Programm 17 / 68

Outline

Introduction

- Gamma-Ray Binary Systems
- Binary Pulsar System
- Microquasars

Non-Thermal Emitter in Binary System

- VHE emitter
- Acceleration vs Losses (LS5039)
- Multi-wavelength (LS5039)

3 Modeling

- Binary Pulsars
- Absorption

Radiation Efficiency

• Escape Time: $t_{esc} = min(t_{diff}, t_{ad})$

$$t_{\text{diff}} = \frac{R^2}{2D} \sim 2 \cdot 10^4 \zeta^{-1} R_{12}^2 B_1 E_1^{-1} \text{ s}, \quad \zeta = \frac{D}{D_{\text{Bohm}}}$$
$$t_{\text{ad}} = \frac{R}{V_{\text{bulk}}} \sim 10^2 R_{12} V_{10}^{-1} \text{ s}$$
$$\bullet \text{ Energy Transfer: } \mu = \frac{E_{\gamma}}{E_0}$$
$$\bullet \text{ Radiation Efficiency: } \kappa = \mu \min(1, t_{\text{esc}}/t_{\text{int}})$$

D.Khangulyan (MPI-K)

Nordita Programm 19 / 68

æ

イロト イヨト イヨト イヨト

Inverse Compton Scattering

• Cooling Time:

$$t_{\rm ic} = 40 \left(\frac{L}{10^{38} {\rm erg/s}}\right)^{-1} \left(\frac{R}{10^{12} {\rm cm}}\right)^2 \left(\frac{T}{3 \cdot 10^4 {\rm K}}\right)^{1.7} E_{\rm TeV}^{0.7} {\rm s}$$

• Energy Transfer:

$$E_{\gamma} = \begin{cases} E_{\rm e}, & \epsilon E \gg m^2 c^4 \\ \frac{\epsilon E_{\rm e}^2}{m^2 c^4}, & \epsilon E \ll m^2 c^4 \end{cases}$$

Radiation Efficiency

 $\kappa \sim 1$

	ار بیم مرجع ما			
D.N	nandu	van	IVIPI-NJ	
		3	· ·	

Proton-proton interaction

Cooling Time:

$$t_{\rm pp} = 10^6 \left(\frac{n_{\rm p}}{10^9 {\rm cm}^{-3}}\right)^{-1} {\rm s}$$

• Energy Transfer:

$$E_\gamma \sim 0.1~E_{
m p}$$

Radiation Efficiency

$$\kappa = 10^{-3} \frac{t_{\rm esc}}{10^4 {
m s}} \frac{n_{\rm p}}{10^9 {
m cm}^{-3}}$$

D.Khan	gulyan	(MPI-K)
--------	--------	---------

A B b 4 B b

Photo-meson production

Cooling Time:

$$t_{p\gamma} = 3 \cdot 10^4 \left(\frac{L}{10^{38} \text{erg/s}}\right)^{-1} \left(\frac{R}{10^{12} \text{cm}}\right)^2 \left(\frac{T}{3 \cdot 10^4 \text{K}}\right) \text{s}$$

• Energy Transfer:

$$E_\gamma \sim 0.1 \, E_{
m p}$$

Radiation Efficiency

$$\kappa = 0.03 \frac{t_{\rm esc}}{10^{4} {\rm s}} \frac{L}{10^{38} {\rm erg/s}} \left(\frac{R}{10^{12} {\rm cm}}\right)^{-2} \left(\frac{T}{3 \cdot 10^{4} {\rm K}}\right)^{-1}$$

D.Khangulyan (MPI-K)

Nordita Programm 22 / 68

э

Photo-disintegration

Cooling Time:

$$t_{\rm pd} \sim 3 \cdot 10^3 \left(\frac{L}{10^{38} {\rm erg/s}}\right)^{-1} \left(\frac{T}{3 \cdot 10^4 {\rm K}}\right) \left(\frac{R}{10^{12} {\rm cm}}\right)^2 {\rm s}$$

• Energy Transfer:

 $E_\gamma \sim 0.01~E_{
m N}$

Radiation Efficiency

$$\kappa = 0.03 \frac{t_{\rm esc}}{10^{4} {\rm s}} \frac{L}{10^{38} {\rm erg/s}} \left(\frac{R}{10^{12} {\rm cm}}\right)^{-2} \left(\frac{T}{3 \cdot 10^{4} {\rm K}}\right)^{-1}$$

D.Khangulyan (MPI-K)

Nordita Programm 23 / 68

æ

イロト イポト イヨト イヨト

The most favorable emission process in binary systems

Radiation Processes

Proc.	E_{γ}/E_0	κ
IC	1	1
рр	0.1	$10^{-3} \frac{t_{\rm esc}}{10^4 {\rm s}} \frac{n_{\rm p}}{10^9 {\rm cm}^{-3}}$
$p\gamma$	0.1	$0.03 \frac{t_{\rm esc}}{10^{4}_{\rm s}} \frac{L}{10^{38} {\rm erg/s}} \left(\frac{R}{10^{12} {\rm cm}}\right)^{-2} \left(\frac{T}{3 \cdot 10^{4} {\rm K}}\right)^{-1}$
Photo-des.	0.01	$0.03 \frac{t_{\rm esc}}{10^{4}{\rm s}} \frac{L}{10^{38} {\rm erg/s}} \left(\frac{R}{10^{12} {\rm cm}}\right)^{-2} \left(\frac{T}{3 \cdot 10^{4} {\rm K}}\right)^{-1}$

D.Khangulyan (MPI-K)

 γ -ray binary systems

Nordita Programm 24 / 68

IC as a primary gamma-ray Mechanism

- Optical Star Photon Field is perfect Target
 - All over the System
 - Fast cooling
- "Small" energy of parent Leptons $E_{\gamma} \sim E_{
 m e}$
 - Easier to accelerate
 - Easier to confine

∃ ► < ∃ ►</p>

Outline

Introduction

- Gamma-Ray Binary Systems
- Binary Pulsar System
- Microquasars

Non-Thermal Emitter in Binary System

- VHE emitter
- Acceleration vs Losses (LS5039)
- Multi-wavelength (LS5039)

3 Modeling

- Binary Pulsars
- Absorption

Acceleration in Binary System

- Different acceleration mechanisms may take place in binary system.
 - Shock Acceleration (e.g. internal shocks)
 - Relativistic Shock Acceleration (e.g. in binary pulsars)
 - Shear Acceleration (e.g. in μ Q jet)
 - Converter Mechanism (Derishev et al., Stern&Poutanen)
 - etc
- But electrons loss their energy very efficient
 - To compare the time scales

A B F A B F

Acceleration vs Losses

Acceleration time

 $t_{\rm acc}\approx 10\eta_{10}E_{\rm TeV}B_{0.1}^{-1}$

Hillas Criterion
$$E < 3 \cdot 10 \left(\frac{R_{acc}}{10^{12}}\right) B_{0.1}$$
 TeV

Klein-Nishina losses

$$t_{\rm cool} \approx 2 \cdot 10^2 w_0^{-1} E_{\rm TeV}^{0.7} \, {
m s} \qquad E < 8 \cdot 10^3 \, [B_{0.1} \eta_{10}^{-1} w_0^{-1}]^{3.3} \, {
m TeV}$$

Synchrotron losses

 $t_{\rm cool} \approx 4 \cdot 10^4 B_{0.1}^{-2} E_{\rm TeV}^{-1} \, {
m s}$

$$E < 6 \cdot 10 B_{0.1}^{-1/2} \eta_{10}^{-1/2}$$
 TeV

・ロト ・四ト ・ヨト ・ヨト

D.Khangulyan (MPI-K)

Electron maximum energy in LS 5039

Figure: Maximum energy dependence on magnetic field and distance to the star (Khangulyan et al, 2008)

Outline

Introduction

- Gamma-Ray Binary Systems
- Binary Pulsar System
- Microquasars

Non-Thermal Emitter in Binary System

- VHE emitter
- Acceleration vs Losses (LS5039)
- Multi-wavelength (LS5039)

3 Modeling

- Binary Pulsars
- Absorption

< ロ > < 同 > < 回 > < 回 >

LS 5039 @ X-ray

Suzaku

- Sensitivity
- 1.5 orbit
- Spectra
- Lightcurve

Observation (Takahashi et al., 2008)

X-ray and TeV emission from LS 5039

- Variable/Periodic
- Apparent similarities in lightcurves
- Hard distributions of parent particles

Takahashi et al., 2008

X-ray and TeV emission from LS 5039

TeV (Aharonian et al., 2006)	X-ray (Ta
Variable	 Varia
Periodic	 Seer
 Strong variability in flux level 	Sign
 Significant variability in 	level
photon index	Mino
 SUPC: lower fluxes and 	index
steeper spectra	• SUP
 INFC: higher fluxes and 	steer
harder spectra	INFC
 Very hard spectra at INFC 	hard

akahashi et al., 2008)

- able
- ns to be periodic
- ificant variability in flux
- or variability in photon
- C: lower fluxes and per spectra
- C: higher fluxes and er spectra

< ロ > < 同 > < 回 > < 回 >

Hard spectra

Time-scales and Energy Bands

Suzaku	Fermi	HESS
1keV-40keV	100MeV-100GeV	100GeV-100TeV
$\sim 10^{-11} \text{erg}/\text{cm}^2\text{s}$?????	$\sim 5\cdot 10^{-11} erg/cm^2 s$

Mechanism	Energy Band	Time-scale
Synchrotron	$\hbar\omega\sim 20E_{ m TeV}^2B_{ m G}{ m keV}$	$t_{\rm syn} \sim 4 \cdot 10^2 E_{\rm TeV}^{-1} B_{\rm G}^{-2} { m s}$
Thomson	$\hbar\omega\sim 40 E_{ m GeV}^2 m MeV$	$t_{\rm Th} \sim 10^3 D_{13}^2 E_{\rm GeV}^{-1} { m s}$
Klein-Nishina	$\hbar\omega\sim E_{ m TeV}$ TeV	$t_{ m KN} \sim 10^3 D_{13}^2 E_{ m TeV}^{0.7} m s$

Could be useful to consider the parent particles, i.e. to make a transformation:

(Photon Energy, Fluxes) \implies (Electron Energy, Cooling Times)

D.Khangulyan (MPI-K)

Time-scales and Energy Bands

General Properties (spectral shape)

- Suzaku and HESS photons are likely produced by the electrons from overlapping energy bands
- A rather stable photon index \sim 1.5 measured by Suzaku suggests a power-law ($\sim \gamma^{-2}$) distribution of parent electrons
- In general γ⁻² distribution of electrons leads (in the KN regime) to a rather steep VHE spectra with photon index ~ 3 ⇒ Recalls for anisotropic IC scattering (Aharonian&Atoyan, 1981; Khangulyan&Aharonian, 2005) with significant change of the interaction angle
- Relatively small distances between the optical star and the nonthermal emitter

- From the spectral shape one can roughly determine the location of the production region
- This defines the efficiency of the IC production and the $\gamma-\gamma$ attenuation
- Ratio of the X-ray and VHE energy fluxes allows to estimate the B-field strength (\sim 3 G)

A THE A THE

Time-scales and Energy Bands

- From the spectral shape one can define the location of the production region
- This defines the efficiency of the IC production and the $\gamma-\gamma$ attenuation
- Ratio of the X-ray and VHE energy fluxes allows to estimate the B-field strength (\sim 3 G)
- Featureless hard HESS spectra recalls for a non-radiative dominant mechanism, e.g. adiabatic losses

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Test Setup

The simplest one-zone model:

$$rac{\partial \dot{\gamma}(\gamma) n}{\partial \gamma} = \mathcal{Q}(\gamma)$$

where $\dot{\gamma} = \dot{\gamma}_{\rm IC} + \dot{\gamma}_{\rm syn} + \dot{\gamma}_{\rm ad}$

- Spectral shape defines IC losses (location of the emitter)
- Ratio of the fluxes defines synchrotron losses
- Spectral shape and X-ray light curve defines the level and orbital phase dependence of adiabatic losses
- The unconstrained parameters: the acceleration spectrum. The standard spectrum $\propto \gamma^{-2}$ was assumed.
- One has very few freedom!!!

Results

- Adiabatic cooling rate from X-ray data
- Good agreement with HESS fluxes
- Acceptable agreement with HESS spectral indexes
- Testable prediction for Fermi

Outline

Introduction

- Gamma-Ray Binary Systems
- Binary Pulsar System
- Microquasars

2 Non-Thermal Emitter in Binary System

- VHE emitter
- Acceleration vs Losses (LS5039)
- Multi-wavelength (LS5039)

Modeling

- Binary Pulsars
- Absorption

A B F A B F

Crab Pulsar (II)

Crab Nebula

Aharonian&Atoyan, 1998

D.Khangulyan (MPI-K)

 γ -ray binary systems

Nordita Programm 43 / 68

Observation of PSR B1259 with HESS

D.Khangulyan (MPI-K)

Observation of PSR B1259

Possible Correlation between different energy bands

X-ray and radio emission show similar lightcurves!

D.Khangulyan	(MPI-K)
--------------	---------

PSR B1259: Interpretation of Observation in Frameworks of a One-zone Model

Non-Radiative Loses

$$t_{\rm ad} \ll t_{
m syn}, t_{
m IC}$$
 $L_{
m IC} = \frac{1/t_{
m IC}}{1/t_{
m ad}}L$ $L_{
m syn} = \frac{1/t_{
m syn}}{1/t_{
m ad}}L$

 $t_{
m syn}, t_{
m IC} \propto D^{-2}$

This implies a very strong dependence of adiabatical losses \Longrightarrow

PSR B1259: Adiabatical Losses (Khangulyan et al, 2007)

PSR B1259: Interpretation of Observation in Frameworks of a One-zone Model

Sub-TeV cutoff

Competition between acceleration process and energy loss mechanisms leads to formation of an orbital phase dependence of maximum energy in the accelerated particle spectrum

PSR B1259: Sub-TeV cutoff (Khangulyan et al, 2007)

Possible influence of a dense stellar disk?

(4) (5) (4) (5)

PSR B1259: HD study

Motivation

- The leptonic one-zone models require additional assumptions:
 - Adiabatical losses⇒HD (MHD)

Hydrodynamics

 Hard to predict the result of two wind collision ⇒HD (MHD) simulations are required

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

PSR B1259: HD model (Bogovalov et al, 2008)

Basic Assumptions

HD

- Two radial winds
- Pulsar wind is ultrarelativistic
- Stellar wind is non-relativistic
- Steady sate
- Two dimensional

PSR B1259: HD results (Bogovalov et al, 2008)

Main Results

- High bulk Lorenz factors ($\Gamma \sim 100$)
- Unclosed structure of shock waves (η > 10⁻²)
- Significant acceleration even if η is very small

A B b 4 B b

PSR B1259: HD results (Bogovalov et al, 2008)

Main Results

- High bulk Lorenz factors ($\Gamma \sim 100$)
- Unclosed structure of shock waves (η > 10⁻²)
- Significant acceleration even if *η* is very small

< 🗇 🕨

3 > 4 3

PSR B1259: HD results (Bogovalov et al, 2008)

Main Results

- High bulk Lorenz factors ($\Gamma \sim 100$)
- Unclosed structure of shock waves (η > 10⁻²)
- Significant acceleration even if η is very small

∃ > < ∃</p>

Implications of the HD calculations (still in progress...)

3 > 4 3

Implications of the MHD calculations (still in progress...)

In preparation....

Impact of Doppler boosting on the light-curve

< 🗇 🕨

3 > 4 3

Outline

Introduction

- Gamma-Ray Binary Systems
- Binary Pulsar System
- Microquasars

2 Non-Thermal Emitter in Binary System

- VHE emitter
- Acceleration vs Losses (LS5039)
- Multi-wavelength (LS5039)

Modeling

- Binary Pulsars
- Absorption

A B F A B F

Gamma-Gamma Absorption

D.Khangulyan (MPI-K)

Nordita Programm 56 / 68

Dense Radiation Field

• Optical Star Photons: $\epsilon \sim 2 T_4$ eV, $w \sim 3 \cdot 10^2 L_{38} R_{12}^{-2} \text{erg/cm}^3$,

•
$$\gamma - \gamma$$
 Opacity
 $\tau = \sigma_{\gamma - \gamma} n_{\text{ph}} R \sim E_{\gamma} \sim 0.4 T_4^{-1} \text{ TeV} \Longrightarrow \tau \sim 10 R_{12}$

Gamma-Gamma Absorption

- Variability
- Softening/Hardening
- Secondaries
- Cascading

Absorption Impact

"Evolution"

- Moskalenko&Karakula, 1994
 - Emitter located in the orbital plane
- Böttcher&Dermer, 2005
 - Emitter located in the jet
- Dubus, 2006
 - Emitter located in the orbital plane
 - Finite Size of the star

3 > 4 3

16 N A 16 N

"Evolution"	Dubus, 2006
 Moskalenko&Karakula, 1994 Emitter located in the orbital plane Böttcher&Dermer, 2005 Emitter located in the jet Dubus, 2006 Emitter located in the orbital plane Finite Size of the star 	$P \qquad \qquad$

An Additional Emitting Component?

Absorption

D.Khangulyan (MPI-K)

γ -ray binary systems

Nordita Programm 61 / 68

Radiation of Secondary

Calculations for LS 5039 from Khangulyan et al, 2008

D.Khangulyan (MPI-K)

 γ -ray binary systems

Nordita Programm 62 / 68

Cascading (Khangulyan et al, 2008)

• K-N regime
$$E_{\rm e} \gg \frac{m^2 c^4}{\epsilon_{\rm ph}} = 30 \left(\frac{\epsilon_{\rm ph}}{10 {\rm eV}}\right)^{-1} {\rm GeV}$$

• $t_{\rm IC} < t_{\rm syn}$

$$E_{\rm e} < 60 \left(\frac{w_{\rm pf}}{10 w_{\rm mf}}\right)^{0.6} \, {\rm GeV} = 60 \left(\frac{B_{\rm wind}R}{100 {\rm G}R_{\rm surf}}\right)^{-1.2} \, {\rm GeV}$$

B_{surf}= 200 G − 1 kG (Usov & Melrose (1992), Donati et al. (2002))
For B_{wind} ~ 10 (^R/_{Rsurf})⁻¹ G → NO CASCADING in TeV band
For B_{wind} ~ 100 (^R/_{Rsurf})⁻³ G → NO CASCADING in TeV band

イロト イポト イラト イラト

LS I +61 303 is a Be-Pulsar binary, not a Microquasar?

from Dhawan et al, 2006

D.Khangulyan (MPI-K)

 γ -ray binary systems

Nordita Programm 64 / 68

LS I +61 303 is a TeV emitter?

from Bosch-Ramon et al, 2008

Nordita Programm 65 / 68

・ロト ・ 四ト ・ ヨト ・ ヨト

General

- Leptons are very attractive in the binary system context
- VHE emitter create a population of non-thermal particle in binary system
- HD/MHD simulations have very fundamental implications
- There are a LOT of open (interesting!) questions: acceleration, accretion, 3D cascading.....

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary(I): Leptonic Model for PSR B1259

- One-zone modeling requires additional assumptions
- Scenario of a compactified nebula is unlikely
- Significant bulk acceleration
- Adiabatic losses are important
- Significant bulk acceleration even in the nearest zone ⇒
 Radiative outcome is strongly anisotropic, and hard to estimate
- Correlation between different energy band is expected

A THE A THE

Summary (II): Leptonic Model for LS 5039

- X-ray observations appeared to be crucial for one zone modeling
 - The parameter space is very restricted
 - Testable predictions in MeV, GeV and TeV energy bands
- Disfavours "standard" pulsar models (distant location of the production region)
- Disfavours microquasar models (higher energy budget)
- Being roughly consistent with one zone model, recalls for more detailed studies....

イロト イポト イラト イラト