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The merger of two neutron stars is

considered the most promising scenario

for the generation of short GRBs.

After a phase of inspiral due to the loss of

angular momentum and orbital energy by
gravitational radiation, the merging NSs
are distorted by their mutual tidal forces.

surface.
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Credit: Daniel Price & Stephan Rosswog

— |B|™ax: limited by the non-linear dynamics (stresses on the flow or work against fluid forces make
emag t0 decrease).

— Price & Rosswog (2006); Rosswog (2007) obtain |B|max > 101 G.
— Results handicapped by insufficient numerical resolution, particularly in the non-linear KH phase:
= No definite conclusions on the maximum strength of the field nor its back-reaction on the fluid.

= The maximum field was a function of the numerical resolution: the better the resolution, the
higher was the field amplification.
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= Performing numerical convergence tests, these authors could not find an upper
bound on |B|™aX, Thus, Price & Rosswog (2006) discussed, based on energetic
arguments (no simulation results!), two different saturation levels:

* Kinetic equipartition, emag ~ €xin: |B|™#* ~107° G
e Thermal equipartition, emag ~ eint: |B|™#* ~10"8 G

= Other groups have addressed a similar problem with different degrees of
sophistication in their global numerical simulations (Giacomazzo et al. 2009, Liu et
al. 2008, Anderson et al. 2008).

= QOur opinion: global numerical simulations do not reach sufficient numerical

resolution to study instabilities and turbulence. We need local numerical simulations
(LNS):

» SPH has higher numerical viscosity than to grid based methods (Agertz et al.
2007).

» The best resolution using vertex-centered mesh refinement in global models is
h ~350 m (Giacomazzo et al. 2009).

 We show thath ~ 0.1 m (in 2D) or h ~ 0.8 m (3D) needed for converged results
in LNS.
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= Better understanding of MHD-KH = Dimensionless/scale-free LNS
instability:
e Influence of the numerical

systematics: resolution, boundaries,
etc.

e Generic properties of the saturation of
the instability

= Asses the results of Price & Rosswog: = Merger-oriented LNS, where the initial
. - set up mimics merger conditions
[B|™** and field topology. (density, velocity, magnetic field, etc.)

e growth times of the KHI
e saturation mechanism.
e dynamics of supersonic shear flows.

= New (Newtonian) MHD code specifically
designed for the study of instabilities
and turbulent systems.




The new MHD code in a nutshell

—_

Flux-conservative, finite-volume, Eulerian formulation of the ideal MHD equations
2. High-resolution shock capturing methods:

 various optional high-order reconstruction algorithms:

» 2nd-order total-variation diminishing piecewise-linear (TVD-PL) scheme (using as
slope limiters, Minmod, van Leer or MC).

» 4th-order weighted essentially non-oscillatory (WENO4) scheme (Levy et al.
2002).

» 5th-, 7th- and 9th-order monotonicity-preserving (MP5, MP7, MP9) schemes
(Suresh & Huynh 1997)

e Approximate Riemann solvers based on the multi-stage (MUSTA) method (Toro &
Titarev 20006).

3. Self-gravity: Poisson solver.
4. Constraint-transport scheme to maintain a VB = 0 (Evans & Hawley 1988):

» volume averaged hydro quantities, surface averaged B-fields, corner averaged E-fields.

» Due to the staggering of different variables, careful (high-order) interpolation between
different numerical grids.

» We compute E from the velocity and the B-field at cell interface which we get as the
result of the Riemann solver: E-field consistent with the solution of the Riemann
problem!.

5. Parallel (MPIl/OpenMP)-Fortran90 code.




The magnetized KH instability

* The KHI leads to exponential growth of perturbations in a non-magnetised shear layer (SL)
of a fluid of background density p (e.g., Chandrasekhar 1961).

* |If a plane-parallel SL extends over a thickness d, all modes with wavelengths A > d are
unstable, and the shorter modes grow faster.

* After a phase of exponential growth, a stable KH vortex forms.
» Assume: shear flow in the x-direction,

y

Uo = velocity difference across the SL
ca = (b2/ p)'2 = Alfvén velocity

A = Uo /ca = Alfvén number
b = |bx| = Magnetic field strength (parallel to the SL) X

* A magnetic field perpendicular to the SL and to the shearing interface (by field) will be converted into a bx
field by the shear; thus, it leads to a similar dynamics.

X Afield orthogonal to the shear flow but parallel to the interface acts mainly by adding Pmag to P, thus
modifying the dynamics of the KHI only to a small degree.

* For strong fields, A > 2: stable, no KH growth.

» For weaker fields, A < 2: the instability develops similarly to the non-magnetic case, but its
growth and its non-linear saturated state may be affected significantly (e.g., Frank et al.
1996; Jones et al. 1997; Jeong et al. 2000; Ryu et al. 2000).




The magnetized KH instability

Summary of previous results for weak fields (2D):
« Rather strong fields, A z2: non-linear stabilisation.

» Too weak for stabilisation initially, the field is amplified, and, after less than one turnover of the KH
vortex, is strong enough to suppress further winding.

» The field, concentrated in thin sheets, annihilates in localized reconnection and, mediating the
conversion €xin — €mag — €int, destroys the vortex.

e Late evolution: broad transition layer. The flow is almost parallel to the initial SL. No vortex retained.
Reconnection — strong decrease of b, which concentrates in sheet-like patterns.

» Weaker fields: disruptive dynamics.
* Longer amplification times = the vortex retains its coherence over more cicles.

* During this process, the field is wound up in increasingly thin sheets, which, eventually, will
reconnect due to (numerical) resistivity.

* Late evolution: similar to the previous case. the vortex is disrupted, leading to a broad laminar
transition region threaded by filamentary magnetic fields.

» Even weaker fields: dissipative dynamics.
 After a long phase of amplification = insufficient field growth to affect the flow.
* Reconnection occurs, but, due to the weak fields involved: gradual conversion ekin — €int.
e Late evolution: The vortex remains coherent, with decreasing velocity as exin is extracted.
* Transition between regimes: no clear separation in A.

In 3D, even HD instabilities can disrupt the vortex. MHD instabilities add on top of the HD effects
(Ryu et al. 2000).




Numerical setup

b(t=0)=(b,0,0)

|ldeal gas EoS:
P = (y-1) pe

Ix ~1

T y T

(Vx, Vys Vz) = (Vo tanh 5,0’ 0) w(t=0)= vgf(y) sin(k,x) instability trigger
vy9~ 108 - 108w

UO = 2\/0
| f() €10, 1] vanishes at lyl=4a




Numerical validation: linear growth
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We capture the analytic linear growth in all
models = the code works fine!

We use the same models as Keppens et al.
(1999) and Miura & Pritchett (1982), from

where we take I'vp.

10714 L | L1 | L1 L1 | | L1 | L
I SUBSONIC REGIME
name | L L, | m.xm, [ Py Uy M a | by e e
grw-1 1 2 50 x 100 1 1.29 1 0.05 0,0,0) 2 | 1.73 1.64
grw-2 1 2 | 100 x 200 1 1.29 1 0.05 0,0,0) 2r | 1.73  1.74
arw-3 1 2 | 200 x 400 1 1.29 1 0.05 0,0,0) 2r | 1.73  1.75
grw-4 1 2 | 400 x 800 1 1.29 1 0.05 0,0,0) 2 | 1.73  1.75
grw-5 1 2 | 200 x 400 1 1.29 1 0.025 0,0,0) 2n 24 244
arw-6 1 2 | 200 x 400 1 1.29 1 0.1 0,0,0) 27 | 0.66 0.68
arw-7 1 2 | 200 x 400 1 0.645 0.5 0.05 0,0,0) 27 | 1.09 1.07
arw-8 1 2 | 200 x 400 1 1.843 10/7 0.05 0,0,0) 27 | 1.77 1.79
grw-9 1 2 | 200 x 400 1 0.645 0.5 0.05 0,0,0) 47 | 136 1.35
grw-10 | 1 2 | 200 x 400 1 1.29 1 0.05 (0.129,0,0) | 27 | 1.69 1.70
grw-11 1 2 | 200 x 400 1 1.29 1 0.05 (0.258,0,0) | 27 | 1.56 1.54
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Influence of BCs and domain size

1 * We test domain size and BC influence with
e supersonic models (M>1).
HD20-1 =
/ | = e Miura & Pritchett (1982): No growth if M = 2
C
/ 1,=0.5 2 e Smaller domains (with the same resolution h
3 per dimension!) bring oscillatory growth, with
/ i 1 9, damping of Tnum.
f = : : e
i / * Open boundaries yield larger I'num if ly is
i ——— sufficiently large, otherwise opposite effect.
\\\20\\\40\\t\60 \80\\\100
name | L I, | m:xm, | Py U, M a | k. | BC | Thum  oscillations
HD20-1-1 I 4 [200x800 | I 2322 18 005 ] 27| open | 097
HD20-1 1 2 |200x400 | 1 2322 18 005]|2r| open
HD2o0-1-1 1 1 200 x 200 1 2.322 1.8 005 | 2n open 0.
HD2o-1-s 1 0.5 | 200 x 100 1 2.322 1.8 005 | 2n open 0.16 Y,
HD20-2 1 2 200 x 400 1 2.451 1.9 005 | 2n open 0.30 v
HD20-3 1 2 200 x 400 1 25155 195 005 | 2n open 0.26 2V,
HD2o0-4 1 2 200 x 400 1 2.58 2 0.05 | 2x open 0
SUPERSONIC D205 1 2 |200x400 | 1 516 4 005|2r| open 0
HD2r-0 1 2 200 x 400 1 1.29 1 0.05 | 2x | reflecting | 1.73
(HD) REGIME 5. 12 [200x400 | 1 2322 18 005 | 27 | reflecting
HD2r-1-i 1 1 200 x 200 1 2.322 1.8 0.05 | 2z | reflecting | 0.56
HD2r-1-s 1 0.5 | 200 x 100 1 2.322 1.8 0.05 | 2n | reflecting | 0.56 Y,
HD2r-1-S 1 02 200 x 50 1 2.322 1.8 0.05 | 27 | reflecting | 0.35 2V,
HD2r-4 1 2 200 x 400 1 2.58 2 0.05 | 2z | reflecting | 0.46 2V,
HD2r-4-HR | 1 2 400 x 800 1 2.58 2 0.05 | 27 | reflecting | 0.44 v
HD2r-5 1 2 200 x 400 1 5.16 4 0.05 | 2z | reflecting | 0.52 Y,
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Influence of BCs and domain size

e The instability affects a larger area if |y is sufficiently large.

1 8
byl 4 : .
- /\}{]\m_l . e sound waves created at the SL steepen into shocks if
/ 3 they can travel away for a sufficiently long distance.
i IR= : : :
=05 2 ° Sound/shock waves leaving the domain responsible for
Y : .
I / I D the oscillatory growth.
: / i 1 2, * Only if shocks form — a vortex-like structure.
: o
I / | * The y-distance shocks travel depends on M.
_]’ ------------ | e For M=1, shocks are restricted to -0.25<y<0.25 = explains the
T w0 ‘t 0 s 100 lack of influence of the BCs.
name | L I, | m:xm, | Py Uy M a | k.| BC | Tun oscillations
HD2o-1-1 1 4 200 x 800 1 2.322 1.8 005 | 2n open 0.97
HD20-1 1 2 |200x400 | 1 2322 18 005]|2r| open
HD2o0-1-1 1 1 200 x 200 1 2.322 1.8 005 | 2n open 0.
HD2o-1-s 1 0.5 | 200 x 100 | 1 2.322 1.8 005 | 2n open 0.16 Y,
HD20-2 1 2 200 x 400 1 2.451 1.9 005 | 2n open 0.30 v
HD20-3 1 2 200 x 400 1 25155 195 005 | 2x open 0.26 2V,
HD2o0-4 1 2 200 x 400 1 2.58 2 0.05 | 2x open 0
SUPERSONIC D205 1 2 |200x400 | 1 516 4 005|2r| open 0
HD2r-0 1 2 200 x 400 1 1.29 1 0.05 | 2x | reflecting | 1.73
(HD) REGIME 5. 12 [200x400 | 1 2322 18 005 | 27 | reflecting

HD2r-1-i 1 1 200 x 200 1 2.322 1.8 0.05 | 2z | reflecting | 0.56
HD2r-1-s 1 0.5 | 200 x 100 | 1 2.322 1.8 0.05 | 2n | reflecting | 0.56 Y,
HD2r-1-S 1 02 200 x 50 1 2.322 1.8 0.05 | 27 | reflecting | 0.35 2V,
HD2r-4 1 2 200 x 400 1 2.58 2 0.05 | 2z | reflecting | 0.46 2V,
HD2r-4-HR | 1 2 400 x 800 1 2.58 2 0.05 | 27 | reflecting | 0.44 v
HD2r-5 1 2 200 x 400 1 5.16 4 0.05 | 2z | reflecting | 0.52 Y,




Growth in the supersonic regime

* Miura & Pritchett (1982): No growth if M = 2.
» We find also (oscillatory) growth if reflecting BC are
imposed for M>2.

= ['num almost unchanged if resolution increases.

 Very fast growth happens if Mz 1

e If shocks develop, the fluid tries to slide parallel to them in
the y-direction. This process mediates a very efficient

conversion of exin* into exinY.

SUPERSONIC
(HD) REGIME

name L, I, | m:xm, | Py U, M a | k. | BC | Thum  oscillations
HD2o0-1-1 1 4 200 x 800 1 2.322 1.8 0.05 | 2« open 0.97

HD2o0-1 1 2 200 x 400 1 2.322 1.8 005 | 2 open 0.96
HD2o0-1-1 1 1 200 x 200 1 2.322 1.8 005 | 27 open

HD2o0-1-s 1 0.5 200 x 100 il 2.322 1.8 0.05 | 2n open vV
HD20-2 1 2 200 x 400 1 2451 1.9 005 | 2 open 2,
HD20-3 1 2 200 x 400 1 25155 195 005 | 27 open 2V,
HD2o0-4 1 2 200 x 400 1 2.58 2 0.05 | 2n open

HD20-5 1 2 200 x 400 1 5.16 4 0.05 | 2r open

HD2r-0 1 2 200 x 400 1 1.29 1 0.05 | 2m | reflecting

HD2r-1 1 2 200 x 400 1 2.322 1.8 0.05 | 2z | reflecting

HD2r-1-i 1 1 200 x 200 1 2.322 1.8 0.05 | 2z | reflecting

HD2r-1-s 1 0.5 200 x 100 1 2.322 1.8 0.05 | 2m | reflecting Y,
HD2r-1-S 1 02 200 x 50 1 2.322 1.8 0.05 | 2m | reflecting 2V,
HD2r-4 1 2 200 x 400 1 2.58 2 0.05 | 2z | reflecting \/
HD2r-4-HR | 1 2 400 x 800 1 2.58 2 0.05 | 27 | reflecting 2V,
HD2r-5 1 2 200 x 400 1 5.16 4 0.05 | 2m | reflecting 2,




Magnetized models: non-linear
stabilization for intermediate fields

e Our standard setup: Ixx Iy = 2 x 2; reflecting BCs; Uo=1; M=1, 4;
v=4/3

e Strong fields: we verify the linear stability results, which imply
stabilization for A<2.

e \Weaker fields: we run models with A>2, finding excellent
agreement with Frank et al. (1996), e.g.:

- non-linear stabilization for, e.g., A=2.5

- for A=5 = the KH vortex can form and winds up the B-field,
which eventually becomes strong enough = non-linear
stabilization.

= The B-field stabilizes the growth of KH modes, either linearly or
non-linearly if A<5.




Magnetized models: non-linear
stabilization for intermediate fields

* Notes on numerical resistivity:

» For Rem—>~ = energy is transferred to ever smaller scales in turbulent
cascades.

» In numerical simulations, eventually the energy reaches the grid scale,
h, where it cannot be represented by the discretized B-fields. Thus, it
is assigned to eint.

» Physical resistivity transfers also emag— €int, hence, numerical
resistivity acts as a subgrid model for unresolved dynamics.

e [n models with intermediate fields, 2<A=<5, due to numerical
resistivity, the emergence of coherent flow and field structures is
subsequently disrupted in reconnection events = efficient

conversion exin— emag— €int, much more efficient than exin— €eint in
HD-models.

e Final flow: rather laminar than turbulent, with broad SL (agreement
with Jones et al. 1997).




Magnetized models: weak fields
(reproducing previous results)

* Prototype models with A=125 and A=5000, computed with resolutions
up to 40962

* We identify the same disruption and dissipation regimes as Jones et
al. (1997).

e Disruption regime:

» B-field wound up in very thin sheets. If the sheets approach each other
(having opposite polarity) reconnection happens
= tearing- mode instability.

e Tearing modes behave as catalyst exin— eint conversion.
e Dissipation regime:

» Same effects as in the disruption regime + growth of the B-field to
values such that the flows produced in tearing modes can disrupt the
KH-vortex.

* Final state: turbulent layer where the flow and field decay slowly until
€kinY— €mag’.




Magnetized models: weak fields
(new results)

The evolution of weakly magnetized models can be
separated in three phases:

1. KH-phase (as predicted by the linear theory).

2. Kinematic phase (B-amplification after formation of the
vortex which evolves secularly).

3. Dissipation/disruption phase (the KH vortex looses its
energy by magnetic stresses).




Magnetized models: weak fields
KH-phase

e Our models grow with I'nymMHP~ T'm P,

M=1, 20487

e Passive field amplification.

- —-

1=1, 20482

* Fixed amplification factor by the end of
this phase (model independent):

|Blkn ~ 1.4 |Bo|

e By the end of the KH-phase:

y
log emag, kin

emagy ~ 01 X emag

Fig.3. The temporal evolution of the transverse kinetic (solid lines) and
magnetic (dashed lines) energies per unit volume for models with initial
Mach and Alfvén numbers of M = 1 and A = 125 (green lines, marked
by a diamond) and A = 5000 (black lines, marked by an asterisk). Both
models were computed on a grid of 2048 zones. The blue vertical lines
indicate the end of the KH phase, 7xy, and an approximation of the end
of the kinematic phase.




Magnetized models: weak fields
KH-phase

2 0 ey 6 8 10

B{ANRARE AR AR RN AR :

- - A=125 ]

4. —As5000 A |
] S

e ['num independent of resolution.

The energy of the model with A=5000 scaled up by (5000/125)2.




Magnetized models: weak fields
KH-phase

0.0940

<
© 0.000529

e Termination of the KH-phase: the vortex
forms and exin¥, emag’ Saturate.

-1 -0.50 0 0.50 1

A=125, M=1, 20482




Magnetized models: weak fields
Kinematic Amplification phase

 After the termination of the approx. —

hydrodynamic KH-phase, exinY, , M=1, 20482
saturates.
K NI
e The B-field still grows exponentially . || /|  A=125 =1, 20482 |
because it is wound up by the vortex.
 During this phase, B is still i 777777777777777777777777777777777777777777777777777 e
dynamically negligible. Thus, the N
growth rate of the field is roughly the & 7
same independent of A. = Qe
Approx. end of
KA-ph1a3e |
20 40 60




Magnetized models: weak fields
Kinematic Amplification phase

Structure of the flow before

. the end of the KA phase . flux /Sheet
- A%

0 043 0.87 130 0 043 0.87 / 1.30

0.50

—0.50

-1 -0.50 0 0.50 1 -1 -0.50 0 0.50 1

0 0.00682 0.0136 00205 O 0.27 0.53 0.80

A=5000, M=1, 20482 A=125, M=1, 20482




Magnetized models: weak fields
Kinematic Amplification phase

compression, winding
atemag L V(emagv) = :emagv. ‘;+ b:z:by(ayv.r o aﬁvy)
“.0 s;g Smag [C8S]
lneormerzesiole o) —0.14 0.0173 0.18 0.33
. 1 T T T
-~ > exponential i
Otemag + V(€magV) & mag X K amplification
0.50 - -
. . I / £
e B-field grows where smag>0, i.e.,
predominantly along the flux sheet .
crossing (x,y)=0. > 0O
e The B-field amplification happens in i / i
localized, well resolved regions, thus, —0.50 -~
the growth rate is independent of I ]
resolution. i A=125, M=1, 20482 |
_1 1 1 | 1 | | 1 | | | | | | | | |
—l -0.50 0 0.50 1

t=28.980 X




Magnetized models: weak fields
Kinematic Amplification phase

* The termination level of the KA-phase depends on resolution and on bo.

e The growth ends slightly earlier for stronger initial fields.

e Amplification of a stronger initial field by a smaller factor than a weaker one.

e For a given my, there is a
maximum amplification
factor achieved for very
small initial A.

 For a fixed initial A, fte™m
increases with increasing
M.

e The dependence of the
amplification on my is strong &
for coarse grids, but rather
weak for well resolved
simulations.

e For very fine resolutions (or
small A), we find
convergence of the Maxwell
stress.

-

1000 |-

10 L

100 -

KA
fterm o Ty
o MKH
Ty
fterm x m;/8 ftorm x A3/4
.................. A—5000><
250 X | % 5
’ s
X %% x X + + * §+mx=5122+-
""""""""" ?&%C“ TR TR TR IR T
3 < - m.=2567
@)oo
K A=50
100 1000 100 1000
m A
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Magnetized models: weak fields
Kinematic Amplification phase

 Quantification of the resolution effects: log (bl /1jl [zones] )
lb=|b] /|Vx bl

=2 0.67 3.33 6
e B-flux conservation: /, decreases (from [p ~ 10
@ t=0) to finite width as the field grows and
winds up during the KH and KH phases.

e h=min(/y) attainable in numerical simulations.

e If I~ h, the B-field cannot keep growing, but ) YA
€mag can do it (linearly), because of the > 0.0 g e
increased length of the sheet. This sets the
end of the KA-phase.

* Thus, there exists B™* « Box a / /. —Uis

e BMaX js only reached if the field is too weak
(A<1250) to not react back on the dynamics -1.0

during the KA-phase. -1.0 -0.5 0.0 0.5 1.0
X

* At the end of the KH-phase, if A>1250, log (¢4 / Iv])

nowhere emag > €xin, indeed, ca << v. —6.17 —3.34 -0.51 2.32




Magnetized models: weak fields
Kinematic Amplification phase

e If A< 1250, because of the amplification of the B-field, it can react back on the flow,
decreasing the rotational velocity of the KH-vortex, which happens if locally emag > exin (Or
A=1).

log ( Ibl / 1jl [zones] ) log (Ibl / ljl [zones] )
-2 0.67 333 6 -2 0.67 333 6

e Numerical resistivity 04‘ enddKA-phase
becomes important, , | i :

but note that

because thin B-
field sheets are L
pushed together to h
distances ~ h, not > %9§

because the /

thickness of 1 sheet

~lp ~h -similar s
dynamics to
Keppens et al .
1999-. 04 -0.2 0.0 0.2 04 -1 ~0.50 0 0.50 1
X X
log (c, / Ivl) log (c, / Ivl)

-3.17 -1.29 0.59 247 448 -2.03 0.42 2.87

(o




Magnetized models: weak fields
Kinematic Amplification phase

e If A< 1250, because of the amplification of the B-field, it can react back on the flow,
decreasing the rotational velocity of the KH-vortex, which happens if locally emag > exin (Or
A=1).

» This fact explains why we get numerical convergence, in contrast
with the expectations for the a current sheet in a static
background (finer grid — lower resistivity — no convergence;
e.g., Biskamp 2000):

e Numerical resistivity
becomes important,

Instabilities terminating the growth of emag Operate on a multitude
but note that
e LB of flux sheets converging due to a dynamic background flow.
field sheets are * Once the distance between two structures of the magnetic field
becomes sufficiently small: T'um'®@" > TnumKA.
pushed together to

distances ~ h. not This distance is not related to the emag stored in the sheets, but it
because the ’ is determined by the flow field.

thickness of 1 sheet = close relation: velocity field & instance of termination.
~lp~h -similar The V-field is given by the HD of the KH vortex, and does not
dynamics to depend strongly on resolution. Therefore:

Keppens et al = The moment at which the flux sheets break up and, hence,

18Ke-. the energy contained in them is independent on resolution.
= Convergence is possible despite grid-scale effects.




Magnetized models: weak fields
Kinematic Amplification phase

e Summary of the possible exits of the KH-phase:

1. Passive termination: the field strength reaches a maximum when the flux sheets reach
a thickness close to the grid spacing,

2. Resisto-dynamic termination: a combination of dynamic and resistive termination when
the field reaches local equipartition with the flow field: Lorentz forces reduce the
rotational velocity of the KH vortex while resistive instabilities develop as flux sheets
coalesce.

= |eads locally to A~1, independently of bo.

= e5g inCreases with bo, since Bmax*” is attained in a small patch of the volume that
decreases with bo due to the decreasing width of the flux sheets.

¢ Notes:

e Passive termination is likely a numerical artifact consequence of insufficient resolution.

» Resisto-dynamic termination is probably the physics-wise exit of the KA-phase.




Magnetized models: weak fields

2E

Kinematic Amplification pha

 Total amplification of the B-field () and of emag () from .

<

t=0 to the end of the KA-phase, as a function of the shear
flow. [ °

log f°

* Increasing grid resolution = larger amplification until
convergence.

e Finer resolution needed for weaker initial fields.

e 4

+0 © 00 &

S O K

* Since f* « bg™! = bmax*” independent of bo. 1

* Models with slower shear flow (smaller M) or with

10

100

larger a yield smaller f° (similar but more complex 3¢
trends for fe). DS

Fig.10. The amplification factors f* (top panel) and f* (bottom panel)
as a function of the initial magnetic field, by, for models with differ-

S0 O 0

ent parameters of the shear flow: empty black diamonds, filled green ,
circles, and filled red diamonds correspond to models with M = 1 and Foo
a=0.05,M=0.5and a =0.05,and M = 1 and a = 0.15, respectively. I
The spread in vertical direction is due to different grid resolution of the
simulations. To indicate the scaling with the initial field strength, we

show power laws « b, e (top panel) and b;' (bottom panel). 1

10

100




Magnetized models: weak fields
Saturation, dissipation and disruption

o After the end of the KA-phase, the fluid 190
enters in a saturation phase. In the

following we restrict to resisto-dynamic < 1.83
termination cases. /
1.80 \ \ 1 \ \ \ 3 \ \ \

e Secular decrease of exin*Y while ejnt

grows. = =
= — 7

* emag®¥ stay at a roughly constant E ]
level. -2 e A A T emagx """"""""""""""""""""" =

® ekinY ~ emagy , but emag<< €kin. éi) B “\/\_/\/—v/\\/——f
] S ) e en e TR

&0 - ]

= - ]

-5 S 7 | e 3
- A=125, M=1, 20482 -
_6 | | | | | | | | | | | | | | |
0 20 40 60 80 100




Magnetized models: weak fields
Saturation, dissipation and disruption

beginning saturation phase end saturation phase
v, [cgs] (b) v, [cgs]

* Vortex disrupted.

* Broad transition layer
forms.

* Magnetic field
concentrated in thin
sheets (lb~ 1).

¢ Resistive instabilities
spread all over (form,
e.g., closed loops).

¢ B-field reaches
equipartition with V-
field at flux sheets.
Thus, the field can
greatly affect the
dynamics.

J J ¢ The small scale flow
-10 -0.5 00 0.5 1.0 -1.0 -0.5 00 0.5 1.0 and field are inefficient
X X to be amplified further.
Ibl [G] bl [G]

—— — —— » Steady state reached

0 0.23 0.47 0.70 0 0.23 0.47 0.70 (statistical sense).
A=125, M=1, 20482




Magnetized models: weak fields

Saturation, dissipation and disruption

» How long does it take to reach a steady state?
* How long does it take to decelerate the KH-vortex?

* To quantify it, we can evaluate fqis, the time it takes
to reach exinY < emagand we define a deceleration

rate as: 5., := 0, logel. = 1/tqec

* We find tgis «bo®” and tgec «bo™®-’. This will allow us

to obtain typical time scales in merger motivated
simulations.

Fig.13. The disruption of the KH vortex, ¢4 (upper panel), and the de-
celeration time scale, 74 (lower panel), as a function of the initial field
strength, by. In both panels, we show in addition to the models repre-
sented by symbols, lines o b60'7 which show the approximate scaling
of the time scales with by. Black diamonds, green diamonds, and red
squares correspond to models with M = 1 and a = 0.05, M = 0.5 and
a =0.05,and M = 1 and a = 0.15, respectively. The scatter in the verti-
cal direction is due to different grid resolutions of the simulations. For
the same value of by, finer resolution yields smaller values of 74 and 1

tdec .

2f




3D models: subsonic shear flows,
parallel field

Nonmagnetic models:

e [Ryu et al. (2000)] the KH vortex is unstable against (purely) HD instabilities: coherent
vortex tubes near the main KH vortex exert non-axial stresses on the vortex, and fluid
elements are prone to the elliptic instability, an instability caused by time-dependent
shear forces, which fluid elements feel as they orbit the vortex on elliptic trajectories.
The result is isotropic decaying turbulence. We verify this result

1

- ]
wE 0.50
D b B A
/
Ll e R
q_'f—“
—{§) 1 éspaosmemengfasoodiencacosocogeasoasd oo eil """""""""""""""""""""""""""""""
[ e}kil 7
Y| R SR, E————. LK“ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
=100y i [ S B N B
0 10 20 30 40

After vortex disruption
by secondary :
instabilities

|Vxv|

When the KH
vortex forms




3D models: subsonic shear flows,
parallel field

Weakly magnetized models:

e [Ryu et al. (2000)] If a (weak) magnetic field is present and disrupts the vortex, the post-
disruption flow shows a larger degree of organization than without magnetic fields due to
the prevalence of flux tubes and sheets in which the magnetic and kinetic fields are

aligned. We verify this result.

ekin,mag

\\\\\\\\\\\\\\

1 1

\\\\\\\\

\\\\\\\\\\

There are similar evolutionary phases as in 2D,
but complicated by the development of
parasitic instabilities

|Vxv|

snapshot during
the KA-phase

A=50, M=1,
strong random
perturbation

b




3D models: subsonic shear flows,

parallel field

Weakly magnetized models:

e There is a competition between HD and MHD instabilities. Which one of the two
dominates depends on A and on the initial amplitude of random perturbations. The final

turbulent state can be rather different.

j
/
)

1| [ e B
E LS | g
53 Comae &
=6 S e e
e | et A=50, M=1, ~ o A=5000, M=1,
I 1 A strong random G weak rando
i perturbation r perturbation
_10 \\\\\\\\\\\\\\\\\\ N S B | \\\\\\\\\ _10 1 1 1 | 1 1 1 1 | L 1 1 1 |
0 10 20 30 40 50 0 20 40 60 80 100




3D models: subsonic shear flows,
parallel field

Weakly magnetized models:

e There is a competition between (3D) HD and (2D) MHD instabilities. Which one of the
two dominates depends on A (also resolution) and on the initial amplitude of random
perturbations. The final turbulent state can be rather different.

e Hydrodynamic disruption:
* |f too weak amplification of the magnetic field leads to a dominance of HD instabilities

over MHD instabilities during the early phases, the KH vortex tube is disrupted and the
shear flow is decelerated at a rate similar to the non-magnetic case.

* The magnetic field will then be amplified or sustained in the turbulent velocity field the
HD instabilities yield.

* The evolution of this class of models tends towards isotropic decaying turbulence.
* exin? > emag after reaching saturation.
e Hydromagnetic disruption:

* The B-field leads to the disruption of the KH vortex tube before the HD instabilities can
set in.

e The deceleration of the shear flow is driven by B-fields. ogec similar to that of 2D-flows;
it may, however, also be smaller depending on the MHD turbulence.

* The turbulent final state of such models is dominated by a strong bx roughly in
equipartition with vx.

* The transverse components of both vector fields are considerably weaker.
* exin? < emag after reaching saturation.




Merger

EoS:
* Keil et al. (1996):

motivated models: physics,

initial and BCs

P
Py
P

Pth + Pb,
Kprb.
(T'h — Deém,

Cs

where the thermal energy, &y, 1s defined by

2 _ I'v Py + I'in Pin

P

I'b =T'th = 1.333

th (relativistic,
g =&— &p.
degenerate matter)
—3.7163: T T :1.616
Initial conditions:
X Mns = 1.4 Mo Al ]
37164 11615
NE C Y //( ] :
o —37165—% , 11614,
E ; /\\\\ /l’\ ; :Q
—3.7166f : d 1.613
3,7167/ L L L L L L L L L L L L L L \1.612
-100 =50 0 50 100
y [m]

equatorial plane

p =10"3 gr/cm?3
eth=0

Assume hydrostatic
equilibrium




Merger motivated models: physics,

EoS:
* Keil et al. (1996):

Initial conditions:

initial and BCs

P:Pth+Pb, FP—|—F P
Pb — Kprb. ng bL b th{ th

Py = (T'm — Dem, p

where the thermal energy, ey, 1s defined by Iy = O = 1.333

" (relativistic,
E =&~ &. degenerate matter)

Mns = 1.4 Mo

Shearing velocity = rotational velocity of the NSs

BCs: x(z)-direction: periodic, y-direction: reflection

cofnputatiopal

: p =10" gr/lcm® Assume hydrostatic
equatorial plane er= 0 equilibrium




Merger motivated models: 2D

* Reproduce the basic features shown in the dimensionless simulations (phases,
saturation, dynamics, etc.).

» We use Cartesian grids with Ix x Iy = 200 x 200 m, resolutions up to 20482, a=10 m, vo* =
1.83x10° cm/s =0.061c, M=0.9.

» Because of the limited grid resolution, we use bo ~ 10'* G or A~115 (10'* G / bo), with
configurations parallel or antiparallel w.r.t. the SL.

e Find:

» the KH vortex develops in less than 0.05 ms, with a wavelength ~ Ix.

* For bo ~ 5x103 G, 10" G: bmax** ~ 3x10'5 G (localized in small areas), but the r.m.s.
fields are much smaller bims“* ~ 2.5x10* G, ~ 5x10"* G, respectively.

* tgec ~ 1 ms, e.g., for a model with bo = 2x10'* G, the deceleration is sufficiently rapid
to cause a significant decay (by about an order of magnitude) of the turbulent energy
within 0.5 ms.

* The evolution of the shear layer is affected by the choice of the initial conditions in
the following way:

* Parallel initial fields have, a somewhat larger impact on the dynamics of the KH
instability. In this case, the non-vanishing B-flux through the x-surfaces is conserved
due to the BCs, corresponding to an effective driving force. Apart from lacking this
additional driver, antiparallel magnetic fields are prone to stronger dissipation due to
stronger currents at the boundaries between regions of opposite polarity.

 Very similar evolution of the turbulent emag and exin, and comparable ogec. This is a
direct consequence of the weakness of the variations of the background modeling x-
direction compared to y-direction.




Merger motivated models: 3D

e Reproduce the basic features shown in the dimensionless simulations.
» We use Cartesian grids with Ix x ly x I= 200 x 200 x 200 m, resolutions up to 5122, M=1.

» Because of the limited grid resolution, we use bo = 5x10"3 G - 4x10" G, with
configurations parallel or antiparallel w.r.t. the SL.
e Find:
e The instability grows rapidly: saturation occurs within less than 0.1 ms, and t¢ec and
tais << 1 ms.

» Field amplification leads to bmax* = 10'¢ G (localized in small volumes), but the
r.m.s. fields are much smaller bys“* ~ 1.6x10"° G.

Fig. 25. The three-dimensional structure of the final turbulent state of models with b5 = 5 x 10"* G (left panel) and b} = 20 x 10"* G (right panel)
at time 7 = 1 ms. The plots show a volume rendering of the magnetic field strength (front half of the boxes, blue-green-yellow-red colours in an
order of increasing |b[) and of the enstrophy (rear half, red-yellow colours). The red, green (hidden, pointing downwards), and blue axes indicate
the x-, y-, and z-directions, respectively.




Summary and conclusions ()




Summary and conclusions ()

We have performed more than 300 numerical models to asses the
impact of the growth of KH instabilities in the contact layer of NSs.

The magnetic field never reaches equipartition with the internal energy
(neither in its r.m.s. value nor in the local maxima). Thus B~10'8 G are

excluded from the amplification of KH perturbations in the contact layer
of NSs.

Emag ~ €kin locally, implying Bmax~10® G as speculated by Price &
Rosswog (2006).

However, Brms ~ few x 10'° G, at most, thus its direct dynamical impact
(deceleration of the shear flow, disruption of the KH vortex) may be
rather limited.

Both, Bmax and Brms, are even smaller if the geometry of the system and/
or the merger dynamics yield a large role of HD (3D) instabilities.




Summary and conclusions (ll)




Summary and conclusions (ll)

The small time scales over which Bmax is obtained and its fast decay
impose severe constraints on the impact that the amplified fields may
have on any hydromagnetic or electromagnetic jet-launching mechanism
iIn a NS-NS-merger. We note that magnetically driven relativistic outflows
may need much larger time scales (~a few ms) to tap the rotational
energy of either the BH or the accretion disk resulting after the merger.

Though these results might limit the prospect for magnetic effects to play
a major role in these systems, their proper inclusion to current
simulations may be advantageous. Given the resolution requirements
imposed by weak initial fields, a careful treatment has probably to go
beyond the limit of a simple ideal MHD approach, involving, e.g., the
formulation of a turbulence model for the unresolved magnetic fields.




