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Observational constraints on the magnetization of GRB fireballs
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* GRBs

— Prompt emission, Optical flash, Afterglow
* Relativistic motion

— Essential element in fireball model

— Magnetized / Poynting flux dominated outflow
* Magnetization

— Afterglow Modeling

— SSC Emission

— Polarimetry




Gamma-ray bursts

 Intense flashes of 0.1-1MeV photons
— Arriving from random directions in the sky
— A few events per day
— Light curves: highly variable: compact sources

Fireball Model

Synchrotron Shock model

1) Relativistic outflow from a compact source
— death of massive stars, compact stellar mergers

Outflow
2) Shock formation at large radii
Shocks

— Electron acceleration in shocks J)ﬁ%‘

Synchrotron

3) Synchrotron/IC from electrons




Collapsar Model for Long GRBs
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two main emission components of GRBs

*  Prompt gamma-rays
— light curves: highly variable
— T < afew ten-hundred sec
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» Afterglow: discovered in 1997
— X-ray, opt, radio counterparts
— light curves: smooth, power-laws
— lasts much longer (~ yr) P R
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Internal-External shock model

Prompt gamma-rays Afterglow
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Coasting:
Evolution of a Fireball internal shocks: prompt gamma-rays
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deceleration and energy transfer
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main emission components: close look

Prompt gamma-rays
— T < afew ten-hundred sec
— emission from ejecta

Optical flash: Reverse Shock

<= | short-lived

emission from ejecta

Afterglow: Forward shock
— emission from ambient medium

“Early afterglow”
Reverse shock/forward shock emission right after GRBs
Robotic telescopes

Relativistic motion
essential assumption in fireball model

* Huge amount of energy in a compact source
Optically thick sources expected: e+e- pairs

» Observations: optically thin source
— Non-thermal spectrum with a high energy tail

I'> 100

larger source volume allowed
less photons with high energies in comoving frame




Observational supports of relativistic motion

Optical depth for high energy photons

e.g. Lithwick&Sari; Fermi collaboration

Onset of Afterglow: a few hundred sec: T ~ afew hundred

E 1/8
pe’ty,

Radio Afterglow
— quenching of scintillation
— superluminal motion

Thermal emission component in GRB
Pe’er, Ryde, Wijers et al.

* Quenching of scintillation (diffractive)
— 4 weeks after GRB 970508
— This implies a size R ~ 10*7cm
— Expansion speed: ~c

« Diffractive scintillation

— caused by interference between rays diffracted by small-scale irregularities
in ionized ISM

— occurs only when the source size is smaller than a characteristic size
(diffractive angle).

Waxman et al. 1998; Frail et al. 2000




Direct measurement
GRB030329 (bright, nearby)

* Very Large Baseline Interferometry
— Afterglow images resolved
25 and 83 days after GRB
+ The observed expansion velocity: 3c-5¢
— Superluminal motion
— Good agreement with theoretical predictions
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Big problem

* How to accelerate/collimate jets?
— gamma>100, E=10"52 ergs

* Poynting flux dominated jets?
— attractive model
— AGNs




¢ observational constraints on the
magnetization of GRB jets?

— Early afterglow model
— SSC component
— polarimetry

Early Afterglow Modeling

Reverse Shock Forward Shock

o)

Different magnetization?

Optical flash: Reverse shock emission
Afterglow: forward shock emission




the peak times and fluxes

the ration of magnetic energy densities
in the two shock regions
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GRB 990123, GRB 021211, GRB 061126
Magnetic energy ratio: Reverse and Forward shocks

UB,reverse / UB, foward = 20 - 30

(Zhang, SK,&Meszaros; Kumar&Panaitescu; Gomboc et al.)

Afterglow broad band modeling

8B,forward = 10_4 - 10_2

magnetic energy density
expressed as a fraction of the equipartition value (shock energy)

Reverse shock region
higher magnetization, still a baryonic jet

» Fireball model predicts
— early optical emission from reverse shocks

* A large fraction of events: No optical flas
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Light Curves of early optical afterglow
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A large fraction of events: No optical flash
— Emitted at even lower frequencies?
— Dust extinction in host galaxies?
— Emitted at high frequencies via SSC?
— Poynting flux dominated outflow?

Each jet: different magnetization?

XRT Count Sate {cpal

Synchrotron Self-Invese Compton (SSC) and X-ray flares

X-ray flares: flare events in early X-ray afterglow
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If 1st order IC is in X-ray iv, ~5keVv
the comoving photon energy of the 1st IC is v, =hviT~50 eV

KN does not suppress the 2nd IC as long as y, <m.?/hv} ~1000

2nd IC: 10-100MeV range
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SSC model does not work to explain X-ray flares

GRB 050502b: brightens by a factor of several hundreds
— Compton parameter: x~100 e leg > 10°
— with plausible values of the other parameters: SSC well above X-ray band

« the feature of flares too sharp:  At/t <1
* multiple flares observed
+ Fermi: no feature around 10-100 MeV

e Late time internal shocks
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GRB 080916C : Fermi Collaborations 2009

The lack of SSC component

» High magnetization of the fireball: magnetized fireball?

X
Compton parameter x = (ee /EB)

e the SSC is above the Fermi band
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not so many high energy detections by Fermi
* pair-creation T =1000 GRB080916C

— general cases: sources optically thick for high energy photons?
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* Synchrotron Emission +ordered B-fields

— linear polarization
« a large fraction of waves oriented in a single direction

— Polarization: the smoking gun of synchrotron emission
— Large polarization signal: large scale magnetic fields

Polarization measurements of prompt /optical flash
needed to investigate GRB ejecta properties

Controversial results: prompt gamma-ray (Coburn&Boggs2003)

Late (~1day) polarization measurements: jet breaks

First detection:optical
1.7% for GRB 990510
Covino et al. Wijers et al.
optical upper limit
2.3% GRB 990123

Hjorth et al.
Radio upper limits
19% GRB 980329
80/0 GRB 980703 Taylor et al.; Frail et al.
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two options to produce high polarization
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Magnetic-field lines yrays  Jet direction Observer
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the line-of-sight to GRB runs along the edge of the jet cone .

(Sari1999;Gruzinov 1999;Ghisellini&Lazzati1999;Waxman 2003;Granot2003;Nakar et al.2003;Rossi et al. 2004)

Random Magnetic fields generated by
instabilities.

B /1 B 1
(Medvedev&Loeb1999)

Some degree of alignment if observed
edge-on if the emitter is observed edge-on
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If the emitter moves with
a relativistic velocity,

we have to take into account the
relativistic aberration of photons.

I

comoving frame: 0’ = /2
= lab frame: 6=1/T

Large Polarization

when the line-of-sight to GRB runs along the edge of the jet cone

this happens around a jet break
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Jet break: seeing the edges

when the emitter (e.g. blast wave) slowed down,
we recognize it is not spherical

* break in optical afterglow light curve
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polarization signals

PHOTOGRAPH
THE VERY BEST OF
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Early polarization measurements

Liverpool telescope (polarimeter: RINGO)

* 2m robotic telescope at the Canary Island of La Palma, Spain

Rotating polarizer by 90 deg

Polarization degree

Afterglow luminosity changes
very rapidly...

Am =0.1 could produce
false 5% polarization
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e Polaroid : rotating at 500rpm

e Source is imaged as a small ring, with the polarization signal
mapped out around it.

GRB 060418
Afterglow polarization measurement
— 200 sec after GRB trigger
— At the onset of afterglow: 14mag
— bright night: 3/4 full moon
— Polarization: 8% upper limit

Mundell et al. 2007
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8% upper limit at the onset of afterglow

1) No large-scale magnetic fields in the “emitting region”.

2) B-fields suppressed reverse shock and its emission.
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we need more observations to settle the issue.

Summary

* How to test/ investigate magnetized fireball model?

+ Early afterglow modeling
— higher magnetization in reverse shock region, still baryonic
— why no optical flashes in many events?
— low freq? dust extinction? magnetized?

* SSC emission

— flares in early x-ray afterglow: SSC models does not work
— no SSC components : prompt/RS: consistent with magnetized

outflow

» Early Polarization measurements
— upper limit 8% at the onset of afterglow
— no large-scale magnetic fields in fireball
— magnetic pressure kills reverse shock?
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