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Fig. 24. The time evolution of integral quantities of three-dimensional merger models with an initial field of bx
0
= ±20×1013 G and a weak random

perturbation (panel (a)), bx
0
= ±5 × 1013 G (panel (b)), bx

0
= 20 × 1013 G (panel (c)), and bx

0
= ±20 × 1013 G with a strong random perturbation

(panel (d)) (± preceeding the value of the field strength indicates a model with anti-parallel initial field). Models in panels (a) – (d) use Y initial
conditions. Panels (e) and (f) show models with bx

0
= 20 × 1013 G using XY and XYZ initial conditions, respectively.

Fig. 25. The three-dimensional structure of the final turbulent state of models with bx
0
= 5 × 1013 G (left panel) and bx

0
= 20 × 1013 G (right panel)

at time t = 1 ms. The plots show a volume rendering of the magnetic field strength (front half of the boxes, blue-green-yellow-red colours in an
order of increasing |b|) and of the enstrophy (rear half, red-yellow colours). The red, green (hidden, pointing downwards), and blue axes indicate
the x-, y-, and z-directions, respectively.

We interpret this as an a posteriori justification of our local ap-
proach.

7. Summary and conclusions

Global simulations indicate thate the contact layer between two
merging neutron stars is the site of very efficient field amplifi-
cation. The layer is prone to the Kelvin-Helmholtz instability,
and thus, exponential growth of any weak seed field is possible,
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considered the most promising scenario 
for the generation of short GRBs. 

— After a phase of inspiral due to the loss of 
angular momentum and orbital energy by 
gravitational radiation, the merging NSs 
are distorted by their mutual tidal forces. 

— Finally, they touch each other in a contact 
surface.
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emag to decrease).

— Price & Rosswog (2006); Rosswog (2007) obtain |B|max > 1015 G. 
— Results handicapped by insufficient numerical resolution, particularly in the non-linear KH phase: 

➡ No definite conclusions on the maximum strength of the field nor its back-reaction on the fluid. 
➡ The maximum field was a function of the numerical resolution: the better the resolution, the 

higher was the field amplification. 
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arguments (no simulation results!), two different saturation levels: 

• Kinetic equipartition, emag ~ ekin: |B|max ~1016 G

• Thermal equipartition, emag ~ eint: |B|max ~1018 G

➡ Other groups have addressed a similar problem with different degrees of 
sophistication in their global numerical simulations (Giacomazzo et al. 2009, Liu et 
al. 2008, Anderson et al. 2008).

➡ Our opinion: global numerical simulations do not reach sufficient numerical 
resolution to study instabilities and turbulence. We need local numerical simulations 
(LNS):

• SPH has higher numerical viscosity than to grid based methods (Agertz et al. 
2007).

• The best resolution using vertex-centered mesh refinement in global models is 
h ~350 m (Giacomazzo et al. 2009).

• We show that h ~ 0.1 m (in 2D) or h ~ 0.8 m (3D) needed for converged results 
in LNS.
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➡ Better understanding of MHD-KH 
instability:

• Influence of the numerical 
systematics: resolution, boundaries, 
etc.

• Generic properties of the saturation of 
the instability

➡ Asses the results of Price & Rosswog:
• |B|max and field topology.
• growth times of the KHI
• saturation mechanism.
• dynamics of supersonic shear flows.

➡ Dimensionless/scale-free LNS 

➡ Merger-oriented LNS, where the initial 
set up mimics merger conditions 
(density, velocity, magnetic field, etc.)

➡ New (Newtonian) MHD code specifically 
designed for the study of instabilities 
and turbulent systems.



The new MHD code in a nutshell
1. Flux-conservative, finite-volume, Eulerian formulation of the ideal MHD equations 
2. High-resolution shock capturing methods:

• various optional high-order reconstruction algorithms:
• 2nd-order total-variation diminishing piecewise-linear (TVD-PL) scheme (using as 

slope limiters, Minmod, van Leer or MC).
• 4th-order weighted essentially non-oscillatory (WENO4) scheme (Levy et al. 

2002).
• 5th-, 7th- and 9th-order monotonicity-preserving (MP5, MP7, MP9) schemes 

(Suresh & Huynh 1997)
•  Approximate Riemann solvers based on the multi-stage (MUSTA) method (Toro & 

Titarev 2006). 
3. Self-gravity: Poisson solver.
4. Constraint-transport scheme to maintain a ∇B = 0 (Evans & Hawley 1988):

• volume averaged hydro quantities, surface averaged B-fields, corner averaged E-fields.
• Due to the staggering of different variables, careful (high-order) interpolation between 

different numerical grids.
• We compute E from the velocity and the B-field at cell interface which we get as the 

result of the Riemann solver:  E-field consistent with the solution of the Riemann 
problem!.

5. Parallel (MPI/OpenMP)-Fortran90 code.



The magnetized KH instability
•The KHI leads to exponential growth of perturbations in a non-magnetised shear layer (SL) 

of a fluid of background density ρ (e.g., Chandrasekhar 1961). 

• If a plane-parallel SL extends over a thickness d, all modes with wavelengths λ > d are 
unstable, and the shorter modes grow faster. 

•After a phase of exponential growth, a stable KH vortex forms. 
•Assume: shear flow in the x-direction,

U0 = velocity difference across the SL 
cA = (b2 / ρ)1/2 = Alfvén velocity
A = U0 /cA = Alfvén number
b = |bx| = Magnetic field strength (parallel to the SL)
✴ A magnetic field perpendicular to the SL and to the shearing interface (by field) will be converted into a bx 

field by the shear; thus, it leads to a similar dynamics. 
✴ A field orthogonal to the shear flow but parallel to the interface acts mainly by adding Pmag to Pth, thus 

modifying the dynamics of the KHI only to a small degree. 

• For strong fields, A > 2: stable, no KH growth.

• For weaker fields, A < 2: the instability develops similarly to the non-magnetic case, but its 
growth and its non-linear saturated state may be affected significantly (e.g., Frank et al. 
1996; Jones et al. 1997; Jeong et al. 2000; Ryu et al. 2000). 

y

x



The magnetized KH instability
Summary of previous results for weak fields (2D):

•Rather strong fields, A ≳2: non-linear stabilisation. 
• Too weak for stabilisation initially, the field is amplified, and, after less than one turnover of the KH 

vortex, is strong enough to suppress further winding. 

• The field, concentrated in thin sheets, annihilates in localized reconnection and, mediating the 
conversion  ekin → emag → eint, destroys the vortex. 

• Late evolution: broad transition layer. The flow is almost parallel to the initial SL. No vortex retained. 
Reconnection → strong decrease of b, which concentrates in sheet-like patterns. 

•Weaker fields: disruptive dynamics. 
• Longer amplification times ⟹ the vortex retains its coherence over more cicles. 

• During this process, the field is wound up in increasingly thin sheets, which, eventually, will 
reconnect due to (numerical) resistivity. 

• Late evolution: similar to the previous case. the vortex is disrupted, leading to a broad laminar 
transition region threaded by filamentary magnetic fields. 

•Even weaker fields: dissipative dynamics.
• After a long phase of amplification ⟹ insufficient field growth to affect the flow. 

• Reconnection occurs, but, due to the weak fields involved: gradual conversion ekin → eint. 

• Late evolution: The vortex remains coherent, with decreasing velocity as ekin is extracted.

• Transition between regimes: no clear separation in A.
In 3D, even HD instabilities can disrupt the vortex. MHD instabilities add on top of the HD effects 
(Ryu et al. 2000). 
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tations of the CT scheme have been devised which differ mainly
in the way they treat the computation of the magnetic stress and
the electric field. Of these, our implementation resembles most
closely the recently developed upwind-CT schemes (Londrillo
& del Zanna 2004; Gardiner & Stone 2005, 2008). We com-
pute E from the velocity and the magnetic field at cell interface
which we get as the result of the (MUSTA) Riemann solver. In
this way, the electric field is more consistent with the solution of
the Riemann problem.

Our code is written in Fortran 90 and it is parallelised for
shared-memory and distributed-memory computers according to
the OpenMP and the MPI standards, respectively. We tested it
in various standard tests for MHD codes against analytic solu-
tions as well as results obtained using other codes. The tests
include various MHD shock tubes (e.g., the ones published by
Ryu & Jones 1995), the propagation of MHD waves, and multi-
dimensional tests such as the Orszag-Tang vortex (Orszag &
Tang 1979). These tests demonstrated the stability and accu-
racy of the code in handling both problems involving discon-
tinuities as well as turbulent flows. From the results of the wave-
propagation tests, we estimated an order of accuracy of 2, 3.3.,
and 4.1 for piecewise-linear, MP, and WENO reconstruction, re-
spectively.

In the simulations we report on in this paper, we used MP
reconstruction based on 5th-order polynomials and the MUSTA
solver derived from the HLL Riemann solver. Taking a WENO
reconstruction of the same formal order of accuracy as an MP
reconstruction should yield more accurate results at the cost
of a worse computational efficiency. The reason being, that for
the same formal order of accuracy WENO reconstruction has a
larger stencil than MP one, which degrades the efficiency of the
parallel code, since the number of ghost zones to communicate
among different processors is larger in the former than in the
latter type of reconstruction algorithms.

4. General properties of the KH instability in two

dimensions

We discuss first a number of two-dimensional simulations we
carried out to study general properties of the KH instability and
the dependence of the dynamics on the numerical parameters
of the simulations. To this end, we simulated magnetised shear
flows. These simulations serve us both to validate the numerical
methods and to assess the results of simulations aiming at the
KH instability in neutron-star mergers.

As we shall show, we reproduce and extend the results ob-
tained by Frank et al. (1996); Jones et al. (1997); Baty et al.
(2003); Keppens et al. (1999) which we summarised in Sect. 2.

We consider a shear flow given by the velocity profile

(

vx, vy, vz
)T
=

(

v0 tanh
y

a
, 0, 0
)T

, (7)

where U0 = 2v0 is the shear velocity, and a is a length over
which we smooth out the shear flow. We study both subsonic and
supersonic shear flows. The background density and pressure are
uniform, and we use an ideal-gas EOS of an adiabatic index Γ,

P = (Γ − 1) ε, (8)

where ε = e" − 1
2
ρv2 − 1

2
b

2 is the internal-energy density of the

gas. We add a uniform magnetic field b(t = 0) =
(

b0
x, b

0
y , b

0
z

)T
to

the shear layer.

To trigger the instability, we perturb the shear flow by a trans-
verse velocity, vy, with a sinusoidal profile in x-direction,

vy(t = 0) = v0
y f (y) sin(kxx). (9)

The function f (with f (y) ∈ [0, 1]) is localised at the shearing in-
terface and vanishes at a distance a′ from the interface for which
we set a′ = 4a. The maximum perturbation velocity, v0

y , is only
a small fraction of the shear velocity, typically of the order of
10−8...−6.

4.1. Linear growth

We can reproduce the growth rate of the instability very ac-
curately. To demonstrate this, we computed versions of mod-
els due to Keppens et al. (1999) (models grw-n; see Tab. A.1).
Growth rates for some of these models are quoted by Keppens
et al. (1999); otherwise, they can be obtained from the figures of
Miura & Pritchett (1982).

The models have a uniform background density of ρ0 = 1,
a uniform background pressure P0. We applied open boundary
conditions in transverse (i.e., y-direction). We vary the shear
velocity, the width of the shear layer, and the grid resolution.
We obtained the numerical growth rate from the exponential

growth of the transverse kinetic energy Ey
kin

(t) =
∫

dV 1
2
ρv2

y ,
and compare it to the values given by Keppens et al. (1999);
Miura & Pritchett (1982), ΓMP. We point out that the function

Ey
kin

(t) ∝ v2
y ∝
(

expΓt
)2

grows at twice the growth rate of the
instability. The agreement between the theoretical expectations
and our numerical results is, in general, very good. Tab. A.1 lists
the expected growth rates for a number of simulations and our
results, and Fig. 1 shows the growth of e

y

kin
= Ey

kin
/V for model

grw-3.
After an initial phase in which the instability grows exponen-

tially, the perturbations added to a non-magnetised shear layer
level off. A roughly circular vortex develops and remains sta-
ble until it is eventually dissipated by (numerical) viscosity. This
process is very slow for our models, and we do not see any sign
of dissipation until the end of our simulations.
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Fig. 1. The linear growth phase of model grw-3. The solid black line
shows the transverse kinetic energy averaged over volume V, e
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the model as a function of time t (in code units), and the dashed line
displays a function growing exponentially at the theoretical growth rate.
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tations of the CT scheme have been devised which differ mainly
in the way they treat the computation of the magnetic stress and
the electric field. Of these, our implementation resembles most
closely the recently developed upwind-CT schemes (Londrillo
& del Zanna 2004; Gardiner & Stone 2005, 2008). We com-
pute E from the velocity and the magnetic field at cell interface
which we get as the result of the (MUSTA) Riemann solver. In
this way, the electric field is more consistent with the solution of
the Riemann problem.

Our code is written in Fortran 90 and it is parallelised for
shared-memory and distributed-memory computers according to
the OpenMP and the MPI standards, respectively. We tested it
in various standard tests for MHD codes against analytic solu-
tions as well as results obtained using other codes. The tests
include various MHD shock tubes (e.g., the ones published by
Ryu & Jones 1995), the propagation of MHD waves, and multi-
dimensional tests such as the Orszag-Tang vortex (Orszag &
Tang 1979). These tests demonstrated the stability and accu-
racy of the code in handling both problems involving discon-
tinuities as well as turbulent flows. From the results of the wave-
propagation tests, we estimated an order of accuracy of 2, 3.3.,
and 4.1 for piecewise-linear, MP, and WENO reconstruction, re-
spectively.

In the simulations we report on in this paper, we used MP
reconstruction based on 5th-order polynomials and the MUSTA
solver derived from the HLL Riemann solver. Taking a WENO
reconstruction of the same formal order of accuracy as an MP
reconstruction should yield more accurate results at the cost
of a worse computational efficiency. The reason being, that for
the same formal order of accuracy WENO reconstruction has a
larger stencil than MP one, which degrades the efficiency of the
parallel code, since the number of ghost zones to communicate
among different processors is larger in the former than in the
latter type of reconstruction algorithms.

4. General properties of the KH instability in two

dimensions

We discuss first a number of two-dimensional simulations we
carried out to study general properties of the KH instability and
the dependence of the dynamics on the numerical parameters
of the simulations. To this end, we simulated magnetised shear
flows. These simulations serve us both to validate the numerical
methods and to assess the results of simulations aiming at the
KH instability in neutron-star mergers.

As we shall show, we reproduce and extend the results ob-
tained by Frank et al. (1996); Jones et al. (1997); Baty et al.
(2003); Keppens et al. (1999) which we summarised in Sect. 2.

We consider a shear flow given by the velocity profile

(

vx, vy, vz
)T
=

(

v0 tanh
y

a
, 0, 0
)T

, (7)

where U0 = 2v0 is the shear velocity, and a is a length over
which we smooth out the shear flow. We study both subsonic and
supersonic shear flows. The background density and pressure are
uniform, and we use an ideal-gas EOS of an adiabatic index Γ,

P = (Γ − 1) ε, (8)

where ε = e" − 1
2
ρv2 − 1

2
b

2 is the internal-energy density of the

gas. We add a uniform magnetic field b(t = 0) =
(

b0
x, b

0
y , b

0
z

)T
to

the shear layer.

To trigger the instability, we perturb the shear flow by a trans-
verse velocity, vy, with a sinusoidal profile in x-direction,

vy(t = 0) = v0
y f (y) sin(kxx). (9)

The function f (with f (y) ∈ [0, 1]) is localised at the shearing in-
terface and vanishes at a distance a′ from the interface for which
we set a′ = 4a. The maximum perturbation velocity, v0

y , is only
a small fraction of the shear velocity, typically of the order of
10−8...−6.

4.1. Linear growth

We can reproduce the growth rate of the instability very ac-
curately. To demonstrate this, we computed versions of mod-
els due to Keppens et al. (1999) (models grw-n; see Tab. A.1).
Growth rates for some of these models are quoted by Keppens
et al. (1999); otherwise, they can be obtained from the figures of
Miura & Pritchett (1982).

The models have a uniform background density of ρ0 = 1,
a uniform background pressure P0. We applied open boundary
conditions in transverse (i.e., y-direction). We vary the shear
velocity, the width of the shear layer, and the grid resolution.
We obtained the numerical growth rate from the exponential

growth of the transverse kinetic energy Ey
kin

(t) =
∫

dV 1
2
ρv2

y ,
and compare it to the values given by Keppens et al. (1999);
Miura & Pritchett (1982), ΓMP. We point out that the function

Ey
kin

(t) ∝ v2
y ∝
(

expΓt
)2

grows at twice the growth rate of the
instability. The agreement between the theoretical expectations
and our numerical results is, in general, very good. Tab. A.1 lists
the expected growth rates for a number of simulations and our
results, and Fig. 1 shows the growth of e

y

kin
= Ey

kin
/V for model

grw-3.
After an initial phase in which the instability grows exponen-

tially, the perturbations added to a non-magnetised shear layer
level off. A roughly circular vortex develops and remains sta-
ble until it is eventually dissipated by (numerical) viscosity. This
process is very slow for our models, and we do not see any sign
of dissipation until the end of our simulations.
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Fig. 1. The linear growth phase of model grw-3. The solid black line
shows the transverse kinetic energy averaged over volume V, e
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the model as a function of time t (in code units), and the dashed line
displays a function growing exponentially at the theoretical growth rate.
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tations of the CT scheme have been devised which differ mainly
in the way they treat the computation of the magnetic stress and
the electric field. Of these, our implementation resembles most
closely the recently developed upwind-CT schemes (Londrillo
& del Zanna 2004; Gardiner & Stone 2005, 2008). We com-
pute E from the velocity and the magnetic field at cell interface
which we get as the result of the (MUSTA) Riemann solver. In
this way, the electric field is more consistent with the solution of
the Riemann problem.

Our code is written in Fortran 90 and it is parallelised for
shared-memory and distributed-memory computers according to
the OpenMP and the MPI standards, respectively. We tested it
in various standard tests for MHD codes against analytic solu-
tions as well as results obtained using other codes. The tests
include various MHD shock tubes (e.g., the ones published by
Ryu & Jones 1995), the propagation of MHD waves, and multi-
dimensional tests such as the Orszag-Tang vortex (Orszag &
Tang 1979). These tests demonstrated the stability and accu-
racy of the code in handling both problems involving discon-
tinuities as well as turbulent flows. From the results of the wave-
propagation tests, we estimated an order of accuracy of 2, 3.3.,
and 4.1 for piecewise-linear, MP, and WENO reconstruction, re-
spectively.

In the simulations we report on in this paper, we used MP
reconstruction based on 5th-order polynomials and the MUSTA
solver derived from the HLL Riemann solver. Taking a WENO
reconstruction of the same formal order of accuracy as an MP
reconstruction should yield more accurate results at the cost
of a worse computational efficiency. The reason being, that for
the same formal order of accuracy WENO reconstruction has a
larger stencil than MP one, which degrades the efficiency of the
parallel code, since the number of ghost zones to communicate
among different processors is larger in the former than in the
latter type of reconstruction algorithms.

4. General properties of the KH instability in two

dimensions

We discuss first a number of two-dimensional simulations we
carried out to study general properties of the KH instability and
the dependence of the dynamics on the numerical parameters
of the simulations. To this end, we simulated magnetised shear
flows. These simulations serve us both to validate the numerical
methods and to assess the results of simulations aiming at the
KH instability in neutron-star mergers.

As we shall show, we reproduce and extend the results ob-
tained by Frank et al. (1996); Jones et al. (1997); Baty et al.
(2003); Keppens et al. (1999) which we summarised in Sect. 2.

We consider a shear flow given by the velocity profile

(
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=
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v0 tanh
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where U0 = 2v0 is the shear velocity, and a is a length over
which we smooth out the shear flow. We study both subsonic and
supersonic shear flows. The background density and pressure are
uniform, and we use an ideal-gas EOS of an adiabatic index Γ,

P = (Γ − 1) ε, (8)
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gas. We add a uniform magnetic field b(t = 0) =
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to

the shear layer.

To trigger the instability, we perturb the shear flow by a trans-
verse velocity, vy, with a sinusoidal profile in x-direction,

vy(t = 0) = v0
y f (y) sin(kxx). (9)

The function f (with f (y) ∈ [0, 1]) is localised at the shearing in-
terface and vanishes at a distance a′ from the interface for which
we set a′ = 4a. The maximum perturbation velocity, v0

y , is only
a small fraction of the shear velocity, typically of the order of
10−8...−6.

4.1. Linear growth

We can reproduce the growth rate of the instability very ac-
curately. To demonstrate this, we computed versions of mod-
els due to Keppens et al. (1999) (models grw-n; see Tab. A.1).
Growth rates for some of these models are quoted by Keppens
et al. (1999); otherwise, they can be obtained from the figures of
Miura & Pritchett (1982).

The models have a uniform background density of ρ0 = 1,
a uniform background pressure P0. We applied open boundary
conditions in transverse (i.e., y-direction). We vary the shear
velocity, the width of the shear layer, and the grid resolution.
We obtained the numerical growth rate from the exponential

growth of the transverse kinetic energy Ey
kin

(t) =
∫

dV 1
2
ρv2

y ,
and compare it to the values given by Keppens et al. (1999);
Miura & Pritchett (1982), ΓMP. We point out that the function

Ey
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(t) ∝ v2
y ∝
(

expΓt
)2

grows at twice the growth rate of the
instability. The agreement between the theoretical expectations
and our numerical results is, in general, very good. Tab. A.1 lists
the expected growth rates for a number of simulations and our
results, and Fig. 1 shows the growth of e
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After an initial phase in which the instability grows exponen-

tially, the perturbations added to a non-magnetised shear layer
level off. A roughly circular vortex develops and remains sta-
ble until it is eventually dissipated by (numerical) viscosity. This
process is very slow for our models, and we do not see any sign
of dissipation until the end of our simulations.
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Fig. 1. The linear growth phase of model grw-3. The solid black line
shows the transverse kinetic energy averaged over volume V, e
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the model as a function of time t (in code units), and the dashed line
displays a function growing exponentially at the theoretical growth rate.
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Table A.1. Summary of models computed to compare growth rates with theoretical predictions. We give the model name, the size of the domain
(lx, ly), and the grid size in the first three columns. The initial pressure, P0, the velocity shear, U0, the corresponding Mach numberM = U0/cs are
listed in columns 4–6, and the initial magnetic field is shown in column 7, respectively. Furthermore, the table gives the values of the length over
which we smooth out the shearing flow, a, and its wave number, kx. The last columns show the growth rate (ΓMP), obtained from Miura & Pritchett
(1982), and an estimate of the growth rate we numerically, Γnum.

name lx ly mx × my P0 U0 M a b0 kx ΓMP Γnum

grw-1 1 2 50 × 100 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.64
grw-2 1 2 100 × 200 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.74
grw-3 1 2 200 × 400 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.75
grw-4 1 2 400 × 800 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.75

grw-5 1 2 200 × 400 1 1.29 1 0.025 (0, 0, 0) 2π 2.4 2.44
grw-6 1 2 200 × 400 1 1.29 1 0.1 (0, 0, 0) 2π 0.66 0.68

grw-7 1 2 200 × 400 1 0.645 0.5 0.05 (0, 0, 0) 2π 1.09 1.07
grw-8 1 2 200 × 400 1 1.843 10/7 0.05 (0, 0, 0) 2π 1.77 1.79

grw-9 1 2 200 × 400 1 0.645 0.5 0.05 (0, 0, 0) 4π 1.36 1.35

grw-10 1 2 200 × 400 1 1.29 1 0.05 (0.129, 0, 0) 2π 1.69 1.70
grw-11 1 2 200 × 400 1 1.29 1 0.05 (0.258, 0, 0) 2π 1.56 1.54

Table A.2. Summary of two-dimensional hydrodynamic supersonic models. The table lists the same data as Tab. A.1 does, with the following
exceptions: as b = 0 for all models, we do not list the magnetic field. Furthermore, we do not list a theoretical value of the growth rate; instead, we
give our choice of boundary conditions in the transverse direction in column “BC”. In the last column, we indicate models for which the instability
grows oscillatory by a confirmation mark,

√
. Model grw-3 of Tab. A.1 is the counterpart of model HD2r-0 with open boundaries.

name lx ly mx × my P0 U0 M a kx BC Γnum oscillations

HD2o-1-l 1 4 200 × 800 1 2.322 1.8 0.05 2π open 0.97
HD2o-1 1 2 200 × 400 1 2.322 1.8 0.05 2π open 0.96
HD2o-1-i 1 1 200 × 200 1 2.322 1.8 0.05 2π open 0.73
HD2o-1-s 1 0.5 200 × 100 1 2.322 1.8 0.05 2π open 0.16

√

HD2o-2 1 2 200 × 400 1 2.451 1.9 0.05 2π open 0.30
√

HD2o-3 1 2 200 × 400 1 2.5155 1.95 0.05 2π open 0.26
√

HD2o-4 1 2 200 × 400 1 2.58 2 0.05 2π open 0
HD2o-5 1 2 200 × 400 1 5.16 4 0.05 2π open 0

HD2r-0 1 2 200 × 400 1 1.29 1 0.05 2π reflecting 1.73
HD2r-1 1 2 200 × 400 1 2.322 1.8 0.05 2π reflecting 0.96
HD2r-1-i 1 1 200 × 200 1 2.322 1.8 0.05 2π reflecting 0.56
HD2r-1-s 1 0.5 200 × 100 1 2.322 1.8 0.05 2π reflecting 0.56

√

HD2r-1-S 1 0.25 200 × 50 1 2.322 1.8 0.05 2π reflecting 0.35
√

HD2r-4 1 2 200 × 400 1 2.58 2 0.05 2π reflecting 0.46
√

HD2r-4-HR 1 2 400 × 800 1 2.58 2 0.05 2π reflecting 0.44
√

HD2r-5 1 2 200 × 400 1 5.16 4 0.05 2π reflecting 0.52
√

Table A.3. Important parameters of the weak-field models: the first columns list the initial Mach number, M, the shear-layer width, a, and the
initial magnetic field strength, bx

0
, and corresponding Alfvén number, A. The following columns list the amplification factors f e (for the magnetic

energy) and f b (for the field strength) for simulations of the models on grids of m = 256, ..., 4096 zones per dimension.

M a bx
0

A 256 512 1024 2048 4096
[

10−4
]

f e f b f e f b f e f b f e f b f e f b

0.5 0.05 200 25 20.2 29.4 22.9 30.6 25.9 29.3 27.7 28.3
0.5 0.05 100 50 24.4 40.4 33.5 57.2 39.8 66.2 43.5 64.3 46.3 63.3
0.5 0.05 50 100 27.0 50.0 41.0 75.6 55.3 102.2 66.8 123.7 73.3 125.3
0.5 0.05 20 250 35.0 51.0 44.4 95.0 70.4 146.4 105.3 213.0

1 0.10 200 50 25.2 36.5 33.6 50.2 46.0 46.5 45.0 49.2
1 0.10 40 250 18.2 37.6 49.3 83.8 74.5 132.2 113.9 201.3

1 0.15 200 50 17.2 29.3 27.8 39.7 30.7 40.0 35.9 46.4
1 0.15 100 100 19.6 34.8 35.0 56.3 54.9 76.0 61.2 81.5
1 0.15 40 250 21.3 46.6 40.2 69.5 65.3 106.3 103.9 152.4

1 0.20 200 50 5.8 14.2 8.0 28.0 12.8 26.0 22.5 36.3
1 0.20 40 250 6.4 35.7 11.8 41.3 18.1 62.2 33.0 106.6

1 0.05 400 25 16.8 23.8 19.6 25.9 22.0 26.6 23.3 25.4
1 0.05 200 50 19.4 45.7 27.5 46.2 32.0 48.6 36.1 51.5 39.4 53.6
1 0.05 80 125 20.2 35.6 33.4 70.2 50.1 96.6 61.6 117.3 67.3 118.9
1 0.05 40 250 20.9 50.8 37.0 88.0 59.9 127.7 83.6 178.5 104.1 210.9
1 0.05 20 500 21.2 55.1 39.4 103.1 63.0 153.1 101.1 236.4 145.6 330.8
1 0.05 8 1250 21.2 56.4 40.1 127.2 67.7 187.8 109.8 288.7 169.0 444.4
1 0.05 2 5000 21.2 55.2 40.3 136.4 68.6 218.5 112.4 314.7 182.9 515.2

Numerical validation: linear growth
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tations of the CT scheme have been devised which differ mainly
in the way they treat the computation of the magnetic stress and
the electric field. Of these, our implementation resembles most
closely the recently developed upwind-CT schemes (Londrillo
& del Zanna 2004; Gardiner & Stone 2005, 2008). We com-
pute E from the velocity and the magnetic field at cell interface
which we get as the result of the (MUSTA) Riemann solver. In
this way, the electric field is more consistent with the solution of
the Riemann problem.

Our code is written in Fortran 90 and it is parallelised for
shared-memory and distributed-memory computers according to
the OpenMP and the MPI standards, respectively. We tested it
in various standard tests for MHD codes against analytic solu-
tions as well as results obtained using other codes. The tests
include various MHD shock tubes (e.g., the ones published by
Ryu & Jones 1995), the propagation of MHD waves, and multi-
dimensional tests such as the Orszag-Tang vortex (Orszag &
Tang 1979). These tests demonstrated the stability and accu-
racy of the code in handling both problems involving discon-
tinuities as well as turbulent flows. From the results of the wave-
propagation tests, we estimated an order of accuracy of 2, 3.3.,
and 4.1 for piecewise-linear, MP, and WENO reconstruction, re-
spectively.

In the simulations we report on in this paper, we used MP
reconstruction based on 5th-order polynomials and the MUSTA
solver derived from the HLL Riemann solver. Taking a WENO
reconstruction of the same formal order of accuracy as an MP
reconstruction should yield more accurate results at the cost
of a worse computational efficiency. The reason being, that for
the same formal order of accuracy WENO reconstruction has a
larger stencil than MP one, which degrades the efficiency of the
parallel code, since the number of ghost zones to communicate
among different processors is larger in the former than in the
latter type of reconstruction algorithms.

4. General properties of the KH instability in two

dimensions

We discuss first a number of two-dimensional simulations we
carried out to study general properties of the KH instability and
the dependence of the dynamics on the numerical parameters
of the simulations. To this end, we simulated magnetised shear
flows. These simulations serve us both to validate the numerical
methods and to assess the results of simulations aiming at the
KH instability in neutron-star mergers.

As we shall show, we reproduce and extend the results ob-
tained by Frank et al. (1996); Jones et al. (1997); Baty et al.
(2003); Keppens et al. (1999) which we summarised in Sect. 2.

We consider a shear flow given by the velocity profile

(

vx, vy, vz
)T
=

(

v0 tanh
y

a
, 0, 0
)T

, (7)

where U0 = 2v0 is the shear velocity, and a is a length over
which we smooth out the shear flow. We study both subsonic and
supersonic shear flows. The background density and pressure are
uniform, and we use an ideal-gas EOS of an adiabatic index Γ,

P = (Γ − 1) ε, (8)

where ε = e" − 1
2
ρv2 − 1

2
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2 is the internal-energy density of the

gas. We add a uniform magnetic field b(t = 0) =
(

b0
x, b

0
y , b

0
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)T
to

the shear layer.

To trigger the instability, we perturb the shear flow by a trans-
verse velocity, vy, with a sinusoidal profile in x-direction,

vy(t = 0) = v0
y f (y) sin(kxx). (9)

The function f (with f (y) ∈ [0, 1]) is localised at the shearing in-
terface and vanishes at a distance a′ from the interface for which
we set a′ = 4a. The maximum perturbation velocity, v0

y , is only
a small fraction of the shear velocity, typically of the order of
10−8...−6.

4.1. Linear growth

We can reproduce the growth rate of the instability very ac-
curately. To demonstrate this, we computed versions of mod-
els due to Keppens et al. (1999) (models grw-n; see Tab. A.1).
Growth rates for some of these models are quoted by Keppens
et al. (1999); otherwise, they can be obtained from the figures of
Miura & Pritchett (1982).

The models have a uniform background density of ρ0 = 1,
a uniform background pressure P0. We applied open boundary
conditions in transverse (i.e., y-direction). We vary the shear
velocity, the width of the shear layer, and the grid resolution.
We obtained the numerical growth rate from the exponential

growth of the transverse kinetic energy Ey
kin

(t) =
∫

dV 1
2
ρv2

y ,
and compare it to the values given by Keppens et al. (1999);
Miura & Pritchett (1982), ΓMP. We point out that the function

Ey
kin

(t) ∝ v2
y ∝
(

expΓt
)2

grows at twice the growth rate of the
instability. The agreement between the theoretical expectations
and our numerical results is, in general, very good. Tab. A.1 lists
the expected growth rates for a number of simulations and our
results, and Fig. 1 shows the growth of e
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kin
= Ey

kin
/V for model

grw-3.
After an initial phase in which the instability grows exponen-

tially, the perturbations added to a non-magnetised shear layer
level off. A roughly circular vortex develops and remains sta-
ble until it is eventually dissipated by (numerical) viscosity. This
process is very slow for our models, and we do not see any sign
of dissipation until the end of our simulations.
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Fig. 1. The linear growth phase of model grw-3. The solid black line
shows the transverse kinetic energy averaged over volume V, e
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the model as a function of time t (in code units), and the dashed line
displays a function growing exponentially at the theoretical growth rate.
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4.2. Non-magnetic models

In a series of non-magnetic models (summarised in Tab. A.2),
we studied the influence of the box size and the boundary con-
ditions on the evolution of transsonic and supersonic (with M =
U0/cs ≥ 1.8) shear flows. As noted by Miura & Pritchett (1982),
there is no growing mode for M ≥ 2 (in models with closed
boundaries, we find, nevertheless a growing instability; in this
case, the growth mechanism is different (see below)).

We start the discussion with models with M = 1.8. We find a
faster growth of the instability as the vertical domain size grows
and, on the other hand, that open boundaries yield larger growth
rates than reflecting ones. The reason for this behaviour is that
the instability affects a larger region of the flow than in the case
of slow shear flows. To demonstrate this, we compare models
HD2o-1 and HD2o-1-s. These models differ only in the size of
the domain in y direction: y ∈ [−1; 1] and y ∈ [−0.25; 0.25]
for models HD2o-1 and HD2o-1-s, respectively. Fig. 2 shows
the temporal evolution of the transverse kinetic energy of both
models. The growth of model HD2o-1 is much faster and leads
to much larger kinetic energies per unit volume than that of the
model restricted in y direction. Furthermore, the growth of e

y

kin
of model HD2o-1-s is modulated by oscillations. In both mod-
els, waves are created at the shear layer. These waves travel out-
wards in y direction, carrying (transverse) kinetic energy. If the
waves are allowed to travel over a sufficiently long distance δy
(which is the case for model HD2o-1), they steepen into shock
waves as the fluid velocity exceeds the sound speed. The shocks
move predominantely in x direction, advected by the shear flow.
Kinetic energy is dissipated into internal one in these shocks,
and the flow develops a roughly vortex-like structure.

If the domain boundaries are too close to the shear layer,
these waves leave the domain before they can affect the flow as
described above. In this case, the growth rate is reduced. Each
time one of the waves leaves the domain, it carries away kinetic
energy, which is reflected in the oscillations of e

y

kin
visible in

Fig. 2.

For an intermediate domain size of y ∈ [−0.5; 0.5] (model
HD2o-1-s), we find, despite the absence of oscillations, a growth
rate reduced w.r.t. the case of the larger domains y ∈ [−1; 1] and
y ∈ [−2; 2] (models HD2o-1 and HD2o-1-l), i.e., the boundaries
are sufficiently close to the shear layer to affect the growth of the
instability. Saturation occurs in this case by the same mechanism
as on the large domain, viz. by the development of shock waves.

The transverse distance over which the waves travel in-
creases with increasing Mach number. For a Mach number
M = 1, these waves are contained essentially in the region
y ∈ [−0.25; 0.25] (a version of model grw-3 on a smaller grid of
200×100 zones covering a domain of [−0.5; 0.5]×[−0.25; 0.25])
does not show oscillatory evolution of e

y

kin
. For the same rea-

son, the evolution does not change if we exchange the reflecting
boundary conditions by open ones (compare models HD2r-0 in
Tab. A.2 and grw-3 in Tab. A.1).

To encounter a rapidly growing instability of fast shear flows,
we have to simulate sufficiently large domains, or, alternatively,
to close the y boundaries. To test this, we simulated a number of
models with reflecting boundaries in y direction.

For M = 1.8, models with open and reflecting boundaries
agree in their growth rates if simulated on sufficiently large do-
mains. For models with small ly = 0.5, we find destabilisation
due to reflecting boundaries: the growth rates of model HD2r-1-
s exceeds the one of the corresponding open model HD2o-1-s by
factor of ≈ 3.5. Furthermore, models with reflecting boundaries
develop a phase of exponential and oscillatory growth of e

y
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(t)
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Fig. 2. The temporal evolution of the volume average of the transverse
kinetic energy of models HD2o-1 (solid line; ly = 2) and HD2o-1-s
(dashed line; ly = 0.5), showing the influence of the vertical domain
size ly.

even for Mach numbers exceeding 2 for which models with open
boundaries are stable. The flow of the saturated models may as-
sume the shape of a KH vortex (for moderate Mach number)
as well as that of a rather small and clearly delimited transition
layer between two regions of opposite vx (for large Mach num-
bers and a growth of the instability mediated predominantely by
shock waves.)

The shocks created at the supersonic shear layer are initially
oblique, but as time goes by, they turn into planar shocks parallel
to the y-direction. This process happens earlier close to y = 0.
The vertical extent of these planar shock structures varies from
a fraction of the vertical domain size to span the whole compu-
tational box. When these shocks are restricted in the y-direction,
the flow tries to avoid them by sliding along the vertical direc-
tion. In this way, these planar shocks mediate very efficiently the
conversion of x- to y-kinetic energy.

4.3. Intermediate and weak fields

Sufficiently strong magnetic fields corresponding to an Alfvén
number A ≤ 2 stabilise the instability linearly. We confirm this
result of the linear analysis in simulations of both subsonic and
supersonic shear flows.

In the following, we will focus on the more interesting case
of intermediate and weak initial fields, for which Frank et al.
(1996) identified disruptive and dissipative dynamics. The mod-
els we describe in this section were computed using a grid of
lx × ly = 2 × 2 and reflecting boundary conditions in y-direction.
We simulated shear flows with U0 = 1, and varied the Mach
number of the flow by setting the pressure either to P0 = 0.6 or
to P0 = 0.0375, corresponding to Mach numbers of M = 1 or
M = 4, respectively. The adiabatic index of the gas was set to
Γ = 4/3.

4.3.1. Intermediate fields

For an Alfvén number A = 2.5, we find, in agreement with
Frank et al. (1996), non-linear stabilisation. The magnetic field
is amplified during the linear phase, and the magnetic tension

ly=0.5

ly=2 • We test domain size and BC influence with 
supersonic models (M>1).

• Miura & Pritchett (1982): No growth if M ≥ 2 
• Smaller domains (with the same resolution h 

per dimension!) bring oscillatory growth, with 
damping of num.

• Open boundaries yield larger num if ly is 
sufficiently large, otherwise opposite effect.
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Table A.1. Summary of models computed to compare growth rates with theoretical predictions. We give the model name, the size of the domain
(lx, ly), and the grid size in the first three columns. The initial pressure, P0, the velocity shear, U0, the corresponding Mach numberM = U0/cs are
listed in columns 4–6, and the initial magnetic field is shown in column 7, respectively. Furthermore, the table gives the values of the length over
which we smooth out the shearing flow, a, and its wave number, kx. The last columns show the growth rate (ΓMP), obtained from Miura & Pritchett
(1982), and an estimate of the growth rate we numerically, Γnum.

name lx ly mx × my P0 U0 M a b0 kx ΓMP Γnum

grw-1 1 2 50 × 100 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.64
grw-2 1 2 100 × 200 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.74
grw-3 1 2 200 × 400 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.75
grw-4 1 2 400 × 800 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.75

grw-5 1 2 200 × 400 1 1.29 1 0.025 (0, 0, 0) 2π 2.4 2.44
grw-6 1 2 200 × 400 1 1.29 1 0.1 (0, 0, 0) 2π 0.66 0.68

grw-7 1 2 200 × 400 1 0.645 0.5 0.05 (0, 0, 0) 2π 1.09 1.07
grw-8 1 2 200 × 400 1 1.843 10/7 0.05 (0, 0, 0) 2π 1.77 1.79

grw-9 1 2 200 × 400 1 0.645 0.5 0.05 (0, 0, 0) 4π 1.36 1.35

grw-10 1 2 200 × 400 1 1.29 1 0.05 (0.129, 0, 0) 2π 1.69 1.70
grw-11 1 2 200 × 400 1 1.29 1 0.05 (0.258, 0, 0) 2π 1.56 1.54

Table A.2. Summary of two-dimensional hydrodynamic supersonic models. The table lists the same data as Tab. A.1 does, with the following
exceptions: as b = 0 for all models, we do not list the magnetic field. Furthermore, we do not list a theoretical value of the growth rate; instead, we
give our choice of boundary conditions in the transverse direction in column “BC”. In the last column, we indicate models for which the instability
grows oscillatory by a confirmation mark,

√
. Model grw-3 of Tab. A.1 is the counterpart of model HD2r-0 with open boundaries.

name lx ly mx × my P0 U0 M a kx BC Γnum oscillations

HD2o-1-l 1 4 200 × 800 1 2.322 1.8 0.05 2π open 0.97
HD2o-1 1 2 200 × 400 1 2.322 1.8 0.05 2π open 0.96
HD2o-1-i 1 1 200 × 200 1 2.322 1.8 0.05 2π open 0.73
HD2o-1-s 1 0.5 200 × 100 1 2.322 1.8 0.05 2π open 0.16

√

HD2o-2 1 2 200 × 400 1 2.451 1.9 0.05 2π open 0.30
√

HD2o-3 1 2 200 × 400 1 2.5155 1.95 0.05 2π open 0.26
√

HD2o-4 1 2 200 × 400 1 2.58 2 0.05 2π open 0
HD2o-5 1 2 200 × 400 1 5.16 4 0.05 2π open 0

HD2r-0 1 2 200 × 400 1 1.29 1 0.05 2π reflecting 1.73
HD2r-1 1 2 200 × 400 1 2.322 1.8 0.05 2π reflecting 0.96
HD2r-1-i 1 1 200 × 200 1 2.322 1.8 0.05 2π reflecting 0.56
HD2r-1-s 1 0.5 200 × 100 1 2.322 1.8 0.05 2π reflecting 0.56

√

HD2r-1-S 1 0.25 200 × 50 1 2.322 1.8 0.05 2π reflecting 0.35
√

HD2r-4 1 2 200 × 400 1 2.58 2 0.05 2π reflecting 0.46
√

HD2r-4-HR 1 2 400 × 800 1 2.58 2 0.05 2π reflecting 0.44
√

HD2r-5 1 2 200 × 400 1 5.16 4 0.05 2π reflecting 0.52
√

Table A.3. Important parameters of the weak-field models: the first columns list the initial Mach number, M, the shear-layer width, a, and the
initial magnetic field strength, bx

0
, and corresponding Alfvén number, A. The following columns list the amplification factors f e (for the magnetic

energy) and f b (for the field strength) for simulations of the models on grids of m = 256, ..., 4096 zones per dimension.

M a bx
0

A 256 512 1024 2048 4096
[

10−4
]

f e f b f e f b f e f b f e f b f e f b

0.5 0.05 200 25 20.2 29.4 22.9 30.6 25.9 29.3 27.7 28.3
0.5 0.05 100 50 24.4 40.4 33.5 57.2 39.8 66.2 43.5 64.3 46.3 63.3
0.5 0.05 50 100 27.0 50.0 41.0 75.6 55.3 102.2 66.8 123.7 73.3 125.3
0.5 0.05 20 250 35.0 51.0 44.4 95.0 70.4 146.4 105.3 213.0

1 0.10 200 50 25.2 36.5 33.6 50.2 46.0 46.5 45.0 49.2
1 0.10 40 250 18.2 37.6 49.3 83.8 74.5 132.2 113.9 201.3

1 0.15 200 50 17.2 29.3 27.8 39.7 30.7 40.0 35.9 46.4
1 0.15 100 100 19.6 34.8 35.0 56.3 54.9 76.0 61.2 81.5
1 0.15 40 250 21.3 46.6 40.2 69.5 65.3 106.3 103.9 152.4

1 0.20 200 50 5.8 14.2 8.0 28.0 12.8 26.0 22.5 36.3
1 0.20 40 250 6.4 35.7 11.8 41.3 18.1 62.2 33.0 106.6

1 0.05 400 25 16.8 23.8 19.6 25.9 22.0 26.6 23.3 25.4
1 0.05 200 50 19.4 45.7 27.5 46.2 32.0 48.6 36.1 51.5 39.4 53.6
1 0.05 80 125 20.2 35.6 33.4 70.2 50.1 96.6 61.6 117.3 67.3 118.9
1 0.05 40 250 20.9 50.8 37.0 88.0 59.9 127.7 83.6 178.5 104.1 210.9
1 0.05 20 500 21.2 55.1 39.4 103.1 63.0 153.1 101.1 236.4 145.6 330.8
1 0.05 8 1250 21.2 56.4 40.1 127.2 67.7 187.8 109.8 288.7 169.0 444.4
1 0.05 2 5000 21.2 55.2 40.3 136.4 68.6 218.5 112.4 314.7 182.9 515.2
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M. Obergaulinger et al.: Local simulations of the magnetised Kelvin-Helmholtz instability in neutron-star mergers 5

4.2. Non-magnetic models

In a series of non-magnetic models (summarised in Tab. A.2),
we studied the influence of the box size and the boundary con-
ditions on the evolution of transsonic and supersonic (with M =
U0/cs ≥ 1.8) shear flows. As noted by Miura & Pritchett (1982),
there is no growing mode for M ≥ 2 (in models with closed
boundaries, we find, nevertheless a growing instability; in this
case, the growth mechanism is different (see below)).

We start the discussion with models with M = 1.8. We find a
faster growth of the instability as the vertical domain size grows
and, on the other hand, that open boundaries yield larger growth
rates than reflecting ones. The reason for this behaviour is that
the instability affects a larger region of the flow than in the case
of slow shear flows. To demonstrate this, we compare models
HD2o-1 and HD2o-1-s. These models differ only in the size of
the domain in y direction: y ∈ [−1; 1] and y ∈ [−0.25; 0.25]
for models HD2o-1 and HD2o-1-s, respectively. Fig. 2 shows
the temporal evolution of the transverse kinetic energy of both
models. The growth of model HD2o-1 is much faster and leads
to much larger kinetic energies per unit volume than that of the
model restricted in y direction. Furthermore, the growth of e

y

kin
of model HD2o-1-s is modulated by oscillations. In both mod-
els, waves are created at the shear layer. These waves travel out-
wards in y direction, carrying (transverse) kinetic energy. If the
waves are allowed to travel over a sufficiently long distance δy
(which is the case for model HD2o-1), they steepen into shock
waves as the fluid velocity exceeds the sound speed. The shocks
move predominantely in x direction, advected by the shear flow.
Kinetic energy is dissipated into internal one in these shocks,
and the flow develops a roughly vortex-like structure.

If the domain boundaries are too close to the shear layer,
these waves leave the domain before they can affect the flow as
described above. In this case, the growth rate is reduced. Each
time one of the waves leaves the domain, it carries away kinetic
energy, which is reflected in the oscillations of e

y

kin
visible in

Fig. 2.

For an intermediate domain size of y ∈ [−0.5; 0.5] (model
HD2o-1-s), we find, despite the absence of oscillations, a growth
rate reduced w.r.t. the case of the larger domains y ∈ [−1; 1] and
y ∈ [−2; 2] (models HD2o-1 and HD2o-1-l), i.e., the boundaries
are sufficiently close to the shear layer to affect the growth of the
instability. Saturation occurs in this case by the same mechanism
as on the large domain, viz. by the development of shock waves.

The transverse distance over which the waves travel in-
creases with increasing Mach number. For a Mach number
M = 1, these waves are contained essentially in the region
y ∈ [−0.25; 0.25] (a version of model grw-3 on a smaller grid of
200×100 zones covering a domain of [−0.5; 0.5]×[−0.25; 0.25])
does not show oscillatory evolution of e

y

kin
. For the same rea-

son, the evolution does not change if we exchange the reflecting
boundary conditions by open ones (compare models HD2r-0 in
Tab. A.2 and grw-3 in Tab. A.1).

To encounter a rapidly growing instability of fast shear flows,
we have to simulate sufficiently large domains, or, alternatively,
to close the y boundaries. To test this, we simulated a number of
models with reflecting boundaries in y direction.

For M = 1.8, models with open and reflecting boundaries
agree in their growth rates if simulated on sufficiently large do-
mains. For models with small ly = 0.5, we find destabilisation
due to reflecting boundaries: the growth rates of model HD2r-1-
s exceeds the one of the corresponding open model HD2o-1-s by
factor of ≈ 3.5. Furthermore, models with reflecting boundaries
develop a phase of exponential and oscillatory growth of e

y
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Fig. 2. The temporal evolution of the volume average of the transverse
kinetic energy of models HD2o-1 (solid line; ly = 2) and HD2o-1-s
(dashed line; ly = 0.5), showing the influence of the vertical domain
size ly.

even for Mach numbers exceeding 2 for which models with open
boundaries are stable. The flow of the saturated models may as-
sume the shape of a KH vortex (for moderate Mach number)
as well as that of a rather small and clearly delimited transition
layer between two regions of opposite vx (for large Mach num-
bers and a growth of the instability mediated predominantely by
shock waves.)

The shocks created at the supersonic shear layer are initially
oblique, but as time goes by, they turn into planar shocks parallel
to the y-direction. This process happens earlier close to y = 0.
The vertical extent of these planar shock structures varies from
a fraction of the vertical domain size to span the whole compu-
tational box. When these shocks are restricted in the y-direction,
the flow tries to avoid them by sliding along the vertical direc-
tion. In this way, these planar shocks mediate very efficiently the
conversion of x- to y-kinetic energy.

4.3. Intermediate and weak fields

Sufficiently strong magnetic fields corresponding to an Alfvén
number A ≤ 2 stabilise the instability linearly. We confirm this
result of the linear analysis in simulations of both subsonic and
supersonic shear flows.

In the following, we will focus on the more interesting case
of intermediate and weak initial fields, for which Frank et al.
(1996) identified disruptive and dissipative dynamics. The mod-
els we describe in this section were computed using a grid of
lx × ly = 2 × 2 and reflecting boundary conditions in y-direction.
We simulated shear flows with U0 = 1, and varied the Mach
number of the flow by setting the pressure either to P0 = 0.6 or
to P0 = 0.0375, corresponding to Mach numbers of M = 1 or
M = 4, respectively. The adiabatic index of the gas was set to
Γ = 4/3.

4.3.1. Intermediate fields

For an Alfvén number A = 2.5, we find, in agreement with
Frank et al. (1996), non-linear stabilisation. The magnetic field
is amplified during the linear phase, and the magnetic tension

ly=0.5

ly=2
• The instability affects a larger area if ly is sufficiently large. 

• sound waves created at the SL steepen into shocks if 
they can travel away for a sufficiently long distance.

• Sound/shock waves leaving the domain responsible for 
the oscillatory growth. 

• Only if shocks form ⟹ a vortex-like structure.

• The y-distance shocks travel depends on M. 
• For M=1, shocks are restricted to -0.25<y<0.25 ⟹ explains the 

lack of influence of the BCs.
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Table A.1. Summary of models computed to compare growth rates with theoretical predictions. We give the model name, the size of the domain
(lx, ly), and the grid size in the first three columns. The initial pressure, P0, the velocity shear, U0, the corresponding Mach numberM = U0/cs are
listed in columns 4–6, and the initial magnetic field is shown in column 7, respectively. Furthermore, the table gives the values of the length over
which we smooth out the shearing flow, a, and its wave number, kx. The last columns show the growth rate (ΓMP), obtained from Miura & Pritchett
(1982), and an estimate of the growth rate we numerically, Γnum.

name lx ly mx × my P0 U0 M a b0 kx ΓMP Γnum

grw-1 1 2 50 × 100 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.64
grw-2 1 2 100 × 200 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.74
grw-3 1 2 200 × 400 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.75
grw-4 1 2 400 × 800 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.75

grw-5 1 2 200 × 400 1 1.29 1 0.025 (0, 0, 0) 2π 2.4 2.44
grw-6 1 2 200 × 400 1 1.29 1 0.1 (0, 0, 0) 2π 0.66 0.68

grw-7 1 2 200 × 400 1 0.645 0.5 0.05 (0, 0, 0) 2π 1.09 1.07
grw-8 1 2 200 × 400 1 1.843 10/7 0.05 (0, 0, 0) 2π 1.77 1.79

grw-9 1 2 200 × 400 1 0.645 0.5 0.05 (0, 0, 0) 4π 1.36 1.35

grw-10 1 2 200 × 400 1 1.29 1 0.05 (0.129, 0, 0) 2π 1.69 1.70
grw-11 1 2 200 × 400 1 1.29 1 0.05 (0.258, 0, 0) 2π 1.56 1.54

Table A.2. Summary of two-dimensional hydrodynamic supersonic models. The table lists the same data as Tab. A.1 does, with the following
exceptions: as b = 0 for all models, we do not list the magnetic field. Furthermore, we do not list a theoretical value of the growth rate; instead, we
give our choice of boundary conditions in the transverse direction in column “BC”. In the last column, we indicate models for which the instability
grows oscillatory by a confirmation mark,

√
. Model grw-3 of Tab. A.1 is the counterpart of model HD2r-0 with open boundaries.

name lx ly mx × my P0 U0 M a kx BC Γnum oscillations

HD2o-1-l 1 4 200 × 800 1 2.322 1.8 0.05 2π open 0.97
HD2o-1 1 2 200 × 400 1 2.322 1.8 0.05 2π open 0.96
HD2o-1-i 1 1 200 × 200 1 2.322 1.8 0.05 2π open 0.73
HD2o-1-s 1 0.5 200 × 100 1 2.322 1.8 0.05 2π open 0.16

√

HD2o-2 1 2 200 × 400 1 2.451 1.9 0.05 2π open 0.30
√

HD2o-3 1 2 200 × 400 1 2.5155 1.95 0.05 2π open 0.26
√

HD2o-4 1 2 200 × 400 1 2.58 2 0.05 2π open 0
HD2o-5 1 2 200 × 400 1 5.16 4 0.05 2π open 0

HD2r-0 1 2 200 × 400 1 1.29 1 0.05 2π reflecting 1.73
HD2r-1 1 2 200 × 400 1 2.322 1.8 0.05 2π reflecting 0.96
HD2r-1-i 1 1 200 × 200 1 2.322 1.8 0.05 2π reflecting 0.56
HD2r-1-s 1 0.5 200 × 100 1 2.322 1.8 0.05 2π reflecting 0.56

√

HD2r-1-S 1 0.25 200 × 50 1 2.322 1.8 0.05 2π reflecting 0.35
√

HD2r-4 1 2 200 × 400 1 2.58 2 0.05 2π reflecting 0.46
√

HD2r-4-HR 1 2 400 × 800 1 2.58 2 0.05 2π reflecting 0.44
√

HD2r-5 1 2 200 × 400 1 5.16 4 0.05 2π reflecting 0.52
√

Table A.3. Important parameters of the weak-field models: the first columns list the initial Mach number, M, the shear-layer width, a, and the
initial magnetic field strength, bx

0
, and corresponding Alfvén number, A. The following columns list the amplification factors f e (for the magnetic

energy) and f b (for the field strength) for simulations of the models on grids of m = 256, ..., 4096 zones per dimension.

M a bx
0

A 256 512 1024 2048 4096
[

10−4
]

f e f b f e f b f e f b f e f b f e f b

0.5 0.05 200 25 20.2 29.4 22.9 30.6 25.9 29.3 27.7 28.3
0.5 0.05 100 50 24.4 40.4 33.5 57.2 39.8 66.2 43.5 64.3 46.3 63.3
0.5 0.05 50 100 27.0 50.0 41.0 75.6 55.3 102.2 66.8 123.7 73.3 125.3
0.5 0.05 20 250 35.0 51.0 44.4 95.0 70.4 146.4 105.3 213.0

1 0.10 200 50 25.2 36.5 33.6 50.2 46.0 46.5 45.0 49.2
1 0.10 40 250 18.2 37.6 49.3 83.8 74.5 132.2 113.9 201.3

1 0.15 200 50 17.2 29.3 27.8 39.7 30.7 40.0 35.9 46.4
1 0.15 100 100 19.6 34.8 35.0 56.3 54.9 76.0 61.2 81.5
1 0.15 40 250 21.3 46.6 40.2 69.5 65.3 106.3 103.9 152.4

1 0.20 200 50 5.8 14.2 8.0 28.0 12.8 26.0 22.5 36.3
1 0.20 40 250 6.4 35.7 11.8 41.3 18.1 62.2 33.0 106.6

1 0.05 400 25 16.8 23.8 19.6 25.9 22.0 26.6 23.3 25.4
1 0.05 200 50 19.4 45.7 27.5 46.2 32.0 48.6 36.1 51.5 39.4 53.6
1 0.05 80 125 20.2 35.6 33.4 70.2 50.1 96.6 61.6 117.3 67.3 118.9
1 0.05 40 250 20.9 50.8 37.0 88.0 59.9 127.7 83.6 178.5 104.1 210.9
1 0.05 20 500 21.2 55.1 39.4 103.1 63.0 153.1 101.1 236.4 145.6 330.8
1 0.05 8 1250 21.2 56.4 40.1 127.2 67.7 187.8 109.8 288.7 169.0 444.4
1 0.05 2 5000 21.2 55.2 40.3 136.4 68.6 218.5 112.4 314.7 182.9 515.2



 Growth in the supersonic regime

• Miura & Pritchett (1982): No growth if M ≥ 2.
• We find also (oscillatory) growth if reflecting BC are 

imposed for M>2.
⟹ num almost unchanged if resolution increases. 

• Very fast growth happens if M≳1
• If shocks develop, the fluid tries to slide parallel to them in 

the y-direction. This process mediates a very efficient 
conversion of ekinx into ekiny.
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Table A.1. Summary of models computed to compare growth rates with theoretical predictions. We give the model name, the size of the domain
(lx, ly), and the grid size in the first three columns. The initial pressure, P0, the velocity shear, U0, the corresponding Mach numberM = U0/cs are
listed in columns 4–6, and the initial magnetic field is shown in column 7, respectively. Furthermore, the table gives the values of the length over
which we smooth out the shearing flow, a, and its wave number, kx. The last columns show the growth rate (ΓMP), obtained from Miura & Pritchett
(1982), and an estimate of the growth rate we numerically, Γnum.

name lx ly mx × my P0 U0 M a b0 kx ΓMP Γnum

grw-1 1 2 50 × 100 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.64
grw-2 1 2 100 × 200 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.74
grw-3 1 2 200 × 400 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.75
grw-4 1 2 400 × 800 1 1.29 1 0.05 (0, 0, 0) 2π 1.73 1.75

grw-5 1 2 200 × 400 1 1.29 1 0.025 (0, 0, 0) 2π 2.4 2.44
grw-6 1 2 200 × 400 1 1.29 1 0.1 (0, 0, 0) 2π 0.66 0.68

grw-7 1 2 200 × 400 1 0.645 0.5 0.05 (0, 0, 0) 2π 1.09 1.07
grw-8 1 2 200 × 400 1 1.843 10/7 0.05 (0, 0, 0) 2π 1.77 1.79

grw-9 1 2 200 × 400 1 0.645 0.5 0.05 (0, 0, 0) 4π 1.36 1.35

grw-10 1 2 200 × 400 1 1.29 1 0.05 (0.129, 0, 0) 2π 1.69 1.70
grw-11 1 2 200 × 400 1 1.29 1 0.05 (0.258, 0, 0) 2π 1.56 1.54

Table A.2. Summary of two-dimensional hydrodynamic supersonic models. The table lists the same data as Tab. A.1 does, with the following
exceptions: as b = 0 for all models, we do not list the magnetic field. Furthermore, we do not list a theoretical value of the growth rate; instead, we
give our choice of boundary conditions in the transverse direction in column “BC”. In the last column, we indicate models for which the instability
grows oscillatory by a confirmation mark,

√
. Model grw-3 of Tab. A.1 is the counterpart of model HD2r-0 with open boundaries.

name lx ly mx × my P0 U0 M a kx BC Γnum oscillations

HD2o-1-l 1 4 200 × 800 1 2.322 1.8 0.05 2π open 0.97
HD2o-1 1 2 200 × 400 1 2.322 1.8 0.05 2π open 0.96
HD2o-1-i 1 1 200 × 200 1 2.322 1.8 0.05 2π open 0.73
HD2o-1-s 1 0.5 200 × 100 1 2.322 1.8 0.05 2π open 0.16

√

HD2o-2 1 2 200 × 400 1 2.451 1.9 0.05 2π open 0.30
√

HD2o-3 1 2 200 × 400 1 2.5155 1.95 0.05 2π open 0.26
√

HD2o-4 1 2 200 × 400 1 2.58 2 0.05 2π open 0
HD2o-5 1 2 200 × 400 1 5.16 4 0.05 2π open 0

HD2r-0 1 2 200 × 400 1 1.29 1 0.05 2π reflecting 1.73
HD2r-1 1 2 200 × 400 1 2.322 1.8 0.05 2π reflecting 0.96
HD2r-1-i 1 1 200 × 200 1 2.322 1.8 0.05 2π reflecting 0.56
HD2r-1-s 1 0.5 200 × 100 1 2.322 1.8 0.05 2π reflecting 0.56

√

HD2r-1-S 1 0.25 200 × 50 1 2.322 1.8 0.05 2π reflecting 0.35
√

HD2r-4 1 2 200 × 400 1 2.58 2 0.05 2π reflecting 0.46
√

HD2r-4-HR 1 2 400 × 800 1 2.58 2 0.05 2π reflecting 0.44
√

HD2r-5 1 2 200 × 400 1 5.16 4 0.05 2π reflecting 0.52
√

Table A.3. Important parameters of the weak-field models: the first columns list the initial Mach number, M, the shear-layer width, a, and the
initial magnetic field strength, bx

0
, and corresponding Alfvén number, A. The following columns list the amplification factors f e (for the magnetic

energy) and f b (for the field strength) for simulations of the models on grids of m = 256, ..., 4096 zones per dimension.

M a bx
0

A 256 512 1024 2048 4096
[

10−4
]

f e f b f e f b f e f b f e f b f e f b

0.5 0.05 200 25 20.2 29.4 22.9 30.6 25.9 29.3 27.7 28.3
0.5 0.05 100 50 24.4 40.4 33.5 57.2 39.8 66.2 43.5 64.3 46.3 63.3
0.5 0.05 50 100 27.0 50.0 41.0 75.6 55.3 102.2 66.8 123.7 73.3 125.3
0.5 0.05 20 250 35.0 51.0 44.4 95.0 70.4 146.4 105.3 213.0

1 0.10 200 50 25.2 36.5 33.6 50.2 46.0 46.5 45.0 49.2
1 0.10 40 250 18.2 37.6 49.3 83.8 74.5 132.2 113.9 201.3

1 0.15 200 50 17.2 29.3 27.8 39.7 30.7 40.0 35.9 46.4
1 0.15 100 100 19.6 34.8 35.0 56.3 54.9 76.0 61.2 81.5
1 0.15 40 250 21.3 46.6 40.2 69.5 65.3 106.3 103.9 152.4

1 0.20 200 50 5.8 14.2 8.0 28.0 12.8 26.0 22.5 36.3
1 0.20 40 250 6.4 35.7 11.8 41.3 18.1 62.2 33.0 106.6

1 0.05 400 25 16.8 23.8 19.6 25.9 22.0 26.6 23.3 25.4
1 0.05 200 50 19.4 45.7 27.5 46.2 32.0 48.6 36.1 51.5 39.4 53.6
1 0.05 80 125 20.2 35.6 33.4 70.2 50.1 96.6 61.6 117.3 67.3 118.9
1 0.05 40 250 20.9 50.8 37.0 88.0 59.9 127.7 83.6 178.5 104.1 210.9
1 0.05 20 500 21.2 55.1 39.4 103.1 63.0 153.1 101.1 236.4 145.6 330.8
1 0.05 8 1250 21.2 56.4 40.1 127.2 67.7 187.8 109.8 288.7 169.0 444.4
1 0.05 2 5000 21.2 55.2 40.3 136.4 68.6 218.5 112.4 314.7 182.9 515.2

SUPERSONIC 
(HD) REGIME



 Magnetized models: non-linear 
stabilization for intermediate fields

• Our standard setup: lx x ly = 2 x 2; reflecting BCs; U0=1; M=1, 4; 
=4/3

• Strong fields: we verify the linear stability results, which imply 
stabilization for A≤2.

• Weaker fields:  we run models with A>2, finding excellent 
agreement with Frank et al. (1996), e.g.:

- non-linear stabilization for, e.g., A=2.5

- for A=5 ⟹ the KH vortex can form and winds up the B-field, 
which eventually becomes strong enough ⟹ non-linear 
stabilization.

➡ The B-field stabilizes the growth of KH modes, either linearly or 
non-linearly if A≲5.



• Notes on numerical resistivity:
‣For Rem→∞ ⟹ energy is transferred to ever smaller scales in turbulent 

cascades.

‣ In numerical simulations, eventually the energy reaches the grid scale, 
h, where it cannot be represented by the discretized B-fields. Thus, it 
is assigned to eint.

‣Physical resistivity transfers also emag→ eint, hence, numerical 
resistivity acts as a subgrid model for unresolved dynamics.

• In models with intermediate fields, 2≲A≲5, due to numerical 
resistivity, the emergence of coherent flow and field structures is 
subsequently disrupted in reconnection events ⟹ efficient 
conversion ekin→ emag→ eint, much more efficient than ekin→ eint in 
HD-models.

• Final flow: rather laminar than turbulent, with broad SL (agreement 
with Jones et al. 1997).

 Magnetized models: non-linear 
stabilization for intermediate fields



 Magnetized models: weak fields
(reproducing previous results)

• Prototype models with A=125 and A=5000, computed with resolutions 
up to 40962.

• We identify the same disruption and dissipation regimes as Jones et 
al. (1997).

• Disruption regime:

• B-field wound up in very thin sheets. If the sheets approach each other 
(having opposite polarity) reconnection happens                                  
⟹ tearing- mode instability.

• Tearing modes behave as catalyst ekin→ eint conversion.

• Dissipation regime:

• Same effects as in the disruption regime + growth of the B-field to 
values such that the flows produced in tearing modes can disrupt the 
KH-vortex.

• Final state: turbulent layer where the flow and field decay slowly until 
ekiny→ emagy.



 Magnetized models: weak fields
(new results)

The evolution of weakly magnetized models can be 
separated in three phases:

1. KH-phase (as predicted by the linear theory).
2. Kinematic phase (B-amplification after formation of the 

vortex which evolves secularly).
3. Dissipation/disruption phase (the KH vortex looses its 

energy by magnetic stresses).



 Magnetized models: weak fields
KH-phase

• Our models grow with numMHD~ numHD.

• Passive field amplification.

• Fixed amplification factor by the end of 
this phase (model independent): 

|B|KH ~ 1.4 |B0|

• By the end of the KH-phase: 

emagy ~ 0.1 x emag
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becomes eventually sufficiently strong to prevent further bend-
ing of the field lines. Thus, the formation of a KH vortex is
suppressed, and, instead, the velocity and the magnetic fields
remain essentially aligned with each other and the shear layer,
developing only very minor y-components. After the end of the
linear phase of the instability, a very broad shear layer develops
in which the magnetic field possesses a sheet-like structure.

If the magnetic field is reduced further (corresponding to an
Alfvén number of A = 5), the KH instability grows in the lin-
ear phase, and a KH vortex forms. With the field amplified in
the overturning vortex, it becomes eventually large enough to
resist further bending, thus stabilising the instability in the non-
linear phase. The instability develops and grows exponentially,
but after the magnetic energy reaches a maximum, it decreases
gradually again close to its initial value.

It is important to note that, although we are evolving the
equations of ideal, i.e., non-resistive, MHD, numerical resistivity
is present and enables effects similar to the ones due to a physical
resistivity, viz. the reconnection of field lines and the dissipation
of magnetic into internal energy. Though a purely numerical ef-
fect, this dissipation has a physical equivalent which it mimics:
in ideal MHD (or for exceedingly large magnetic Reynolds num-
ber Rem), energy is transferred to ever smaller length scales in
the turbulent cascades. Eventually, the magnetic energy injected
at a large length scale reaches the scale set by the grid resolu-
tion. As a consequence, it can no longer be represented by the
discretised magnetic fields. Instead, the sub-grid energy is as-
signed to the internal energy. Hence, numerical resistivity (and,
analogously, numerical viscosity) acts as a sub-grid model for
unresolved dynamics.

As a result of numerical resistivity, we observe the dynam-
ics noted by Jones et al. (1997): the emergence of coherent flow
and field structures and their subsequent disruption in intense
reconnection events. These processes mediate the efficient con-
version of kinetic energy to internal one. As a consequence, the
kinetic energy decreases much stronger than in the non-magnetic
case. The flow field at the end of the simulation shows little re-
semblance of a KH vortex. Instead, we find a broad transition
region between oppositely streaming fluid layers, populated by
thin magnetic flux sheets. The flow is rather laminar than turbu-
lent, with elongated streaks of gas and field stretching across the
domain.

4.3.2. Weak fields

Overview: Models with an even weaker initial magnetic field
were characterised as disruption or dissipation models by Jones
et al. (1997). In both regimes, a KH vortex develops. The mag-
netic field forms thin flux sheets as it is wound up by the vor-
tex overturns. If two flux sheets of opposite polarity come to
lie close to each other, they become unstable against the resis-
tive tearing-mode instability leading to the reconnection of field
lines of different orientation and the conversion of magnetic into
thermal energy. Since the magnetic energy was previously am-
plified at the cost of the kinetic energy, the tearing modes act
essentially as a catalyst facilitating the dissipation of kinetic en-
ergy into internal energy. These effects characterise the dissipa-
tion regime. In the disruption regime, another effect adds: the
magnetic field becomes eventually strong enough for the flows
generated in tearing modes to disrupt the vortex, leaving behind
only a broad transition layer in which turbulent flow and mag-
netic fields decay slowly. The dynamics of the flow and the mag-
netic field is highly coupled since the fields are dominated by
flux sheets in which the velocity and magnetic fields are aligned
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Fig. 3. The temporal evolution of the transverse kinetic (solid lines) and
magnetic (dashed lines) energies per unit volume for models with initial
Mach and Alfvén numbers of M = 1 and A = 125 (green lines, marked
by a diamond) and A = 5000 (black lines, marked by an asterisk). Both
models were computed on a grid of 20482 zones. The blue vertical lines
indicate the end of the KH phase, tKH, and an approximation of the end
of the kinematic phase.

to a large degree, reminiscent of the Alfvén effect in MHD turbu-
lence. Consistent with this observation is the near equipartition
between the turbulent magnetic and kinetic fields, measured by
the kinetic energy of the flow in y-direction and the magnetic
energy of the y component of the field, that can be found in dis-
ruption models (see below).

In our simulations (summarised in Tab. A.3), we can divide
the evolution of weak-field models into three distinct phases:

1. the linear KH phase during which the initial perturbations of
both velocity and magnetic field grow exponentially,

2. a phase of a kinematic field amplification after the formation
of a KH vortex which evolves only secularly,

3. the dissipation/disruption phase during which the KH vortex
looses its energy by magnetic stresses and resistive effects.

We will discuss these three phases and the transitions between
them in the following in more detail. The phases can be distin-
guished best in the evolution of the transverse magnetic and ki-
netic energies. For this purpose, we consider a pair of prototype
models, with initial Mach number M = 1 and Alfvén numbers
A = 125 and A = 5000 computed on a grid of 20482 cells.
The evolution of the kinetic and magnetic energies perpendicu-
lar to the shear is displayed in Fig. 3. Furthermore, Fig. 4 shows
a comparison of the evolution of the transverse magnetic energy
of models with different initial Alfvén numbers and different res-
olutions.

The KH phase: In the early stages of the evolution, the seed
perturbations imposed on the initial shearing profile are ampli-
fied exponentially. The magnetic field, though amplified expo-
nentially at the same rate as the velocity, remains too weak to
affect the evolution during this phase. We find a fixed field am-
plification factor in all models: when the exponential growth of
the KH instability terminates, the total magnetic energy has in-
creased by a factor of 1.4 w.r.t. the initial state, and about 10 %
of the energy is accounted for by the transverse field component
by.
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becomes eventually sufficiently strong to prevent further bend-
ing of the field lines. Thus, the formation of a KH vortex is
suppressed, and, instead, the velocity and the magnetic fields
remain essentially aligned with each other and the shear layer,
developing only very minor y-components. After the end of the
linear phase of the instability, a very broad shear layer develops
in which the magnetic field possesses a sheet-like structure.

If the magnetic field is reduced further (corresponding to an
Alfvén number of A = 5), the KH instability grows in the lin-
ear phase, and a KH vortex forms. With the field amplified in
the overturning vortex, it becomes eventually large enough to
resist further bending, thus stabilising the instability in the non-
linear phase. The instability develops and grows exponentially,
but after the magnetic energy reaches a maximum, it decreases
gradually again close to its initial value.

It is important to note that, although we are evolving the
equations of ideal, i.e., non-resistive, MHD, numerical resistivity
is present and enables effects similar to the ones due to a physical
resistivity, viz. the reconnection of field lines and the dissipation
of magnetic into internal energy. Though a purely numerical ef-
fect, this dissipation has a physical equivalent which it mimics:
in ideal MHD (or for exceedingly large magnetic Reynolds num-
ber Rem), energy is transferred to ever smaller length scales in
the turbulent cascades. Eventually, the magnetic energy injected
at a large length scale reaches the scale set by the grid resolu-
tion. As a consequence, it can no longer be represented by the
discretised magnetic fields. Instead, the sub-grid energy is as-
signed to the internal energy. Hence, numerical resistivity (and,
analogously, numerical viscosity) acts as a sub-grid model for
unresolved dynamics.

As a result of numerical resistivity, we observe the dynam-
ics noted by Jones et al. (1997): the emergence of coherent flow
and field structures and their subsequent disruption in intense
reconnection events. These processes mediate the efficient con-
version of kinetic energy to internal one. As a consequence, the
kinetic energy decreases much stronger than in the non-magnetic
case. The flow field at the end of the simulation shows little re-
semblance of a KH vortex. Instead, we find a broad transition
region between oppositely streaming fluid layers, populated by
thin magnetic flux sheets. The flow is rather laminar than turbu-
lent, with elongated streaks of gas and field stretching across the
domain.

4.3.2. Weak fields

Overview: Models with an even weaker initial magnetic field
were characterised as disruption or dissipation models by Jones
et al. (1997). In both regimes, a KH vortex develops. The mag-
netic field forms thin flux sheets as it is wound up by the vor-
tex overturns. If two flux sheets of opposite polarity come to
lie close to each other, they become unstable against the resis-
tive tearing-mode instability leading to the reconnection of field
lines of different orientation and the conversion of magnetic into
thermal energy. Since the magnetic energy was previously am-
plified at the cost of the kinetic energy, the tearing modes act
essentially as a catalyst facilitating the dissipation of kinetic en-
ergy into internal energy. These effects characterise the dissipa-
tion regime. In the disruption regime, another effect adds: the
magnetic field becomes eventually strong enough for the flows
generated in tearing modes to disrupt the vortex, leaving behind
only a broad transition layer in which turbulent flow and mag-
netic fields decay slowly. The dynamics of the flow and the mag-
netic field is highly coupled since the fields are dominated by
flux sheets in which the velocity and magnetic fields are aligned
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Fig. 3. The temporal evolution of the transverse kinetic (solid lines) and
magnetic (dashed lines) energies per unit volume for models with initial
Mach and Alfvén numbers of M = 1 and A = 125 (green lines, marked
by a diamond) and A = 5000 (black lines, marked by an asterisk). Both
models were computed on a grid of 20482 zones. The blue vertical lines
indicate the end of the KH phase, tKH, and an approximation of the end
of the kinematic phase.

to a large degree, reminiscent of the Alfvén effect in MHD turbu-
lence. Consistent with this observation is the near equipartition
between the turbulent magnetic and kinetic fields, measured by
the kinetic energy of the flow in y-direction and the magnetic
energy of the y component of the field, that can be found in dis-
ruption models (see below).

In our simulations (summarised in Tab. A.3), we can divide
the evolution of weak-field models into three distinct phases:

1. the linear KH phase during which the initial perturbations of
both velocity and magnetic field grow exponentially,

2. a phase of a kinematic field amplification after the formation
of a KH vortex which evolves only secularly,

3. the dissipation/disruption phase during which the KH vortex
looses its energy by magnetic stresses and resistive effects.

We will discuss these three phases and the transitions between
them in the following in more detail. The phases can be distin-
guished best in the evolution of the transverse magnetic and ki-
netic energies. For this purpose, we consider a pair of prototype
models, with initial Mach number M = 1 and Alfvén numbers
A = 125 and A = 5000 computed on a grid of 20482 cells.
The evolution of the kinetic and magnetic energies perpendicu-
lar to the shear is displayed in Fig. 3. Furthermore, Fig. 4 shows
a comparison of the evolution of the transverse magnetic energy
of models with different initial Alfvén numbers and different res-
olutions.

The KH phase: In the early stages of the evolution, the seed
perturbations imposed on the initial shearing profile are ampli-
fied exponentially. The magnetic field, though amplified expo-
nentially at the same rate as the velocity, remains too weak to
affect the evolution during this phase. We find a fixed field am-
plification factor in all models: when the exponential growth of
the KH instability terminates, the total magnetic energy has in-
creased by a factor of 1.4 w.r.t. the initial state, and about 10 %
of the energy is accounted for by the transverse field component
by.

A=5000, M=1, 20482

A=125, M=1, 20482



 Magnetized models: weak fields
KH-phase

• Our models grow with numMHD~ numHD.

• Passive field amplification.

• Fixed amplification factor by the end of 
this phase (model independent): 

|B|KH ~ 1.4 |B0|

• By the end of the KH-phase: 

emagy ~ 0.1 x emag

• num independent of resolution.
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Fig. 4. The temporal evolution of the transverse magnetic energy per
unit volume (upper panel) for two different models computed at five dif-
ferent resolutions. The time coordinate is normalised to the moment for
which the ratio of the transverse kinetic energy to the magnetic energy
is maximal, tKH. The time interval displayed in this figure is a fraction
of the interval shown in Fig. 3, in order to focus on the KH phase of
these two models. The solid and dashed lines refer to the model with an
initial Alfvén number of 5000 and 125, respectively. The energy of the
former model has been scaled up by a factor of (5000/125)2 . Orange,
red, green, blue, and black lines display simulations with 2562, 5122,
10242, 20482, and 40962 grid cells, respectively. The panel inserted in
the lower right part of the diagram shows a magnification of the regions
where the lines separate.

The mere passive evolution of the magnetic field results in
a growth rate which is the same as without magnetic field. This
holds as well for the saturation of the growth and the flow that
develops after saturation. The KH instability saturates once a
KH vortex is formed. At this point, the growth of the transverse
kinetic energy ceases (Fig. 3). The structure of the model with
A = 125 shortly after the end of the KH phase is shown in Fig. 5
(panel (a)). A typical KH vortex has developed, with its centre
located at x = ±1. We find a minimum of density, pressure, and
sound speed as well as magnetic field strength at the centre of the
vortex. The magnetic field is wound up in a long thin sheet (the
fine light line in the figure) surrounding the vortex. The structure
of the corresponding model with A = 5000 initially is almost ex-
actly the same.

We note, finally, that the growth rate of the instability in this
phase is independent of the numerical resolution and the initial
field strength, as can be seen, e.g., in the curves shown in Fig. 4
for t − tKH < 0.

The kinematic amplification: After the saturation of the es-
sentially hydrodynamic KH instability, Ey

kin
(t) oscillates about a

constant level. The long sheet of magnetic field is stretched in
the overturning vortex, leading to exponential amplification of
the field strength. The structure of the flow and its energy are
not yet modified by the magnetic field. Hence, the flow and field
topologies visible in Fig. 5 (panels (b) and (c)) apply through-
out the entire kinematic phase without large modifications. The
main changes are additional windings of the flux sheet around
the vortex and, thus, the increase of the field strength.

The velocity field of the models exhibits a quite peculiar
structure (see panels (b) and (c) of Fig. 5 showing the modulus
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Fig. 5. Panel (a): Snapshot of the a model with initial Mach number
M = 1 and Alfvén number A = 125, computed using a grid of 20482

zones, shortly after the end of the KH phase. The figure shows the sound
speed, cs, by the hue and the Alfvén velocity, cA by the lightness of
the colour field, respectively. Additionally, magnetic field lines and ve-
locity vectors are shown. The arrows displaying the velocity field are
colour-coded according to the x-component of vwith reddish and bluish
colours corresponding to left- and right-moving matter.
Panel (b): A later snapshot of the model shown in panel (a), shortly be-
fore the end of the kinematic amplification phase. The top half of the
figure shows the modulus of the velocity, |v|. The flux sheet can be iden-
tified as the wound up line across which |v| is discontinous. The bottom
half of the panel shows the Alfvén velocity of the model.
Panel (c): The same as panel (b), but for the model with A = 5000
initially.
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The energy of the model with A=5000 scaled up by (5000/125)2.



 Magnetized models: weak fields
KH-phase

• Our models grow with numMHD~ numHD.

• Passive field amplification.

• Fixed amplification factor by the end of 
this phase (model independent): 

|B|KH ~ 1.4 |B0|

• By the end of the KH-phase: 

emagy ~ 0.1 x emag

• num independent of resolution.

• Termination of the KH-phase: the vortex 
forms and ekiny, emagy  saturate.
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Fig. 4. The temporal evolution of the transverse magnetic energy per
unit volume (upper panel) for two different models computed at five dif-
ferent resolutions. The time coordinate is normalised to the moment for
which the ratio of the transverse kinetic energy to the magnetic energy
is maximal, tKH. The time interval displayed in this figure is a fraction
of the interval shown in Fig. 3, in order to focus on the KH phase of
these two models. The solid and dashed lines refer to the model with an
initial Alfvén number of 5000 and 125, respectively. The energy of the
former model has been scaled up by a factor of (5000/125)2 . Orange,
red, green, blue, and black lines display simulations with 2562, 5122,
10242, 20482, and 40962 grid cells, respectively. The panel inserted in
the lower right part of the diagram shows a magnification of the regions
where the lines separate.

The mere passive evolution of the magnetic field results in
a growth rate which is the same as without magnetic field. This
holds as well for the saturation of the growth and the flow that
develops after saturation. The KH instability saturates once a
KH vortex is formed. At this point, the growth of the transverse
kinetic energy ceases (Fig. 3). The structure of the model with
A = 125 shortly after the end of the KH phase is shown in Fig. 5
(panel (a)). A typical KH vortex has developed, with its centre
located at x = ±1. We find a minimum of density, pressure, and
sound speed as well as magnetic field strength at the centre of the
vortex. The magnetic field is wound up in a long thin sheet (the
fine light line in the figure) surrounding the vortex. The structure
of the corresponding model with A = 5000 initially is almost ex-
actly the same.

We note, finally, that the growth rate of the instability in this
phase is independent of the numerical resolution and the initial
field strength, as can be seen, e.g., in the curves shown in Fig. 4
for t − tKH < 0.

The kinematic amplification: After the saturation of the es-
sentially hydrodynamic KH instability, Ey

kin
(t) oscillates about a

constant level. The long sheet of magnetic field is stretched in
the overturning vortex, leading to exponential amplification of
the field strength. The structure of the flow and its energy are
not yet modified by the magnetic field. Hence, the flow and field
topologies visible in Fig. 5 (panels (b) and (c)) apply through-
out the entire kinematic phase without large modifications. The
main changes are additional windings of the flux sheet around
the vortex and, thus, the increase of the field strength.

The velocity field of the models exhibits a quite peculiar
structure (see panels (b) and (c) of Fig. 5 showing the modulus
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Fig. 5. Panel (a): Snapshot of the a model with initial Mach number
M = 1 and Alfvén number A = 125, computed using a grid of 20482

zones, shortly after the end of the KH phase. The figure shows the sound
speed, cs, by the hue and the Alfvén velocity, cA by the lightness of
the colour field, respectively. Additionally, magnetic field lines and ve-
locity vectors are shown. The arrows displaying the velocity field are
colour-coded according to the x-component of vwith reddish and bluish
colours corresponding to left- and right-moving matter.
Panel (b): A later snapshot of the model shown in panel (a), shortly be-
fore the end of the kinematic amplification phase. The top half of the
figure shows the modulus of the velocity, |v|. The flux sheet can be iden-
tified as the wound up line across which |v| is discontinous. The bottom
half of the panel shows the Alfvén velocity of the model.
Panel (c): The same as panel (b), but for the model with A = 5000
initially.

A=125, M=1, 20482
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becomes eventually sufficiently strong to prevent further bend-
ing of the field lines. Thus, the formation of a KH vortex is
suppressed, and, instead, the velocity and the magnetic fields
remain essentially aligned with each other and the shear layer,
developing only very minor y-components. After the end of the
linear phase of the instability, a very broad shear layer develops
in which the magnetic field possesses a sheet-like structure.

If the magnetic field is reduced further (corresponding to an
Alfvén number of A = 5), the KH instability grows in the lin-
ear phase, and a KH vortex forms. With the field amplified in
the overturning vortex, it becomes eventually large enough to
resist further bending, thus stabilising the instability in the non-
linear phase. The instability develops and grows exponentially,
but after the magnetic energy reaches a maximum, it decreases
gradually again close to its initial value.

It is important to note that, although we are evolving the
equations of ideal, i.e., non-resistive, MHD, numerical resistivity
is present and enables effects similar to the ones due to a physical
resistivity, viz. the reconnection of field lines and the dissipation
of magnetic into internal energy. Though a purely numerical ef-
fect, this dissipation has a physical equivalent which it mimics:
in ideal MHD (or for exceedingly large magnetic Reynolds num-
ber Rem), energy is transferred to ever smaller length scales in
the turbulent cascades. Eventually, the magnetic energy injected
at a large length scale reaches the scale set by the grid resolu-
tion. As a consequence, it can no longer be represented by the
discretised magnetic fields. Instead, the sub-grid energy is as-
signed to the internal energy. Hence, numerical resistivity (and,
analogously, numerical viscosity) acts as a sub-grid model for
unresolved dynamics.

As a result of numerical resistivity, we observe the dynam-
ics noted by Jones et al. (1997): the emergence of coherent flow
and field structures and their subsequent disruption in intense
reconnection events. These processes mediate the efficient con-
version of kinetic energy to internal one. As a consequence, the
kinetic energy decreases much stronger than in the non-magnetic
case. The flow field at the end of the simulation shows little re-
semblance of a KH vortex. Instead, we find a broad transition
region between oppositely streaming fluid layers, populated by
thin magnetic flux sheets. The flow is rather laminar than turbu-
lent, with elongated streaks of gas and field stretching across the
domain.

4.3.2. Weak fields

Overview: Models with an even weaker initial magnetic field
were characterised as disruption or dissipation models by Jones
et al. (1997). In both regimes, a KH vortex develops. The mag-
netic field forms thin flux sheets as it is wound up by the vor-
tex overturns. If two flux sheets of opposite polarity come to
lie close to each other, they become unstable against the resis-
tive tearing-mode instability leading to the reconnection of field
lines of different orientation and the conversion of magnetic into
thermal energy. Since the magnetic energy was previously am-
plified at the cost of the kinetic energy, the tearing modes act
essentially as a catalyst facilitating the dissipation of kinetic en-
ergy into internal energy. These effects characterise the dissipa-
tion regime. In the disruption regime, another effect adds: the
magnetic field becomes eventually strong enough for the flows
generated in tearing modes to disrupt the vortex, leaving behind
only a broad transition layer in which turbulent flow and mag-
netic fields decay slowly. The dynamics of the flow and the mag-
netic field is highly coupled since the fields are dominated by
flux sheets in which the velocity and magnetic fields are aligned
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Fig. 3. The temporal evolution of the transverse kinetic (solid lines) and
magnetic (dashed lines) energies per unit volume for models with initial
Mach and Alfvén numbers of M = 1 and A = 125 (green lines, marked
by a diamond) and A = 5000 (black lines, marked by an asterisk). Both
models were computed on a grid of 20482 zones. The blue vertical lines
indicate the end of the KH phase, tKH, and an approximation of the end
of the kinematic phase.

to a large degree, reminiscent of the Alfvén effect in MHD turbu-
lence. Consistent with this observation is the near equipartition
between the turbulent magnetic and kinetic fields, measured by
the kinetic energy of the flow in y-direction and the magnetic
energy of the y component of the field, that can be found in dis-
ruption models (see below).

In our simulations (summarised in Tab. A.3), we can divide
the evolution of weak-field models into three distinct phases:

1. the linear KH phase during which the initial perturbations of
both velocity and magnetic field grow exponentially,

2. a phase of a kinematic field amplification after the formation
of a KH vortex which evolves only secularly,

3. the dissipation/disruption phase during which the KH vortex
looses its energy by magnetic stresses and resistive effects.

We will discuss these three phases and the transitions between
them in the following in more detail. The phases can be distin-
guished best in the evolution of the transverse magnetic and ki-
netic energies. For this purpose, we consider a pair of prototype
models, with initial Mach number M = 1 and Alfvén numbers
A = 125 and A = 5000 computed on a grid of 20482 cells.
The evolution of the kinetic and magnetic energies perpendicu-
lar to the shear is displayed in Fig. 3. Furthermore, Fig. 4 shows
a comparison of the evolution of the transverse magnetic energy
of models with different initial Alfvén numbers and different res-
olutions.

The KH phase: In the early stages of the evolution, the seed
perturbations imposed on the initial shearing profile are ampli-
fied exponentially. The magnetic field, though amplified expo-
nentially at the same rate as the velocity, remains too weak to
affect the evolution during this phase. We find a fixed field am-
plification factor in all models: when the exponential growth of
the KH instability terminates, the total magnetic energy has in-
creased by a factor of 1.4 w.r.t. the initial state, and about 10 %
of the energy is accounted for by the transverse field component
by.

 Magnetized models: weak fields
Kinematic Amplification phase

• After the termination of the approx. 
hydrodynamic KH-phase, ekiny,  
saturates. 

• The B-field still grows exponentially 
because it is wound up by the vortex.

• During this phase, B is still 
dynamically negligible. Thus, the 
growth rate of the field is roughly the 
same independent of A.

A=5000, M=1, 20482

A=125, M=1, 20482
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Fig. 4. The temporal evolution of the transverse magnetic energy per
unit volume (upper panel) for two different models computed at five dif-
ferent resolutions. The time coordinate is normalised to the moment for
which the ratio of the transverse kinetic energy to the magnetic energy
is maximal, tKH. The time interval displayed in this figure is a fraction
of the interval shown in Fig. 3, in order to focus on the KH phase of
these two models. The solid and dashed lines refer to the model with an
initial Alfvén number of 5000 and 125, respectively. The energy of the
former model has been scaled up by a factor of (5000/125)2 . Orange,
red, green, blue, and black lines display simulations with 2562, 5122,
10242, 20482, and 40962 grid cells, respectively. The panel inserted in
the lower right part of the diagram shows a magnification of the regions
where the lines separate.

The mere passive evolution of the magnetic field results in
a growth rate which is the same as without magnetic field. This
holds as well for the saturation of the growth and the flow that
develops after saturation. The KH instability saturates once a
KH vortex is formed. At this point, the growth of the transverse
kinetic energy ceases (Fig. 3). The structure of the model with
A = 125 shortly after the end of the KH phase is shown in Fig. 5
(panel (a)). A typical KH vortex has developed, with its centre
located at x = ±1. We find a minimum of density, pressure, and
sound speed as well as magnetic field strength at the centre of the
vortex. The magnetic field is wound up in a long thin sheet (the
fine light line in the figure) surrounding the vortex. The structure
of the corresponding model with A = 5000 initially is almost ex-
actly the same.

We note, finally, that the growth rate of the instability in this
phase is independent of the numerical resolution and the initial
field strength, as can be seen, e.g., in the curves shown in Fig. 4
for t − tKH < 0.

The kinematic amplification: After the saturation of the es-
sentially hydrodynamic KH instability, Ey

kin
(t) oscillates about a

constant level. The long sheet of magnetic field is stretched in
the overturning vortex, leading to exponential amplification of
the field strength. The structure of the flow and its energy are
not yet modified by the magnetic field. Hence, the flow and field
topologies visible in Fig. 5 (panels (b) and (c)) apply through-
out the entire kinematic phase without large modifications. The
main changes are additional windings of the flux sheet around
the vortex and, thus, the increase of the field strength.

The velocity field of the models exhibits a quite peculiar
structure (see panels (b) and (c) of Fig. 5 showing the modulus
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Fig. 5. Panel (a): Snapshot of the a model with initial Mach number
M = 1 and Alfvén number A = 125, computed using a grid of 20482

zones, shortly after the end of the KH phase. The figure shows the sound
speed, cs, by the hue and the Alfvén velocity, cA by the lightness of
the colour field, respectively. Additionally, magnetic field lines and ve-
locity vectors are shown. The arrows displaying the velocity field are
colour-coded according to the x-component of vwith reddish and bluish
colours corresponding to left- and right-moving matter.
Panel (b): A later snapshot of the model shown in panel (a), shortly be-
fore the end of the kinematic amplification phase. The top half of the
figure shows the modulus of the velocity, |v|. The flux sheet can be iden-
tified as the wound up line across which |v| is discontinous. The bottom
half of the panel shows the Alfvén velocity of the model.
Panel (c): The same as panel (b), but for the model with A = 5000
initially.

A=125, M=1, 20482

Structure of the flow before 
the end of the KA phase

A=5000, M=1, 20482

flux sheet
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Fig. 4. The temporal evolution of the transverse magnetic energy per
unit volume (upper panel) for two different models computed at five dif-
ferent resolutions. The time coordinate is normalised to the moment for
which the ratio of the transverse kinetic energy to the magnetic energy
is maximal, tKH. The time interval displayed in this figure is a fraction
of the interval shown in Fig. 3, in order to focus on the KH phase of
these two models. The solid and dashed lines refer to the model with an
initial Alfvén number of 5000 and 125, respectively. The energy of the
former model has been scaled up by a factor of (5000/125)2 . Orange,
red, green, blue, and black lines display simulations with 2562, 5122,
10242, 20482, and 40962 grid cells, respectively. The panel inserted in
the lower right part of the diagram shows a magnification of the regions
where the lines separate.

The mere passive evolution of the magnetic field results in
a growth rate which is the same as without magnetic field. This
holds as well for the saturation of the growth and the flow that
develops after saturation. The KH instability saturates once a
KH vortex is formed. At this point, the growth of the transverse
kinetic energy ceases (Fig. 3). The structure of the model with
A = 125 shortly after the end of the KH phase is shown in Fig. 5
(panel (a)). A typical KH vortex has developed, with its centre
located at x = ±1. We find a minimum of density, pressure, and
sound speed as well as magnetic field strength at the centre of the
vortex. The magnetic field is wound up in a long thin sheet (the
fine light line in the figure) surrounding the vortex. The structure
of the corresponding model with A = 5000 initially is almost ex-
actly the same.

We note, finally, that the growth rate of the instability in this
phase is independent of the numerical resolution and the initial
field strength, as can be seen, e.g., in the curves shown in Fig. 4
for t − tKH < 0.

The kinematic amplification: After the saturation of the es-
sentially hydrodynamic KH instability, Ey

kin
(t) oscillates about a

constant level. The long sheet of magnetic field is stretched in
the overturning vortex, leading to exponential amplification of
the field strength. The structure of the flow and its energy are
not yet modified by the magnetic field. Hence, the flow and field
topologies visible in Fig. 5 (panels (b) and (c)) apply through-
out the entire kinematic phase without large modifications. The
main changes are additional windings of the flux sheet around
the vortex and, thus, the increase of the field strength.

The velocity field of the models exhibits a quite peculiar
structure (see panels (b) and (c) of Fig. 5 showing the modulus
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Fig. 5. Panel (a): Snapshot of the a model with initial Mach number
M = 1 and Alfvén number A = 125, computed using a grid of 20482

zones, shortly after the end of the KH phase. The figure shows the sound
speed, cs, by the hue and the Alfvén velocity, cA by the lightness of
the colour field, respectively. Additionally, magnetic field lines and ve-
locity vectors are shown. The arrows displaying the velocity field are
colour-coded according to the x-component of vwith reddish and bluish
colours corresponding to left- and right-moving matter.
Panel (b): A later snapshot of the model shown in panel (a), shortly be-
fore the end of the kinematic amplification phase. The top half of the
figure shows the modulus of the velocity, |v|. The flux sheet can be iden-
tified as the wound up line across which |v| is discontinous. The bottom
half of the panel shows the Alfvén velocity of the model.
Panel (c): The same as panel (b), but for the model with A = 5000
initially.



∂temag +∇(emagv) =

compression︷ ︸︸ ︷
−emag∇ · v +

winding︷ ︸︸ ︷
bxby(∂yvx − ∂xvy)

︸ ︷︷ ︸
smag
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• B-field grows where smag>0, i.e., 
predominantly along the flux sheet 
crossing (x,y)=0.

• The B-field amplification happens in 
localized, well resolved regions, thus, 
the growth rate is independent of 
resolution. 

Approx. end of 
KA-phase
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of the velocity, |v|, of the models with A = 125 and A = 5000
initially, respectively). The initial shearing interface, wound up
several times by the overturning vortex, shows up as a more or
less thin line providing a clear separation between adjacent re-
gions with different velocities. This line-like structure forms ir-
respective of the initial field.

To study the amplification of the magnetic field by this par-
ticular flow, we determined the sources and sinks of the magnetic
energy. By computing the scalar product of ∂tb (given by the in-
duction equation) with the magnetic field, b · ∂tb, we can derive
the equation for the energy density of the magnetic field, emag.
The equation can be formulated as an advection equation with
source terms,

∂temag + ∇
(

emagv
)

= smag. (10)

The source term,

smag = −emag∇ · v + bxby
(

∂yv
x − ∂xvy

)

, (11)

accounts for the creation of magnetic energy by compression
(the first term) and by the stretching of field lines (the second
term); the reduction of the magnetic energy due to work done
on the fluid by the Lorentz force leads to a negative source term.
We show the creation and destruction of the magnetic energy of
the model with A = 125 in Fig. 6. The main site of field amplifi-
cation (blue colours) is the centre of the model where the strong
flux sheet is stretched by the flow. The flow field of our mod-
els is nearly incompressible, i.e., the first term on the r.h.s. of
Eq. (11) is small. As there is no back-reaction onto the flow, the
second term on the r.h.s. of Eq. (11) gives rise to an exponential
increase of the magnetic energy where bx and by have the same
sign which is the case in the flux sheet passing through the ori-
gin of the models. Further, less important amplification as well
as a small decrease of emag takes place in the side arcs of the
sheet, i.e., the flux sheets closer to the centre of the vortex. In all
of these regions, amplification by stretching dominates over the
compression term. The volume integral of the source term over
the entire computational domain is positive, i.e., the magnetic
energy is increasing.

Because amplification is mediated by a well resolved, rather
smooth flow, the growth rate of the magnetic energy is indepen-
dent of the grid resolution. It is set by the velocity of the gas
only, with small variations of the overturning velocity reflected
in small variations of the growth rate. These variations can be
observed in Fig. 4: at t − tKH ≈ 3 and t − tKH ≈ 2 and 4, the
overturning velocity of the vortex (monitored, e.g., by Ey

kin
) goes

through an oscillation maximum and two minima, respectively.
Consequently, the growth rate (the slope of the curves in Fig. 4)
is larger at t − tKH ≈ 3 than at t − tKH ≈ 2 and 4.

In the model with A = 125, we find an additional flow struc-
ture not present for the weaker field: the line-like structure is
broadened (most clearly visible in the outer arc stretching from
(x, y) ≈ (−1, 0.44) to (x, y) ≈ (−0.05, 0.18), see panel (b) of
Fig. 5) and contains gas of significantly reduced velocity. This
decrease is caused by Maxwell stresses associated with the mag-
netic flux sheet located at the line-like structure. The field is
(within a factor of a few) close to equipartition with the velocity
field of the ambient matter, and, consequently, magnetic stresses
suffice to decelerate the fluid motion. In the model with lower
initial Alfvén velocity, the magnetic field is too weak to cause
such an effect. Thus, the deceleration is not present.

The termination level of this phase depends strongly on the
grid resolution as well as the initial field strength. Comparing the
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Fig. 6. The amplification of the magnetic field of the same model as
shown in panels (a) and (b) of Fig. 5 in the kinematic phase. The panel
shows the source term of the magnetic energy density, smag. Red or blue
colours show regions where magnetic energy is destroyed or created,
respectively.

different lines in Fig. 4, we find that the growth ends slightly ear-
lier for stronger initial fields. Furthermore, it amplifies a stronger
initial field by a smaller factor than a weaker one.

A comparison of the amplification of the magnetic field (the
amplification factor f term = Mkin

xy /M
KH
xy , i.e., the ratio of the off-

diagonal volume-integrated Maxwell stress component Mxy at
the end of the kinematic phase and that at the end of the KH
phase) as a function of the grid resolution and the initial Alfvén
number is shown in Fig. 7. We find that our models populate
the lower right (grey-shaded) region of both the mx − f term and
the A − f term diagrams. For a given resolution, there is a maxi-
mum amplification factor achieved for very small initial Alfvén
numbers. For a fixed initial Alfvén number, on the other hand,
f term increases with increasing grid resolution; the dependence
of the amplification on the grid resolution is strong for coarse
grids, but rather weak for well resolved simulations; for very
fine resolutions (or small Alfvén number), we find convergence
of the Maxwell stress. The weaker the initial field, the higher
is the amplification achievable during the kinematic phase. The
allowed regions (grey-shaded) are bounded from above approx-

imately by power laws for which we estimate forms ∝ m7/8
x and

∝ A3/4, respectively. In the following, we will explain the trends
and limits visible in this comparison.

To quantify the effects of the resolution, we define a char-
acteristic length scale of variations of the magnetic field, lb =
|b|/| j|, where j = ∇ × b is (apart from the constant 4π/c) the
current density. Initially infinite, lb decreases during the KH and
the kinematic phases due to the formation of a thin flux sheet.

Due to flux conservation, the amplification of the field con-
centrated in a flux sheet is accompanied by a decrease of the
width of the sheet orthogonal to the magnetic field, a rough ap-
proximation for which is given by lb. In simulations, a lower
bound for the sheet width is given by the grid spacing. Once
this limit is reached, the amplification ceases, and the maximum
field strength does not grow any more, while the magnetic en-
ergy can still increase due to the increasing length of the sheet.
Consequently, there exists an upper limit for the amplification
of the magnetic field strength attainable by flux-sheet stretch-

A=125, M=1, 20482

~ 0
(incompressible flow)

∂temag +∇(emagv) ≈ emag ×K exponential
amplification
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• The termination level of the KA-phase depends on resolution and on b0.
• The growth ends slightly earlier for stronger initial fields.
• Amplification of a stronger initial field by a smaller factor than a weaker one.  
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Fig. 7. The amplification factor of the magnetic field during the kinematic phase of models with an initial Mach numberM = 1 as a function of the
number of grid cells, mx (left panel), and of the initial Alfvén number, A (right panel). In the left panel, models with A = 25, 50, 125, 250, 500,
1250, and 5000 are shown by black circles, dark blue asterisks, light blue plus signs, green diamonds, yellow triangles, orange squares, and red ×
signs, respectively. The region where we find our models is shaded grey; its boundary is a power law ∝ m7/8x . In the right panel, models with a grid
size of mx = 256, 512, 1024, 2048, and 4096 zones are displayed by black astersisks, dark blue + signs, light blue diamonds, green triangles, and
orange squares, respectively. The grey-shaded region is bounded by a power law ∝ A3/4; it shows the region where our models our situated.

ing, depending on the resolution. It is set by the ratio of the grid
resolution and the initial thickness.

As outlined above, the exponential growth of the magnetic
energy during this phase is caused by the stretching of the flux
sheet near the centre of the grid. An effect adding to this expo-
nential growth of the field strength is the increasing length of the
sheet. On its own, this effect leads to a linear growth of the en-
ergy only. Thus, once the minimum thickness of the flux sheet
is reached and the exponential amplification of the field strength
ceases, further increase of the magnetic energy can at most be
linear in time: the phase of kinematic amplification terminates.

The limit of maximum amplification is achieved only if the
field remains too weak during the kinematic phase to react back
onto the flow. Models with such a behaviour can be found at
the upper boundary of the grey-shaded region in the left panel
of Fig. 7 (i.e., our models with A = 1250 or 5000). For, e.g.,
the model with A = 5000 discussed previously, lb is close to
the width of one grid cell in the flux sheets when the kinematic
growth ceases (see the top half of Fig. 8). On the other hand,
nowhere does the magnetic field dominate over the velocity field
in terms of the energy: the Alfvén velocity is everywhere much
smaller than the gas velocity–except for a tiny region in the very
centre of the model where the velocity is very small due to the
symmetry of the model (bottom half of Fig. 8).

The dynamics and, as a consequence, the termination of
the kinematic growth phase shows distinct features if the mag-
netic field strength reaches–within a factor of order unity–local
equipartition with the kinetic field. The amplification factor,
f term, is larger for weaker initial fields (cf. Fig. 7).

One factor contributing to this trend is a certain amount
of back-reaction of the field onto the flow, leading to a reduc-
tion of the rotational velocity of the KH vortex. As discussed
above, magnetic stresses decelerate the fluid in the flux sheets.
Consequently, the kinematic growth rate of the magnetic field is
reduced slightly w.r.t. the case of weaker here, the original
version is correct fields, giving rise to a reduced f term

(cf. the slower growth of the transverse magnetic energy of mod-
els with A = 125 and high resolution visible in Fig. 4). Such a

feedback occurs if the magnetic field reaches local equipartion
with the velocity field, i.e., for an Alfvén number of order unity.

Additionally, we find that the effects of numerical resistiv-
ity can become important. Although our simulations employ the
equations of idealMHD, the inherent resistivity of the numerical
scheme has an effect on the magnetic field roughly similar to a
physical resistivity, with dynamical consequences ranging from
a rather gentle smoothing of sharp features in the field to vio-
lent resistive instabilities of, e.g., tearing-mode type. It is most
pronounced at length scales close to the grid spacing, δx.

When the typical length scales of the magnetic field–given
approximately by lb–reaches the grid spacing, we can expect nu-
merical resistivity to become important. For the A = 125 version
of the model with M = 1 and mx = 2048 zones, lb is in the flux
sheet similar to the grid scale when the model is close to the ter-
mination of the kinematic phase (see Fig. 9, panel (a) showing a
magnification of the central region of the model). The magnetic
field shows a complex pattern of sheets, some of which have a
double or even triple structure of anti-parallel field lines. An ex-
ample for such a structure is the pattern passing through the ori-
gin and the points (x, y) ≈ (−0.4,−0.25) and (x, y) ≈ (0.4, 0.25)
(cf. Fig. 9, panel (a)), which consists of a core of positive bx and
two parallel side wings with bx < 0. The three-fold structure is
the result of the advection of magnetic flux towards the central
sheet by the flow.

As the advection continues, the strength of the magnetic field
in the side wings increases, while their width decreases, leading
to intense currents. Eventually, lb ≤ δx (see Fig. 9, panel (a)),
and resistive instabilities (tearing modes) start to grow on the
side wings of this triple sheet (cf. the curly structures around the
sheet) disrupting the side wings and leaving behind only the core
sheet. The instability is not localised at the centre only; instead, it
develops everywhere along the contact surface of the core sheet
with the side wings. The entire outer arc of the sheet is affected
by the instabilities (Fig. 9, panel (b)).

Shortly afterwards, the core of the former triple sheet, still
intact, is disrupted. From the interior of the vortex, additional
windings of the flux sheet are advected towards the core, creating

f term :=
MKA

xy

MKH
xy

f term ∝ m7/8
x f term ∝ A3/4

• For a given mx, there is a 
maximum amplification 
factor achieved for very 
small initial A.

• For a fixed initial A, fterm 
increases with increasing 
mx.

• The dependence of the 
amplification on mx is strong 
for coarse grids, but rather 
weak for well resolved 
simulations.

• For very fine resolutions (or 
small A), we find 
convergence of the Maxwell 
stress.
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• Quantification of the resolution effects: 
lb = |b| / |∇ x b|

• B-flux conservation: lb decreases (from lb ~ ∞ 
@ t=0) to finite width as the field grows and 
winds up during the KH and KH phases.

• h=min(lb) attainable in numerical simulations.

• If lb ~ h, the B-field cannot keep growing, but 
emag can do it (linearly), because of the 
increased length of the sheet. This sets the 
end of the KA-phase.

• Thus, there exists Bmax ∝ B0 x a / h.

• Bmax is only reached if the field is too weak 
(A<1250) to not react back on the dynamics 
during the KA-phase. 

• At the end of the KH-phase, if A>1250, 
nowhere emag > ekin, indeed, cA << v.
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new strong currents. Again, strong resistive instabilities develop
in the current sheets. This process repeats every time strong cur-
rents are built up due to the convergence of flux sheets. The large
coherent structure of the flux sheet is disrupted; reconnection of
magnetic field lines leads to numerous small-scale field struc-
tures, including closed field loops, similarly to the results re-
ported by previous simulations (e.g., Keppens et al. 1999).

The amplification of the magnetic field is terminated by
the development of these resistive instabilities. Two reasons are
mainly responsible for this: on the one hand, magnetic energy
can be converted into thermal one by resistive instabilities, and,
on the other hand, the small-scale field and flow resulting from
these instabilities is not as efficient in amplifying the magnetic
field as the previous coherent topology.

The mechanism described above is responsible for the ter-
mination of the kinematic amplification in well resolved mod-
els. All models with A = 50 or 125 and more than 400 or 1024
grid cells per dimension, respectively, undergo this evolution.
For even finer grids, the results are essentially converged in terms
of the amplification factor f term (see Fig. 7). The possibility of a
converged result for a system that depends in such a strong way
on numerical resistivity acting on the scale of the grid seems re-
markable and deserves a comment. One would expect naturally
that with better grid resolution, i.e., decreasing resistivity, tearing
modes are suppressed, thus enabling the field to grow to higher
values of |b|.

However, this reasoning does not apply to the models dis-
cussed above. It would hold if the main effect of resistivity was
the disruption of single flux sheets. In such a situation, the flux
sheet could be amplified until tearing modes grow sufficiently
rapid to compete with the field amplification. The growth rate
of the resistive instabilities increases with decreasing thickness
of the sheet, increasing field strength, or increasing resistivity
(e.g., Biskamp 2000). As soon as the stretching of the flux sheet
would lead to a combination of sufficiently strong field and suffi-
ciently thin sheet, tearing modes would start to disrupt the sheet.
The amount of stretching necessary to reach this point would
depend on the resistivity, i.e., in our case on the numerical res-
olution: finer grids require stronger fields and thinner sheets for
disruption. Consequently, the maximum field strength, achieved
at disruption, should grow with increasing grid resolution.

The dynamics of our models as described above exhibits a
crucial difference from that of the instability of an isolated cur-
rent sheet in a static background. The instabilities terminating
the growth of the magnetic energy operate on a multitude of
flux sheets converging due to a dynamic background flow. Their
growth rate can become sufficiently fast to overcome the kine-
matic growth once the distance between two structures of the
magnetic field rather than the width of a single sheet becomes
sufficiently small. In contrast to the sheet width, this distance is
not related to the magnetic energy stored in the sheets; instead,
it is determined mainly by the flow field. Consequently, a close
relation exists between the velocity field and the instance of ter-
mination. The velocity field is, in turn, given by the hydrody-
namics of the KH vortex, and does not depend strongly on the
resolution. Therefore, the moment at which the flux sheets can
break up and, consequently, the energy contained in them is in-
dependent on resolution. Thus, convergence is possible despite
the importance of grid-scale effects.

As we saw above, the tearing modes of our models are trig-
gered first after the formation of side wings to the main flux sheet
pasing through the centre of the grid. The core sheet is at this
point well resolved by several grid cells, but the distances of the
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Fig. 8. The structure of the model with initial Mach number M = 1 and
Alfvén numbers A = 5000 close to the termination of the kinematic
phase. The top half shows the logarithm of the characteristic length
scale of the magnetic field, |b|/|∇× b| in units of the grid spacing; red or
blue colours indicate regions in which the magnetic structures are larger
or smaller than one grid cell, respectively. The bottom half shows the
logarithm of the ratio of the Alfvén velocity to the fluid velocity with
blue and red colours denoting magnetically and kinetically dominated
regions, respectively.

current sheets between the side wings and the core decrease as
the wings are advected towards the core sheet.

Not all models, however, show convergence. The grid reso-
lution required for convergence increases with the initial Alfvén
number. For very weak initial fields (A ≥ 250), even our finest
grids of > 40962 zones do not yield a resolution-independent
termination level. The advection of the flux sheets does not de-
pend on the resolution and only weakly on the initial field (feed-
back is very limited in the kinematic phase). Thus, the forma-
tion of unstable multiple sheets is possible even on coarse grids.
Nevertheless, we do not find strong resistive instabilities at this
phase in these models.

As note above, the growth rate of resistive instabilities de-
pends, apart from the resistivity, on the width of the current sheet
and the field strength. The condition for the end of the kinematic
phase is that the tearing modes grow at a rate larger than the
kinematic amplification rate set by the velocity field. To match
this rate, sufficiently strong fields during close encounters of flux
sheets are required. This explains why we do not find resistive
instabilities in models with too weak initial fields or too coarse
resolution: in this case, the limitations of the maximum field
strength of a flux sheet imposed by its minimum width lead to a
reduction of the growth rate of resistive instabilities even for two
flux sheets at the minimal distance of a grid cell. Consequently,
these instabilities cannot terminate the kinematic field amplifi-
cation the same way as for stronger fields or finer grids.

The field strength required for resistive instabilities to termi-
nate the kinematic phase depends on the flow field: faster shear
flows require stronger fields. Empirically, we find that the max-
imum field strength at termination corresponds roughly to an
Alfvén number of order unity, i.e., similar to the value required
for dynamic feedback.

To summarise, we have found different exits from the kine-
matic amplification phase:

lb ~ 1
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• If A < 1250, because of the amplification of the B-field, it can react back on the flow, 
decreasing the rotational velocity of the KH-vortex, which happens if locally emag > ekin (or 
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Fig. 9. The same as Fig. 8, but for the model with initial Mach number
M = 1 and Alfvén numbers A = 125. Panel (a) shows a close-up of the
centre of the model at a time close to the termination of the kinematic
phase, and panel (b) shows the entire model shortly afterwards.

1. passive termination: the field strength reaches a maximum
when the flux sheets reach a thickness close to the grid spac-
ing,

2. resisto-dynamic termination: a combination of dynamic and
resistive termination when the field reaches equipartition
with the flow field: Lorentz forces reduce the rotational ve-
locity of the KH vortex while resistive instabilities develop
as flux sheets coalesce.

Whereas the passive mode of termination is clearly a nu-
meric artefact, the dynamic one can be expected to be the one
occuring in nature. It leads to an Alfvén velocity locally of the
same order as the shear velocity. This termination value is rather
independent of the initial field. The volumetric average of the
magnetic energy, on the other hand, increases with the initial
field strength since the maximum field is attained in a small
patch of the volume that decreases with decreasing initial field
due to the decreasing width of flux sheets.

Our results (cf. Fig. 7) suggest that the maximum amplifica-
tion factor f term of the Maxwell stress (and similarly of the trans-
verse magnetic energy) scales with the initial Alfvén number,
A, approximately as A3/4. Consequently, the maximum Maxwell

stress at the end of the kinematic phase scales with the initial
magnetic field, b0, approximately as

Mmax
xy ∝ b

5/4
0
, (12)

since MKH
xy scales with the initial field strength as MKH

xy ∝ b2
0
.

This maximum is achieved for sufficiently fine grid resolution.
If the model is underresolved, this value is reduced by a factor

approximately ∝ m7/8
x .

Thus, the maximum field that can be reached is not indepen-
dent of the initial field. Weak initial fields rather lead to weak
termination fields which, in turn, will have only a weak dynamic
influence on the flow. Consequently, there is a hydrodynamic
limit of the magnetic KH instability.

Total amplification: The total amplification of the magnetic
field is given by the combination of the amplification during the
KH and kinematic phases. We compute the ratios of the magnetic
energy and the maximum magnetic field strenght at the end of
the kinematic phase to their respective values at t = 0, f e and
f b, which are listed in Tab. A.3.

We show the amplification factors for models with an ini-
tial Mach number M = 1 in Fig. 10 (black symbols). The trends
described above for the transverse field and the Maxwell stress
component Mxy hold for the total field energy and the maximum
field as well, since the termination of the growth of all these vari-
ables occurs simultaneously. Increasing the grid resolution, we
find increasing amplification factors until they converge eventu-
ally. The resolution requirement for convergence becomes more
stringent for weaker fields. The converged amplification factors
increase with decreasing magnetic field, following power laws

for which we estimate f e ∝ b
−2/3
0

and f b ∝ b−1
0

. The latter
scaling leads to a maximum field indendent of the initial field
strength.

Models with differing hydrodynamic initial state exhibit a
very similar scaling of both amplification factors with the initial
field. Models with an initial Mach number M = 0.5 and models
with M = 1 but a width of the shear layer of a = 0.15 (instead of
a = 0.05 as for the other models) are included in Fig. 10 (green
and red symbols, respectively). The KH instability grows slower
in these models than it does for the standard models discussed
above, and it saturates at a smaller value of the transverse kinetic
energy (≈ 3.3 × 10−3 and ≈ 4.2 × 10−3 instead of ≈ 9.5 × 10−3,
respectively), leading to a slower kinematic field growth.

Consequently, the amplification factor f b is smaller the
smaller the transverse kinetic energy of the saturated KH in-
stability, while its behaviour for varying b0 is consistent with
a scaling ∝ b−1

0
, similar to the standard cases. Independent of the

initial shear flow, the amplification of the energy, f e scales with

b0 roughly as b
−2/3
0

, but the proportionality constant depends on
the initial state in a more complex way. For fixed a, slower shear
flows lead to less efficient amplification. A larger width, on the
other hand, tends to support a similar amount of growth of the
magnetic energy than a smaller one. For broader transition layers
(i.e., larger a), the amplification of the magnetic field is smaller
than for narrower ones. However, since the volume where the
amplification takes place is larger, the overall effect is that the
total magnetic energy grows as in the case of a narrower transi-
tion layer.

To summarise, the maximum magnetic field achieved is
mainly a function of the overturning velocity of the KH vortex,
corresponding to the transverse kinetic energy, while the mag-
netic energy at the termination of the growth depends on the ini-
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Fig. 9. The same as Fig. 8, but for the model with initial Mach number
M = 1 and Alfvén numbers A = 125. Panel (a) shows a close-up of the
centre of the model at a time close to the termination of the kinematic
phase, and panel (b) shows the entire model shortly afterwards.

1. passive termination: the field strength reaches a maximum
when the flux sheets reach a thickness close to the grid spac-
ing,

2. resisto-dynamic termination: a combination of dynamic and
resistive termination when the field reaches equipartition
with the flow field: Lorentz forces reduce the rotational ve-
locity of the KH vortex while resistive instabilities develop
as flux sheets coalesce.

Whereas the passive mode of termination is clearly a nu-
meric artefact, the dynamic one can be expected to be the one
occuring in nature. It leads to an Alfvén velocity locally of the
same order as the shear velocity. This termination value is rather
independent of the initial field. The volumetric average of the
magnetic energy, on the other hand, increases with the initial
field strength since the maximum field is attained in a small
patch of the volume that decreases with decreasing initial field
due to the decreasing width of flux sheets.

Our results (cf. Fig. 7) suggest that the maximum amplifica-
tion factor f term of the Maxwell stress (and similarly of the trans-
verse magnetic energy) scales with the initial Alfvén number,
A, approximately as A3/4. Consequently, the maximum Maxwell

stress at the end of the kinematic phase scales with the initial
magnetic field, b0, approximately as

Mmax
xy ∝ b

5/4
0
, (12)

since MKH
xy scales with the initial field strength as MKH

xy ∝ b2
0
.

This maximum is achieved for sufficiently fine grid resolution.
If the model is underresolved, this value is reduced by a factor

approximately ∝ m7/8
x .

Thus, the maximum field that can be reached is not indepen-
dent of the initial field. Weak initial fields rather lead to weak
termination fields which, in turn, will have only a weak dynamic
influence on the flow. Consequently, there is a hydrodynamic
limit of the magnetic KH instability.

Total amplification: The total amplification of the magnetic
field is given by the combination of the amplification during the
KH and kinematic phases. We compute the ratios of the magnetic
energy and the maximum magnetic field strenght at the end of
the kinematic phase to their respective values at t = 0, f e and
f b, which are listed in Tab. A.3.

We show the amplification factors for models with an ini-
tial Mach number M = 1 in Fig. 10 (black symbols). The trends
described above for the transverse field and the Maxwell stress
component Mxy hold for the total field energy and the maximum
field as well, since the termination of the growth of all these vari-
ables occurs simultaneously. Increasing the grid resolution, we
find increasing amplification factors until they converge eventu-
ally. The resolution requirement for convergence becomes more
stringent for weaker fields. The converged amplification factors
increase with decreasing magnetic field, following power laws

for which we estimate f e ∝ b
−2/3
0

and f b ∝ b−1
0

. The latter
scaling leads to a maximum field indendent of the initial field
strength.

Models with differing hydrodynamic initial state exhibit a
very similar scaling of both amplification factors with the initial
field. Models with an initial Mach number M = 0.5 and models
with M = 1 but a width of the shear layer of a = 0.15 (instead of
a = 0.05 as for the other models) are included in Fig. 10 (green
and red symbols, respectively). The KH instability grows slower
in these models than it does for the standard models discussed
above, and it saturates at a smaller value of the transverse kinetic
energy (≈ 3.3 × 10−3 and ≈ 4.2 × 10−3 instead of ≈ 9.5 × 10−3,
respectively), leading to a slower kinematic field growth.

Consequently, the amplification factor f b is smaller the
smaller the transverse kinetic energy of the saturated KH in-
stability, while its behaviour for varying b0 is consistent with
a scaling ∝ b−1

0
, similar to the standard cases. Independent of the

initial shear flow, the amplification of the energy, f e scales with

b0 roughly as b
−2/3
0

, but the proportionality constant depends on
the initial state in a more complex way. For fixed a, slower shear
flows lead to less efficient amplification. A larger width, on the
other hand, tends to support a similar amount of growth of the
magnetic energy than a smaller one. For broader transition layers
(i.e., larger a), the amplification of the magnetic field is smaller
than for narrower ones. However, since the volume where the
amplification takes place is larger, the overall effect is that the
total magnetic energy grows as in the case of a narrower transi-
tion layer.

To summarise, the maximum magnetic field achieved is
mainly a function of the overturning velocity of the KH vortex,
corresponding to the transverse kinetic energy, while the mag-
netic energy at the termination of the growth depends on the ini-

A=125 (end KA-phase) A=125 (shortly afterwards)

local equipartition

• Numerical resistivity 
becomes important, 
but note that 
because thin B-
field sheets are 
pushed together to 
distances ~ h, not 
because the 
thickness of 1 sheet 
~ lb ~ h  -similar 
dynamics to 
Keppens et al 
1999-.
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• If A < 1250, because of the amplification of the B-field, it can react back on the flow, 
decreasing the rotational velocity of the KH-vortex, which happens if locally emag > ekin (or 
A=1).

• Numerical resistivity 
becomes important, 
but note that 
because thin B-
field sheets are 
pushed together to 
distances ~ h, not 
because the 
thickness of 1 sheet 
~ lb ~ h  -similar 
dynamics to 
Keppens et al 
1999-.

• This fact explains why we get numerical convergence, in contrast 
with the expectations for the a current sheet in a static 
background (finer grid → lower resistivity → no convergence; 
e.g., Biskamp 2000):

• Instabilities terminating the growth of emag operate on a multitude 
of flux sheets converging due to a dynamic background flow. 

• Once the distance between two structures of the magnetic field 
becomes sufficiently small: numtear > numKA. 

• This distance is not related to the emag stored in the sheets, but it 
is determined by the flow field. 
➡ close relation: velocity field ⇔ instance of termination. 

• The V-field is given by the HD of the KH vortex, and does not 
depend strongly on resolution. Therefore:
➡The moment at which the flux sheets break up and, hence, 

the energy contained in them is independent on resolution. 
➡Convergence is possible despite grid-scale effects.



• Summary of the possible exits of the KH-phase:

1. Passive termination:  the field strength reaches a maximum when the flux sheets reach 
a thickness close to the grid spacing, 

2. Resisto-dynamic termination: a combination of dynamic and resistive termination when 
the field reaches local equipartition with the flow field: Lorentz forces reduce the 
rotational velocity of the KH vortex while resistive instabilities develop as flux sheets 
coalesce.

➡ leads locally to A~1, independently of b0.

➡emag increases with b0, since BmaxKA is attained in a small patch of the volume that 
decreases with b0 due to the decreasing width of the flux sheets.

• Notes:

• Passive termination is likely a numerical artifact consequence of insufficient resolution.

• Resisto-dynamic termination is probably the physics-wise exit of the KA-phase.

 Magnetized models: weak fields
Kinematic Amplification phase



• Total amplification of the B-field (fb) and of emag (fe) from 
t=0 to the end of the KA-phase, as a function of the shear 
flow.

• Increasing grid resolution ⇒ larger amplification until 
convergence.

• Finer resolution needed for weaker initial fields.

• Since fb ∝ b0-1 ⇒ bmaxKA independent of b0.

• Models with slower shear flow (smaller M) or with 
larger a yield smaller fb (similar but more complex 
trends for fe). 

 Magnetized models: weak fields
Kinematic Amplification phase
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Fig. 10. The amplification factors f e (top panel) and f b (bottom panel)
as a function of the initial magnetic field, b0, for models with differ-
ent parameters of the shear flow: empty black diamonds, filled green
circles, and filled red diamonds correspond to models with M = 1 and
a = 0.05, M = 0.5 and a = 0.05, and M = 1 and a = 0.15, respectively.
The spread in vertical direction is due to different grid resolution of the
simulations. To indicate the scaling with the initial field strength, we

show power laws ∝ b−2/3
0

(top panel) and b−1
0

(bottom panel).

tial Mach number, on the width of the shear profile and on the
initial magnetic field.

Saturation, dissipation and disruption: After the termina-
tion of the amplification of the magnetic field, the shear flow en-
ters the saturation phase. We will discuss in the following mainly
models in which the growth terminates dynamically and resis-
tively rather than passively, and mention the differences to mod-
els with passive termination only briefly.

We show the temporal evolution of the partial energies of
the model with M = 1 and A = 125 in Fig. 11. Once the KH and
kinematic phases are over, both the kinetic energy of the shear
component of v, vx, and of the transverse component, vy, de-
crease, while the internal energy increases. The magnetic energy
remains roughly on the level it has reached at termination of the
kinematic phase. In the final state, the transverse kinetic energy
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Fig. 11. Panel (a): The temporal evolution of the model with M = 1
and A = 125, computed on a grid of 20482 zones. The top panel shows
the internal energy per unit volume as a function of time. The bottom
panel shows the logarithm of the kinetic energy in x direction per unit
volume (dark red line marked by a × sign), of the kinetic energy in y
direction per unit volume (orange line marked by a square sign), of the
magnetic energy in x direction per unit volume (dark blue line marked
by a triangle sign), and of the magnetic energy in y direction per unit
volume (light blue line marked by a diamond sign).Panel (b): The same
as Fig. 11, but for a simulation of a supersonic model withM = 4.4 and
A = 5000 initially. Because of the completely different dynamics of this
model, we did not include the lines indicating the end of the KH and the
kinematic phases.

is less than the total magnetic energy and equal to the transverse
magnetic energy.

To explain this evolution, we compare the structure of the
same model at the beginning of the saturated phase and towards
the end of the simulation in Fig. 12. The model exhibits clear
signs of disruptive dynamics (see Jones et al. 1997). The KH
vortex is still visible as a coherent pattern at t = 34.4, i.e., shortly
after the end of the kinematic phase (panel (a)). At t = 81.5, the
vortex is disrupted, and, instead, the velocity field is dominated
by a broad transition region between the oppositely directed
shear flows. The y component of the velocity exhibits a structure
dominated by small-scale patterns. The magnetic field is con-
centrated in a multitude of thin flux sheets with typical length
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Fig. 10. The amplification factors f e (top panel) and f b (bottom panel)
as a function of the initial magnetic field, b0, for models with differ-
ent parameters of the shear flow: empty black diamonds, filled green
circles, and filled red diamonds correspond to models with M = 1 and
a = 0.05, M = 0.5 and a = 0.05, and M = 1 and a = 0.15, respectively.
The spread in vertical direction is due to different grid resolution of the
simulations. To indicate the scaling with the initial field strength, we

show power laws ∝ b−2/3
0

(top panel) and b−1
0

(bottom panel).

tial Mach number, on the width of the shear profile and on the
initial magnetic field.

Saturation, dissipation and disruption: After the termina-
tion of the amplification of the magnetic field, the shear flow en-
ters the saturation phase. We will discuss in the following mainly
models in which the growth terminates dynamically and resis-
tively rather than passively, and mention the differences to mod-
els with passive termination only briefly.

We show the temporal evolution of the partial energies of
the model with M = 1 and A = 125 in Fig. 11. Once the KH and
kinematic phases are over, both the kinetic energy of the shear
component of v, vx, and of the transverse component, vy, de-
crease, while the internal energy increases. The magnetic energy
remains roughly on the level it has reached at termination of the
kinematic phase. In the final state, the transverse kinetic energy
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Fig. 11. Panel (a): The temporal evolution of the model with M = 1
and A = 125, computed on a grid of 20482 zones. The top panel shows
the internal energy per unit volume as a function of time. The bottom
panel shows the logarithm of the kinetic energy in x direction per unit
volume (dark red line marked by a × sign), of the kinetic energy in y
direction per unit volume (orange line marked by a square sign), of the
magnetic energy in x direction per unit volume (dark blue line marked
by a triangle sign), and of the magnetic energy in y direction per unit
volume (light blue line marked by a diamond sign).Panel (b): The same
as Fig. 11, but for a simulation of a supersonic model withM = 4.4 and
A = 5000 initially. Because of the completely different dynamics of this
model, we did not include the lines indicating the end of the KH and the
kinematic phases.

is less than the total magnetic energy and equal to the transverse
magnetic energy.

To explain this evolution, we compare the structure of the
same model at the beginning of the saturated phase and towards
the end of the simulation in Fig. 12. The model exhibits clear
signs of disruptive dynamics (see Jones et al. 1997). The KH
vortex is still visible as a coherent pattern at t = 34.4, i.e., shortly
after the end of the kinematic phase (panel (a)). At t = 81.5, the
vortex is disrupted, and, instead, the velocity field is dominated
by a broad transition region between the oppositely directed
shear flows. The y component of the velocity exhibits a structure
dominated by small-scale patterns. The magnetic field is con-
centrated in a multitude of thin flux sheets with typical length

∝b0-2/3

∝b0-1



• After the end of the KA-phase, the fluid 
enters in a saturation phase. In the 
following we restrict to resisto-dynamic 
termination cases.

• Secular decrease of ekinx,y while eint 
grows. 

• emagx,y stay at a roughly constant 
level. 

• ekiny ~ emagy , but emag<< ekin.

 Magnetized models: weak fields
Saturation, dissipation and disruption
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Fig. 10. The amplification factors f e (top panel) and f b (bottom panel)
as a function of the initial magnetic field, b0, for models with differ-
ent parameters of the shear flow: empty black diamonds, filled green
circles, and filled red diamonds correspond to models with M = 1 and
a = 0.05, M = 0.5 and a = 0.05, and M = 1 and a = 0.15, respectively.
The spread in vertical direction is due to different grid resolution of the
simulations. To indicate the scaling with the initial field strength, we

show power laws ∝ b−2/3
0

(top panel) and b−1
0

(bottom panel).

tial Mach number, on the width of the shear profile and on the
initial magnetic field.

Saturation, dissipation and disruption: After the termina-
tion of the amplification of the magnetic field, the shear flow en-
ters the saturation phase. We will discuss in the following mainly
models in which the growth terminates dynamically and resis-
tively rather than passively, and mention the differences to mod-
els with passive termination only briefly.

We show the temporal evolution of the partial energies of
the model with M = 1 and A = 125 in Fig. 11. Once the KH and
kinematic phases are over, both the kinetic energy of the shear
component of v, vx, and of the transverse component, vy, de-
crease, while the internal energy increases. The magnetic energy
remains roughly on the level it has reached at termination of the
kinematic phase. In the final state, the transverse kinetic energy
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Fig. 11. Panel (a): The temporal evolution of the model with M = 1
and A = 125, computed on a grid of 20482 zones. The top panel shows
the internal energy per unit volume as a function of time. The bottom
panel shows the logarithm of the kinetic energy in x direction per unit
volume (dark red line marked by a × sign), of the kinetic energy in y
direction per unit volume (orange line marked by a square sign), of the
magnetic energy in x direction per unit volume (dark blue line marked
by a triangle sign), and of the magnetic energy in y direction per unit
volume (light blue line marked by a diamond sign).Panel (b): The same
as Fig. 11, but for a simulation of a supersonic model withM = 4.4 and
A = 5000 initially. Because of the completely different dynamics of this
model, we did not include the lines indicating the end of the KH and the
kinematic phases.

is less than the total magnetic energy and equal to the transverse
magnetic energy.

To explain this evolution, we compare the structure of the
same model at the beginning of the saturated phase and towards
the end of the simulation in Fig. 12. The model exhibits clear
signs of disruptive dynamics (see Jones et al. 1997). The KH
vortex is still visible as a coherent pattern at t = 34.4, i.e., shortly
after the end of the kinematic phase (panel (a)). At t = 81.5, the
vortex is disrupted, and, instead, the velocity field is dominated
by a broad transition region between the oppositely directed
shear flows. The y component of the velocity exhibits a structure
dominated by small-scale patterns. The magnetic field is con-
centrated in a multitude of thin flux sheets with typical length

A=125, M=1, 20482
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Fig. 12. The structure of the model with M = 1 and A = 125 computed
on a grid of 20482 zones during saturation. Panels (a) and (b) show
the model at t = 34.4 (near the beginning of the saturation phase) and
t = 81.5, respectively. The top and bottom half of the panels show the y
component of the velocity and the modulus of the magnetic field vector,
respectively. The velocity field is represented by black arrows.

scales lb close to the width of a grid cell. Due to magnetic recon-
nection, the sheets possess a complex topology. Several closed
field loops have formed which are stabilised by the combination
of the tension of the magnetic loop and an increased total pres-
sure in the interior. The pattern of flux sheets is imprinted into
the velocity field and the distribution of the gas pressure which
is reduced in the interior of the sheets. Due to the contribution of
the magnetic pressure, the flux sheets are in pressure equilibrium
with their surroundings and do not show up in the distribution of
the the total pressure, P + b2/2 which is rather featureless.

As visible in panels (b) of Fig. 9 and the left of Fig. 12, the
resistive instabilities responsible for the termination of the kine-
matic growth spread along the flux sheets, leading to a complex
field topology and inhibiting further growth of the field not only
locally but in the entire volume. Thus, the magnetic energy in
saturation is close to that at termination.

The magnetic field is in equipartition with the velocity field
locally in the flux sheets (while globally, it is still about an order
of magnitude less) . Consequently, magnetic stresses can mod-
ify the velocity field strongly. In resistive instabilities, magnetic

energy is converted to internal one. Since the magnetic field
has been built up previously at the expense of the kinetic en-
ergy, the instabilities mediate the transformation of the kinetic
to internal energy, hence acting akin to a hydrodynamic viscos-
ity. Eventually, a steady state (in a statistical sense) develops in
which the magnetic energy, and thus the effective viscosity, re-
mains roughly constant while the kinetic energy is converted to
internal one at a constant rate. After the disruption of the KH
vortex, the transverse velocity is dominated by the unordered
turbulent component created in resistive instabilities. Thus, the
kinetic energy associated with the y component of the velocity is
a measure of the intensity of the turbulence, just as the magnetic
field strength is. Consequently, it remains constant in saturation.
It is of the same order as the transverse magnetic energy. We can
identify the moment at which the KH vortex is disrupted by the
instance at which the transverse kinetic energy levels off at the
value of the transverse magnetic energy.

The saturation level of the magnetic field, and thus the effec-
tive viscosity, is set by its level at the termination of the kine-
matic phase. This level decreases with decreasing initial field.
Thus, the weaker is the field initially, the slower is the resistive
disruption of the KH vortex. To quantify this effect, we define
a disruption time, tdis, as the time at which the transverse ki-
netic energy falls below the magnetic energy, and a deceleration
rate, σdec = ∂t log Ex

kin
= 1/tdec

1. These quantities are listed in
Tab. A.4; we show tdis and tdec as a function of the initial Alfvén
number in Fig. 13. For models with very weak deceleration, the
temporal evolution of the kinetic energy is dominated by large
oscillations. Thus, the determination of σdec is not unambiguous
in these cases, and the values quoted in the table should be taken
with care. This is the case for most models for which we could
not compute a disruption time.

Depending on the initial field strength, the models require a
certain minimum resolution for convergence of tdis and tdec. If
the resolution criterion is not met, the disruption of the vortex
and the deceleration of the shear flow proceed slower due to the
limited amount of field amplification. In the following, we will
focus on models in or near convergence.

The disruption and deceleration times scale with the initial
field strength roughly as b−7

0
. Comparing these times for models

with different initial shear profiles, we find that the disruption
time depends sensitively on M and a. The larger the amplifica-
tion factor of the magnetic energy during the KH and kinematic
phases, f e, for a given shear profile (see Fig. 10), the faster is
the disruption of the vortex. The deceleration time, on the other
hand, shows a weaker dependence on M and a. Even if we in-
crease a to a vakue of 0.2, leading to a much slower KH growth
and a very low saturation level of e

y

kin
∼ 10−3, the decelera-

tion time is very similar to that of the models discussed above–
despite the magnetic field strength being only a small fraction of
the latter models.

For weaker fields for which the termination of the kine-
matic phase occurs passively instead of dynamically (i.e., non-
converged models), the decrease of the kinetic energy occurs
much slower. Resistive instabilities grow much slower in such
models because of the restricted field strength. Hence, the effec-
tive viscosity is much lower than for well resolved models.

1 We have considered alternative definitions of σdec, and the results
discussed below are robust.
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Fig. 12. The structure of the model with M = 1 and A = 125 computed
on a grid of 20482 zones during saturation. Panels (a) and (b) show
the model at t = 34.4 (near the beginning of the saturation phase) and
t = 81.5, respectively. The top and bottom half of the panels show the y
component of the velocity and the modulus of the magnetic field vector,
respectively. The velocity field is represented by black arrows.

scales lb close to the width of a grid cell. Due to magnetic recon-
nection, the sheets possess a complex topology. Several closed
field loops have formed which are stabilised by the combination
of the tension of the magnetic loop and an increased total pres-
sure in the interior. The pattern of flux sheets is imprinted into
the velocity field and the distribution of the gas pressure which
is reduced in the interior of the sheets. Due to the contribution of
the magnetic pressure, the flux sheets are in pressure equilibrium
with their surroundings and do not show up in the distribution of
the the total pressure, P + b2/2 which is rather featureless.

As visible in panels (b) of Fig. 9 and the left of Fig. 12, the
resistive instabilities responsible for the termination of the kine-
matic growth spread along the flux sheets, leading to a complex
field topology and inhibiting further growth of the field not only
locally but in the entire volume. Thus, the magnetic energy in
saturation is close to that at termination.

The magnetic field is in equipartition with the velocity field
locally in the flux sheets (while globally, it is still about an order
of magnitude less) . Consequently, magnetic stresses can mod-
ify the velocity field strongly. In resistive instabilities, magnetic

energy is converted to internal one. Since the magnetic field
has been built up previously at the expense of the kinetic en-
ergy, the instabilities mediate the transformation of the kinetic
to internal energy, hence acting akin to a hydrodynamic viscos-
ity. Eventually, a steady state (in a statistical sense) develops in
which the magnetic energy, and thus the effective viscosity, re-
mains roughly constant while the kinetic energy is converted to
internal one at a constant rate. After the disruption of the KH
vortex, the transverse velocity is dominated by the unordered
turbulent component created in resistive instabilities. Thus, the
kinetic energy associated with the y component of the velocity is
a measure of the intensity of the turbulence, just as the magnetic
field strength is. Consequently, it remains constant in saturation.
It is of the same order as the transverse magnetic energy. We can
identify the moment at which the KH vortex is disrupted by the
instance at which the transverse kinetic energy levels off at the
value of the transverse magnetic energy.

The saturation level of the magnetic field, and thus the effec-
tive viscosity, is set by its level at the termination of the kine-
matic phase. This level decreases with decreasing initial field.
Thus, the weaker is the field initially, the slower is the resistive
disruption of the KH vortex. To quantify this effect, we define
a disruption time, tdis, as the time at which the transverse ki-
netic energy falls below the magnetic energy, and a deceleration
rate, σdec = ∂t log Ex

kin
= 1/tdec

1. These quantities are listed in
Tab. A.4; we show tdis and tdec as a function of the initial Alfvén
number in Fig. 13. For models with very weak deceleration, the
temporal evolution of the kinetic energy is dominated by large
oscillations. Thus, the determination of σdec is not unambiguous
in these cases, and the values quoted in the table should be taken
with care. This is the case for most models for which we could
not compute a disruption time.

Depending on the initial field strength, the models require a
certain minimum resolution for convergence of tdis and tdec. If
the resolution criterion is not met, the disruption of the vortex
and the deceleration of the shear flow proceed slower due to the
limited amount of field amplification. In the following, we will
focus on models in or near convergence.

The disruption and deceleration times scale with the initial
field strength roughly as b−7

0
. Comparing these times for models

with different initial shear profiles, we find that the disruption
time depends sensitively on M and a. The larger the amplifica-
tion factor of the magnetic energy during the KH and kinematic
phases, f e, for a given shear profile (see Fig. 10), the faster is
the disruption of the vortex. The deceleration time, on the other
hand, shows a weaker dependence on M and a. Even if we in-
crease a to a vakue of 0.2, leading to a much slower KH growth
and a very low saturation level of e

y

kin
∼ 10−3, the decelera-

tion time is very similar to that of the models discussed above–
despite the magnetic field strength being only a small fraction of
the latter models.

For weaker fields for which the termination of the kine-
matic phase occurs passively instead of dynamically (i.e., non-
converged models), the decrease of the kinetic energy occurs
much slower. Resistive instabilities grow much slower in such
models because of the restricted field strength. Hence, the effec-
tive viscosity is much lower than for well resolved models.

1 We have considered alternative definitions of σdec, and the results
discussed below are robust.

beginning saturation phase end saturation phase

 Magnetized models: weak fields
Saturation, dissipation and disruption

• Vortex disrupted.
• Broad transition layer 

forms.
• Magnetic field 

concentrated in thin 
sheets (lb~ 1).

• Resistive instabilities 
spread all over (form, 
e.g., closed loops).

• B-field reaches 
equipartition with V-
field at flux sheets. 
Thus, the field can 
greatly affect the 
dynamics.

• The small scale flow 
and field are inefficient 
to be amplified further.

• Steady state reached 
(statistical sense).



 Magnetized models: weak fields
Saturation, dissipation and disruption
• How long does it take to reach a steady state?
• How long does it take to decelerate the KH-vortex?
• To quantify it, we can evaluate tdis, the time it takes 

to reach ekiny < emag and we define a deceleration 
rate as:

• We find tdis ∝b0-0.7 and tdec ∝b0-0.7. This will allow us 
to obtain typical time scales in merger motivated 
simulations.
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Fig. 13. The disruption of the KH vortex, tdis (upper panel), and the de-
celeration time scale, tdec (lower panel), as a function of the initial field
strength, b0. In both panels, we show in addition to the models repre-
sented by symbols, lines ∝ b−0.7

0
which show the approximate scaling

of the time scales with b0. Black diamonds, green diamonds, and red
squares correspond to models with M = 1 and a = 0.05, M = 0.5 and
a = 0.05, and M = 1 and a = 0.15, respectively. The scatter in the verti-
cal direction is due to different grid resolutions of the simulations. For
the same value of b0, finer resolution yields smaller values of tdis and
tdec.

4.4. Supersonic shear flows

We have simulated supersonic shear flows with a Mach number
M = 4.4, using the same velocity profile as for the models with
M = 1, but a reduced gas pressure of P = 0.0375. In the follow-
ing, we compare models with very large (A = 5000) and small
(A = 25, 50) Alfvén numbers. We performed simulations of the
models on grids with reolution between 1282 and 20482 zones.
The main conclusion of our simulations is that the growth rate
of the magnetic field is lower in supersonic shear flows than it is
in subsonic shear flows.

For the model with A = 5000, neither of our simulations, us-
ing grids of between 1282 and 20482 zones, shows an effect of
the magnetic field on the flow. The early evolution of all models
is similar to the non-magnetic model as shocks form and inter-
act. Until a time of t ∼ 70, the transverse kinetic energy in-
creases roughly exponentially; then it levels off (see panel (b) of

Fig. 11). The magnetic field in the y-direction is amplified at a
similar rate as the kinetic energy until t ≈ 100, at which time
the amplification rate increases strongly. This phase of a more
efficient field growth, lasting until t ≈ 130, corresponds to the
formation of larger regions of subsonic flow in which most of
the field amplification occurs. The magnetic field is concentrated
in thin sheets. While dominated by a multitude of shock waves
during early phases, the model shows a subsonic vortical flow in
the final state, similarly to the models discussed in the previous
section. The kinetic energy has decreased by a factor of 4 during
the entire evolution. Most of this deceleration has occured dur-
ing the early saturation phase of the KH instability, i.e., at the
same time at which the magnetic field was amplified strongest.

Comparing the magnetic energy evolution for simulations
with different grid resolution, we find trends similar to subsonic
models with dynamically negligible fields. The magnetic energy
reached depends on the grid resolution: stronger fields are ob-
tained for finer grids. The explanation for this behaviour is the
same as in the regime of dynamic termination for subsonic shear
flows: the amplification ceases once the width of a flux sheet
reaches the grid spacing.

The magnetic field of the model with A = 5000 has no in-
fluence on the dynamics. This is different for the models with
initial Alfvén numbers A = 25 and A = 50. In early stages, a
number of weak shock waves forms. Interacting with magnetic
flux sheets close to the shearing interface, the shocks are dis-
rupted. Spreading from the interface towards positive and neg-
ative y direction, a broad region of subsonic flow forms. Both
the formation and the geometry of a deceleration region dif-
fer from subsonic shear flows: in barely magnetised models, a
subsonic flow possessing a significant transversal extent results
from the interaction of oblique shocks (see Sect. 4.2), whereas
in stronger magnetised models the magnetic field enforces an
elongated shape along the x-direction.

We can find convergence w.r.t. the saturation level of the
magnetic energy. The energy is in general below the value of
subsonic models. At late times, we find equipartition between
the transverse kinetic and magnetic energies. The deceleration
times of the flow are fairly similar to the non-magnetic models.

4.5. Anti-parallel initial fields

We have recomputed a number of models with anti-parallel ini-
tial fields, i.e., an initial field bx = bx

0
sign(y). Similar simulations

have been performed previously by Keppens et al. (1999). Our
models confirm the results of this study.

For strong initial fields, corresponding to an initial Alfvén
number of A = 5, we observe, in accordance with Keppens
et al. (1999), a destabilisation of the shear layer w.r.t. the non-
magnetic case.

The qualitative dynamics of weakly magnetised shear flows
is similar to the case of parallel initial fields, evolving through
the three phases described in Sect. 4.3. There are, however, quan-
titative differences, leading to different values of, e.g., the satu-
ration value of the magnetic energy or the deceleration rate.

Due to the weak initial fields, the KH phase does not show
any differences between the two field configurations. Similarly,
the growth rate of the magnetic field in the kinematic phase does
not depend on the field geometry, but the termination of this
phase does: for the same initial Alfvén number, a model with
anti-parallel initial field experiences less amplification than one
with parallel magnetic fields. The modes of termination of the
kinematic phase are the same as in the case of parallel fields,
viz. passive or dynamic termination, but due to the presence of
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Fig. 13. The disruption of the KH vortex, tdis (upper panel), and the de-
celeration time scale, tdec (lower panel), as a function of the initial field
strength, b0. In both panels, we show in addition to the models repre-
sented by symbols, lines ∝ b−0.7

0
which show the approximate scaling

of the time scales with b0. Black diamonds, green diamonds, and red
squares correspond to models with M = 1 and a = 0.05, M = 0.5 and
a = 0.05, and M = 1 and a = 0.15, respectively. The scatter in the verti-
cal direction is due to different grid resolutions of the simulations. For
the same value of b0, finer resolution yields smaller values of tdis and
tdec.

4.4. Supersonic shear flows

We have simulated supersonic shear flows with a Mach number
M = 4.4, using the same velocity profile as for the models with
M = 1, but a reduced gas pressure of P = 0.0375. In the follow-
ing, we compare models with very large (A = 5000) and small
(A = 25, 50) Alfvén numbers. We performed simulations of the
models on grids with reolution between 1282 and 20482 zones.
The main conclusion of our simulations is that the growth rate
of the magnetic field is lower in supersonic shear flows than it is
in subsonic shear flows.

For the model with A = 5000, neither of our simulations, us-
ing grids of between 1282 and 20482 zones, shows an effect of
the magnetic field on the flow. The early evolution of all models
is similar to the non-magnetic model as shocks form and inter-
act. Until a time of t ∼ 70, the transverse kinetic energy in-
creases roughly exponentially; then it levels off (see panel (b) of

Fig. 11). The magnetic field in the y-direction is amplified at a
similar rate as the kinetic energy until t ≈ 100, at which time
the amplification rate increases strongly. This phase of a more
efficient field growth, lasting until t ≈ 130, corresponds to the
formation of larger regions of subsonic flow in which most of
the field amplification occurs. The magnetic field is concentrated
in thin sheets. While dominated by a multitude of shock waves
during early phases, the model shows a subsonic vortical flow in
the final state, similarly to the models discussed in the previous
section. The kinetic energy has decreased by a factor of 4 during
the entire evolution. Most of this deceleration has occured dur-
ing the early saturation phase of the KH instability, i.e., at the
same time at which the magnetic field was amplified strongest.

Comparing the magnetic energy evolution for simulations
with different grid resolution, we find trends similar to subsonic
models with dynamically negligible fields. The magnetic energy
reached depends on the grid resolution: stronger fields are ob-
tained for finer grids. The explanation for this behaviour is the
same as in the regime of dynamic termination for subsonic shear
flows: the amplification ceases once the width of a flux sheet
reaches the grid spacing.

The magnetic field of the model with A = 5000 has no in-
fluence on the dynamics. This is different for the models with
initial Alfvén numbers A = 25 and A = 50. In early stages, a
number of weak shock waves forms. Interacting with magnetic
flux sheets close to the shearing interface, the shocks are dis-
rupted. Spreading from the interface towards positive and neg-
ative y direction, a broad region of subsonic flow forms. Both
the formation and the geometry of a deceleration region dif-
fer from subsonic shear flows: in barely magnetised models, a
subsonic flow possessing a significant transversal extent results
from the interaction of oblique shocks (see Sect. 4.2), whereas
in stronger magnetised models the magnetic field enforces an
elongated shape along the x-direction.

We can find convergence w.r.t. the saturation level of the
magnetic energy. The energy is in general below the value of
subsonic models. At late times, we find equipartition between
the transverse kinetic and magnetic energies. The deceleration
times of the flow are fairly similar to the non-magnetic models.

4.5. Anti-parallel initial fields

We have recomputed a number of models with anti-parallel ini-
tial fields, i.e., an initial field bx = bx

0
sign(y). Similar simulations

have been performed previously by Keppens et al. (1999). Our
models confirm the results of this study.

For strong initial fields, corresponding to an initial Alfvén
number of A = 5, we observe, in accordance with Keppens
et al. (1999), a destabilisation of the shear layer w.r.t. the non-
magnetic case.

The qualitative dynamics of weakly magnetised shear flows
is similar to the case of parallel initial fields, evolving through
the three phases described in Sect. 4.3. There are, however, quan-
titative differences, leading to different values of, e.g., the satu-
ration value of the magnetic energy or the deceleration rate.

Due to the weak initial fields, the KH phase does not show
any differences between the two field configurations. Similarly,
the growth rate of the magnetic field in the kinematic phase does
not depend on the field geometry, but the termination of this
phase does: for the same initial Alfvén number, a model with
anti-parallel initial field experiences less amplification than one
with parallel magnetic fields. The modes of termination of the
kinematic phase are the same as in the case of parallel fields,
viz. passive or dynamic termination, but due to the presence of

σdec := ∂t log ex
kin = 1/tdec



 3D models: subsonic shear flows, 
parallel field

Nonmagnetic models: 
• [Ryu et al. (2000)] the KH vortex is unstable against (purely) HD instabilities: coherent 

vortex tubes near the main KH vortex exert non-axial stresses on the vortex, and fluid 
elements are prone to the elliptic instability, an instability caused by time-dependent 
shear forces, which fluid elements feel as they orbit the vortex on elliptic trajectories. 
The result is isotropic decaying turbulence. We verify this result
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oppositely directed flux sheets right from the beginning of the
evolution, reconnection of field lines is enhanced w.r.t. the case
of parallel fields, leading to earlier termination and, thus, lower
termination field strength.

As a consequence of this, magnetic deceleration of the KH
vortex is less efficient. We find disruption times and decelera-
tion rates which differ from the ones measured for parallel-field
models by a factor of ∼ 2...3, respectively.

5. Three-dimensional models

In the following section, we study the evolution of KH instabil-
ities in three-dimensional shear flows. Obviously, the numerical
resolution we can afford in 3d is much worse than in our best re-
solved 2d models. This prevents us to preform a study as detailed
as what we have for the two-dimensional case and thus, we stay
at a more qualitative level. The models we have simulated are
listed in Tab. A.5.

5.1. Subsonic shear flows, parallel magnetic field

Non-magnetic models: In three-dimensional simulations,
Ryu et al. (2000) noted that the KH vortex is unstable against
(purely) HD instabilities: coherent vortex tubes near the main
KH vortex exert non-axial stresses on the vortex, and fluid ele-
ments are prone to the so-called elliptic instability, an instabil-
ity caused by time-dependent shear forces, which fluid elements
feel as they orbit the vortex on elliptic trajectories. The result
is isotropic decaying turbulence. If a (weak) magnetic field is
present and disrupts the vortex, the post-disruption flow shows
a larger degree of organisation than without magnetic fields due
to the prevalence of flux tubes and sheets in which the magnetic
and kinetic fields are aligned.

We have simulated a purely hydrodynamic and a few weakly
magnetised models in three dimensions. As in two-dimensional
models, we have seeded the instability with small perturbations
of the y-component of the velocity varying sinusoidally with
x. To break the translational symmetry in z-direction, we have
added a small random perturbation to all components of the
velocity, with an amplitude vrandom = ξrandomv

0
y with ξrandom ∈

[10−4, 1] on top of the sinusoidal perturbation of vy (Eq. (9)).

In non-magnetic models, a KH vortex (which in 3d resem-
bles a tube) elongated in z-direction is formed during the ex-
ponential growth of the instability. The vortex is apparent in the
bottom panel of Fig. 14 where we compare the vorticity at t = 10
(shortly after the termination of the growth of the instability) and
t = 50 (in the non-linear phase). Eventually, the energy of the y-
component of the velocity saturates (see Fig. 14 for the temporal
evolution of the partial energies). In the subsequent evolution,
the kinetic energy corresponding to the x- and y-components of
v remains constant, while vz grows exponentially until it reaches
the same level as vy. This corresponds to the growth of elliptic in-
stabilities along the vortex tube. These instabilities saturate once
the vortex tube is disrupted; at this point, both transverse kinetic
energies (the y- and the z-components) are equal. Turbulence
develops, and the shear flow in x-direction is decelerated effi-
ciently (cf. the pattern of vorticity at t = 50 in the bottom panel
of Fig. 14). The deceleration occurs significantly faster than for
two-dimensional models endowed with a weak magnetic field.
The final state consists of homogeneous turbulence. The growth
rate of the elliptic instabilities is similar to that of the magnetic
energy during the kinematic phase of two-dimensional models.
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Fig. 14. Top panel: The temporal evolution of different partial energies
of a three-dimensional non-magnetic model. The top panel shows the
energy contained in the x-component of the velocity. The bottom panel
shows the logarithm of the same energy (blue line), of the y- and z-
kinetic energies (green and red lines), and of the sum of the latter two
components (orange line).
Bottom panel: Volume rendering of the modulus of the vorticity of the
same simulation at two times. The computational box is shown with red,
green, and blue arrows pointing in x-, y-, and z-direction, respectively.
The front and rear halves of the box show |∇× v| at t = 10, when the 3d
equivalent of a KH vortex is established, and t = 50, after its disruption
due to secondary instabilities, respectively.

Weak-field models: For weak-field models, the 3d KH vortex
is subject to two different effects competing for its disruption:
the purely hydrodynamic instabilities mentioned above and the
resistive ones discussed in Sect. 4.3. Which one of these mech-
anisms is most efficient depends on the degree to which three-
dimensional effects are important given by the initial amplitude
of the random perturbations.

For a model with A = 50 and a strong random perturba-
tion (with the same amplitude as the sinusoidal perturbation in
vy; see Fig. 15), the flow field shows considerable variations in
z-direction already during the formation of the 3d KH vortex.
During the kinematic phase, we observe a pattern of thin vortic-
ity tubes corresponding to magnetic flux tubes wound up around
the main 3d vortex (which is located at the boundaries in x-
direction; see Fig. 16). The KH vortex tube is disrupted until the
end of the kinematic phase, and at t ≈ 14, both transverse kinetic
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oppositely directed flux sheets right from the beginning of the
evolution, reconnection of field lines is enhanced w.r.t. the case
of parallel fields, leading to earlier termination and, thus, lower
termination field strength.

As a consequence of this, magnetic deceleration of the KH
vortex is less efficient. We find disruption times and decelera-
tion rates which differ from the ones measured for parallel-field
models by a factor of ∼ 2...3, respectively.

5. Three-dimensional models

In the following section, we study the evolution of KH instabil-
ities in three-dimensional shear flows. Obviously, the numerical
resolution we can afford in 3d is much worse than in our best re-
solved 2d models. This prevents us to preform a study as detailed
as what we have for the two-dimensional case and thus, we stay
at a more qualitative level. The models we have simulated are
listed in Tab. A.5.

5.1. Subsonic shear flows, parallel magnetic field

Non-magnetic models: In three-dimensional simulations,
Ryu et al. (2000) noted that the KH vortex is unstable against
(purely) HD instabilities: coherent vortex tubes near the main
KH vortex exert non-axial stresses on the vortex, and fluid ele-
ments are prone to the so-called elliptic instability, an instabil-
ity caused by time-dependent shear forces, which fluid elements
feel as they orbit the vortex on elliptic trajectories. The result
is isotropic decaying turbulence. If a (weak) magnetic field is
present and disrupts the vortex, the post-disruption flow shows
a larger degree of organisation than without magnetic fields due
to the prevalence of flux tubes and sheets in which the magnetic
and kinetic fields are aligned.

We have simulated a purely hydrodynamic and a few weakly
magnetised models in three dimensions. As in two-dimensional
models, we have seeded the instability with small perturbations
of the y-component of the velocity varying sinusoidally with
x. To break the translational symmetry in z-direction, we have
added a small random perturbation to all components of the
velocity, with an amplitude vrandom = ξrandomv

0
y with ξrandom ∈

[10−4, 1] on top of the sinusoidal perturbation of vy (Eq. (9)).

In non-magnetic models, a KH vortex (which in 3d resem-
bles a tube) elongated in z-direction is formed during the ex-
ponential growth of the instability. The vortex is apparent in the
bottom panel of Fig. 14 where we compare the vorticity at t = 10
(shortly after the termination of the growth of the instability) and
t = 50 (in the non-linear phase). Eventually, the energy of the y-
component of the velocity saturates (see Fig. 14 for the temporal
evolution of the partial energies). In the subsequent evolution,
the kinetic energy corresponding to the x- and y-components of
v remains constant, while vz grows exponentially until it reaches
the same level as vy. This corresponds to the growth of elliptic in-
stabilities along the vortex tube. These instabilities saturate once
the vortex tube is disrupted; at this point, both transverse kinetic
energies (the y- and the z-components) are equal. Turbulence
develops, and the shear flow in x-direction is decelerated effi-
ciently (cf. the pattern of vorticity at t = 50 in the bottom panel
of Fig. 14). The deceleration occurs significantly faster than for
two-dimensional models endowed with a weak magnetic field.
The final state consists of homogeneous turbulence. The growth
rate of the elliptic instabilities is similar to that of the magnetic
energy during the kinematic phase of two-dimensional models.
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Fig. 14. Top panel: The temporal evolution of different partial energies
of a three-dimensional non-magnetic model. The top panel shows the
energy contained in the x-component of the velocity. The bottom panel
shows the logarithm of the same energy (blue line), of the y- and z-
kinetic energies (green and red lines), and of the sum of the latter two
components (orange line).
Bottom panel: Volume rendering of the modulus of the vorticity of the
same simulation at two times. The computational box is shown with red,
green, and blue arrows pointing in x-, y-, and z-direction, respectively.
The front and rear halves of the box show |∇× v| at t = 10, when the 3d
equivalent of a KH vortex is established, and t = 50, after its disruption
due to secondary instabilities, respectively.

Weak-field models: For weak-field models, the 3d KH vortex
is subject to two different effects competing for its disruption:
the purely hydrodynamic instabilities mentioned above and the
resistive ones discussed in Sect. 4.3. Which one of these mech-
anisms is most efficient depends on the degree to which three-
dimensional effects are important given by the initial amplitude
of the random perturbations.

For a model with A = 50 and a strong random perturba-
tion (with the same amplitude as the sinusoidal perturbation in
vy; see Fig. 15), the flow field shows considerable variations in
z-direction already during the formation of the 3d KH vortex.
During the kinematic phase, we observe a pattern of thin vortic-
ity tubes corresponding to magnetic flux tubes wound up around
the main 3d vortex (which is located at the boundaries in x-
direction; see Fig. 16). The KH vortex tube is disrupted until the
end of the kinematic phase, and at t ≈ 14, both transverse kinetic

|∇xv| When the KH 
vortex forms

After vortex disruption 
by secondary 
instabilities



 3D models: subsonic shear flows, 
parallel field

Weakly magnetized models: 
• [Ryu et al. (2000)] If a (weak) magnetic field is present and disrupts the vortex, the post-

disruption flow shows a larger degree of organization than without magnetic fields due to 
the prevalence of flux tubes and sheets in which the magnetic and kinetic fields are 
aligned. We verify this result.
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Fig. 15. The temporal evolution of different partial energies of a three-
dimensional KH model with initial Mach and Alfvén numbers M = 1
and A = 50 and a strong random perturbation. To top panel shows the
longitudinal kinetic energy, ex

kin
as a function of time. The bottom panel

shows the total magnetic energy (black solid line), the partial magnetic
energies of the three field components (solid lines; blue, green, red, and
orange lines show the x-, y-, z-energies and the total transverse field
energy, i.e., the sum of the y-and z-energies). The dotted line shows
the sum of the magnetic and the transverse kinetic energies while the
dash-triple-dotted line shows the partial kinetic energy with the colours
indicating the same components as for the magnetic energies.

Fig. 16. The structure of a three-dimensional KH model with initial
Mach and Alfvén numbers M = 1 and A = 50 during the kinematic
phase (t = 9.21). The model was computed assuming strong random
perturbations. The computational domain is indicated by the thin red
box, and the red, green, and blue arrows signify the x, y, and z coordi-
nate axes, respectively. The diagram shows a volume rendering of the
magnetic field strength, |b| (blue-green colours), and the modulus of the
vorticity, |∇ × v| (red-yellow colours).

energies reach equipartion (see Fig. 15). Magnetic field amplifi-
cation ceases at this point. The deceleration of the shear flow is
mediated mainly by the hydrodynamic instabilities present in the
non-magnetic case, and thus, it is of similar efficiency. However,
it ceases eventually as the kinetic energy drops below the mag-
netic one at t ∼ 50. The final state of the model consists of decay-
ing volume-filling turbulence. Since the deceleration is only par-
tial, the model retains a smooth shear profile. The velocity and
magnetic fields are dominated by their respective x-components,
leading to a considerable anisotropy of the turbulent fields.
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Fig. 17. The same as Fig. 15, but for a model with an initial Alfvén
number of A = 5000.

If we decrease the amplitude of the random perturbations to
values of ξrandom = 10−2 and 10−4 of the sinusoidal perturbation
while keeping the same initial magnetic field, we find a consider-
ably different evolution of the shear flow. For weak random per-
turbations, the amplification of the magnetic field and the overall
dynamics proceed in a similar way as in two dimensions during
the KH and kinematic phases regarding the formation of a flux
sheet. Indeed, the z-variation of all physical quantities is very
small. Furthermore, weak-field models display a dynamical evo-
lution very similar to that of non-magnetic ones, e.g., during the
KH phase, a 3d vortex oriented parallel to the z-direction forms.
We show the temporal evolution of models employing these re-
duced perturbations in Fig. 18.

After the initial KH phase, the kinematic phase sets in. This
phase is terminated similarly to the two-dimensional case, i.e.,
depending on A and the resolution passively or dynamically by
the back-reaction onto the flow via Maxwell stresses and resis-
tive instabilities. The kinematic amplification factor of the mag-
netic energy is the same as in 2d.

For an initial Alfvén number A = 5000, we find passive
termination of the kinematic field amplification (for the time
evolution of integral quantities of this model see Fig. 17). Since
the magnetic field remains far too weak to affect the evolution,
the dynamics resembles that of a non-magnetic model. Until
t ≈ 30, three-dimensional hydrodynamic instabilities disrupt the
KH vortex tube. Indicative for the development of these insta-
bilities is the rise of ez

kin
until it reaches equipartition with e

y

kin
at t ≈ 28; this component grows at a rate comparable to the
kinematic growth rate of the magnetic field. The total magnetic
energy and the x- and y-components remain constant during
this phase, only the z-component increases exponentially. After
the termination of the 3d instabilities, all magnetic energies are
equal. They grow slowly in the remaining evolution in which tur-
bulence spreads over the entire volume and decelerates the shear
flow with the same efficiency as without a magnetic field.

For a stronger initial field (or finer resolution), the resistive
instabilities terminating the kinematic phase are accompanied by
a rapid growth of the z-components of the velocity and the mag-
netic field. For models with A = 50 and A = 25, this can be seen
around a time of t ≈ 15 (see Fig. 18). Despite the increase at
a rate exceeding by far the kinematic growth rate, the influence
of three-dimensional effects remains moderate: at t = 15, i.e.,
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Fig. 15. The temporal evolution of different partial energies of a three-
dimensional KH model with initial Mach and Alfvén numbers M = 1
and A = 50 and a strong random perturbation. To top panel shows the
longitudinal kinetic energy, ex

kin
as a function of time. The bottom panel

shows the total magnetic energy (black solid line), the partial magnetic
energies of the three field components (solid lines; blue, green, red, and
orange lines show the x-, y-, z-energies and the total transverse field
energy, i.e., the sum of the y-and z-energies). The dotted line shows
the sum of the magnetic and the transverse kinetic energies while the
dash-triple-dotted line shows the partial kinetic energy with the colours
indicating the same components as for the magnetic energies.

Fig. 16. The structure of a three-dimensional KH model with initial
Mach and Alfvén numbers M = 1 and A = 50 during the kinematic
phase (t = 9.21). The model was computed assuming strong random
perturbations. The computational domain is indicated by the thin red
box, and the red, green, and blue arrows signify the x, y, and z coordi-
nate axes, respectively. The diagram shows a volume rendering of the
magnetic field strength, |b| (blue-green colours), and the modulus of the
vorticity, |∇ × v| (red-yellow colours).

energies reach equipartion (see Fig. 15). Magnetic field amplifi-
cation ceases at this point. The deceleration of the shear flow is
mediated mainly by the hydrodynamic instabilities present in the
non-magnetic case, and thus, it is of similar efficiency. However,
it ceases eventually as the kinetic energy drops below the mag-
netic one at t ∼ 50. The final state of the model consists of decay-
ing volume-filling turbulence. Since the deceleration is only par-
tial, the model retains a smooth shear profile. The velocity and
magnetic fields are dominated by their respective x-components,
leading to a considerable anisotropy of the turbulent fields.
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Fig. 17. The same as Fig. 15, but for a model with an initial Alfvén
number of A = 5000.

If we decrease the amplitude of the random perturbations to
values of ξrandom = 10−2 and 10−4 of the sinusoidal perturbation
while keeping the same initial magnetic field, we find a consider-
ably different evolution of the shear flow. For weak random per-
turbations, the amplification of the magnetic field and the overall
dynamics proceed in a similar way as in two dimensions during
the KH and kinematic phases regarding the formation of a flux
sheet. Indeed, the z-variation of all physical quantities is very
small. Furthermore, weak-field models display a dynamical evo-
lution very similar to that of non-magnetic ones, e.g., during the
KH phase, a 3d vortex oriented parallel to the z-direction forms.
We show the temporal evolution of models employing these re-
duced perturbations in Fig. 18.

After the initial KH phase, the kinematic phase sets in. This
phase is terminated similarly to the two-dimensional case, i.e.,
depending on A and the resolution passively or dynamically by
the back-reaction onto the flow via Maxwell stresses and resis-
tive instabilities. The kinematic amplification factor of the mag-
netic energy is the same as in 2d.

For an initial Alfvén number A = 5000, we find passive
termination of the kinematic field amplification (for the time
evolution of integral quantities of this model see Fig. 17). Since
the magnetic field remains far too weak to affect the evolution,
the dynamics resembles that of a non-magnetic model. Until
t ≈ 30, three-dimensional hydrodynamic instabilities disrupt the
KH vortex tube. Indicative for the development of these insta-
bilities is the rise of ez

kin
until it reaches equipartition with e

y

kin
at t ≈ 28; this component grows at a rate comparable to the
kinematic growth rate of the magnetic field. The total magnetic
energy and the x- and y-components remain constant during
this phase, only the z-component increases exponentially. After
the termination of the 3d instabilities, all magnetic energies are
equal. They grow slowly in the remaining evolution in which tur-
bulence spreads over the entire volume and decelerates the shear
flow with the same efficiency as without a magnetic field.

For a stronger initial field (or finer resolution), the resistive
instabilities terminating the kinematic phase are accompanied by
a rapid growth of the z-components of the velocity and the mag-
netic field. For models with A = 50 and A = 25, this can be seen
around a time of t ≈ 15 (see Fig. 18). Despite the increase at
a rate exceeding by far the kinematic growth rate, the influence
of three-dimensional effects remains moderate: at t = 15, i.e.,

|∇xv|

A=50, M=1, 
strong random 
perturbation 

|b|

snapshot during 
the KA-phase

There are similar evolutionary phases as in 2D, 
but complicated by the development of 
parasitic instabilities



 3D models: subsonic shear flows, 
parallel field

Weakly magnetized models: 
• There is a competition between HD and MHD instabilities. Which one of the two 

dominates depends on A and on the initial amplitude of random perturbations. The final 
turbulent state can be rather different.
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Fig. 15. The temporal evolution of different partial energies of a three-
dimensional KH model with initial Mach and Alfvén numbers M = 1
and A = 50 and a strong random perturbation. To top panel shows the
longitudinal kinetic energy, ex

kin
as a function of time. The bottom panel

shows the total magnetic energy (black solid line), the partial magnetic
energies of the three field components (solid lines; blue, green, red, and
orange lines show the x-, y-, z-energies and the total transverse field
energy, i.e., the sum of the y-and z-energies). The dotted line shows
the sum of the magnetic and the transverse kinetic energies while the
dash-triple-dotted line shows the partial kinetic energy with the colours
indicating the same components as for the magnetic energies.

Fig. 16. The structure of a three-dimensional KH model with initial
Mach and Alfvén numbers M = 1 and A = 50 during the kinematic
phase (t = 9.21). The model was computed assuming strong random
perturbations. The computational domain is indicated by the thin red
box, and the red, green, and blue arrows signify the x, y, and z coordi-
nate axes, respectively. The diagram shows a volume rendering of the
magnetic field strength, |b| (blue-green colours), and the modulus of the
vorticity, |∇ × v| (red-yellow colours).

energies reach equipartion (see Fig. 15). Magnetic field amplifi-
cation ceases at this point. The deceleration of the shear flow is
mediated mainly by the hydrodynamic instabilities present in the
non-magnetic case, and thus, it is of similar efficiency. However,
it ceases eventually as the kinetic energy drops below the mag-
netic one at t ∼ 50. The final state of the model consists of decay-
ing volume-filling turbulence. Since the deceleration is only par-
tial, the model retains a smooth shear profile. The velocity and
magnetic fields are dominated by their respective x-components,
leading to a considerable anisotropy of the turbulent fields.
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Fig. 17. The same as Fig. 15, but for a model with an initial Alfvén
number of A = 5000.

If we decrease the amplitude of the random perturbations to
values of ξrandom = 10−2 and 10−4 of the sinusoidal perturbation
while keeping the same initial magnetic field, we find a consider-
ably different evolution of the shear flow. For weak random per-
turbations, the amplification of the magnetic field and the overall
dynamics proceed in a similar way as in two dimensions during
the KH and kinematic phases regarding the formation of a flux
sheet. Indeed, the z-variation of all physical quantities is very
small. Furthermore, weak-field models display a dynamical evo-
lution very similar to that of non-magnetic ones, e.g., during the
KH phase, a 3d vortex oriented parallel to the z-direction forms.
We show the temporal evolution of models employing these re-
duced perturbations in Fig. 18.

After the initial KH phase, the kinematic phase sets in. This
phase is terminated similarly to the two-dimensional case, i.e.,
depending on A and the resolution passively or dynamically by
the back-reaction onto the flow via Maxwell stresses and resis-
tive instabilities. The kinematic amplification factor of the mag-
netic energy is the same as in 2d.

For an initial Alfvén number A = 5000, we find passive
termination of the kinematic field amplification (for the time
evolution of integral quantities of this model see Fig. 17). Since
the magnetic field remains far too weak to affect the evolution,
the dynamics resembles that of a non-magnetic model. Until
t ≈ 30, three-dimensional hydrodynamic instabilities disrupt the
KH vortex tube. Indicative for the development of these insta-
bilities is the rise of ez

kin
until it reaches equipartition with e

y

kin
at t ≈ 28; this component grows at a rate comparable to the
kinematic growth rate of the magnetic field. The total magnetic
energy and the x- and y-components remain constant during
this phase, only the z-component increases exponentially. After
the termination of the 3d instabilities, all magnetic energies are
equal. They grow slowly in the remaining evolution in which tur-
bulence spreads over the entire volume and decelerates the shear
flow with the same efficiency as without a magnetic field.

For a stronger initial field (or finer resolution), the resistive
instabilities terminating the kinematic phase are accompanied by
a rapid growth of the z-components of the velocity and the mag-
netic field. For models with A = 50 and A = 25, this can be seen
around a time of t ≈ 15 (see Fig. 18). Despite the increase at
a rate exceeding by far the kinematic growth rate, the influence
of three-dimensional effects remains moderate: at t = 15, i.e.,
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Fig. 15. The temporal evolution of different partial energies of a three-
dimensional KH model with initial Mach and Alfvén numbers M = 1
and A = 50 and a strong random perturbation. To top panel shows the
longitudinal kinetic energy, ex

kin
as a function of time. The bottom panel

shows the total magnetic energy (black solid line), the partial magnetic
energies of the three field components (solid lines; blue, green, red, and
orange lines show the x-, y-, z-energies and the total transverse field
energy, i.e., the sum of the y-and z-energies). The dotted line shows
the sum of the magnetic and the transverse kinetic energies while the
dash-triple-dotted line shows the partial kinetic energy with the colours
indicating the same components as for the magnetic energies.

Fig. 16. The structure of a three-dimensional KH model with initial
Mach and Alfvén numbers M = 1 and A = 50 during the kinematic
phase (t = 9.21). The model was computed assuming strong random
perturbations. The computational domain is indicated by the thin red
box, and the red, green, and blue arrows signify the x, y, and z coordi-
nate axes, respectively. The diagram shows a volume rendering of the
magnetic field strength, |b| (blue-green colours), and the modulus of the
vorticity, |∇ × v| (red-yellow colours).

energies reach equipartion (see Fig. 15). Magnetic field amplifi-
cation ceases at this point. The deceleration of the shear flow is
mediated mainly by the hydrodynamic instabilities present in the
non-magnetic case, and thus, it is of similar efficiency. However,
it ceases eventually as the kinetic energy drops below the mag-
netic one at t ∼ 50. The final state of the model consists of decay-
ing volume-filling turbulence. Since the deceleration is only par-
tial, the model retains a smooth shear profile. The velocity and
magnetic fields are dominated by their respective x-components,
leading to a considerable anisotropy of the turbulent fields.

0

0.50

1

e k
in

x
  

 

0 20 40 60 80 100
t

!10

!8

!6

!4

!2

0

e
k

in
,m

ag

emag

emag
x   

emag
y   

emag
z   

emag
y+z 

ekin
x   

ekin
y   

ekin
z   

ekin
y+z 

Fig. 17. The same as Fig. 15, but for a model with an initial Alfvén
number of A = 5000.

If we decrease the amplitude of the random perturbations to
values of ξrandom = 10−2 and 10−4 of the sinusoidal perturbation
while keeping the same initial magnetic field, we find a consider-
ably different evolution of the shear flow. For weak random per-
turbations, the amplification of the magnetic field and the overall
dynamics proceed in a similar way as in two dimensions during
the KH and kinematic phases regarding the formation of a flux
sheet. Indeed, the z-variation of all physical quantities is very
small. Furthermore, weak-field models display a dynamical evo-
lution very similar to that of non-magnetic ones, e.g., during the
KH phase, a 3d vortex oriented parallel to the z-direction forms.
We show the temporal evolution of models employing these re-
duced perturbations in Fig. 18.

After the initial KH phase, the kinematic phase sets in. This
phase is terminated similarly to the two-dimensional case, i.e.,
depending on A and the resolution passively or dynamically by
the back-reaction onto the flow via Maxwell stresses and resis-
tive instabilities. The kinematic amplification factor of the mag-
netic energy is the same as in 2d.

For an initial Alfvén number A = 5000, we find passive
termination of the kinematic field amplification (for the time
evolution of integral quantities of this model see Fig. 17). Since
the magnetic field remains far too weak to affect the evolution,
the dynamics resembles that of a non-magnetic model. Until
t ≈ 30, three-dimensional hydrodynamic instabilities disrupt the
KH vortex tube. Indicative for the development of these insta-
bilities is the rise of ez

kin
until it reaches equipartition with e

y

kin
at t ≈ 28; this component grows at a rate comparable to the
kinematic growth rate of the magnetic field. The total magnetic
energy and the x- and y-components remain constant during
this phase, only the z-component increases exponentially. After
the termination of the 3d instabilities, all magnetic energies are
equal. They grow slowly in the remaining evolution in which tur-
bulence spreads over the entire volume and decelerates the shear
flow with the same efficiency as without a magnetic field.

For a stronger initial field (or finer resolution), the resistive
instabilities terminating the kinematic phase are accompanied by
a rapid growth of the z-components of the velocity and the mag-
netic field. For models with A = 50 and A = 25, this can be seen
around a time of t ≈ 15 (see Fig. 18). Despite the increase at
a rate exceeding by far the kinematic growth rate, the influence
of three-dimensional effects remains moderate: at t = 15, i.e.,

A=50, M=1, 
strong random 
perturbation 

A=5000, M=1, 
weak random 
perturbation 



 3D models: subsonic shear flows, 
parallel field

Weakly magnetized models: 
• There is a competition between (3D) HD and (2D) MHD instabilities. Which one of the 

two dominates depends on A (also resolution) and on the initial amplitude of random 
perturbations. The final turbulent state can be rather different.

• Hydrodynamic disruption: 
• If too weak amplification of the magnetic field leads to a dominance of HD instabilities 

over MHD instabilities during the early phases, the KH vortex tube is disrupted and the 
shear flow is decelerated at a rate similar to the non-magnetic case. 

• The magnetic field will then be amplified or sustained in the turbulent velocity field the 
HD instabilities yield. 

• The evolution of this class of models tends towards isotropic decaying turbulence.
• ekinz > emag after reaching saturation.

• Hydromagnetic disruption:
• The B-field leads to the disruption of the KH vortex tube before the HD instabilities can 

set in. 
• The deceleration of the shear flow is driven by B-fields. dec similar to that of 2D-flows; 

it may, however, also be smaller depending on the MHD turbulence. 
• The turbulent final state of such models is dominated by a strong bx roughly in 

equipartition with vx. 
• The transverse components of both vector fields are considerably weaker.
• ekinz < emag after reaching saturation.
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Fig. 20. The same the top panel of Fig. 14, but for a model with M = 4
and b0 = 0.

subsonic case, on the relative importance of hydrodynamic and
magnetic turbulence. There is, however, a physical difference
to the subsonic case: the supersonic instability is dominated by
strong three-dimensional hydrodynamic turbulence right from
the beginning as it does not grow by means of coherent two-
dimensional flows such as a KH vortex. Hence, there is no effi-
cient kinematic amplification, and the magnetic field can become
important only if it is maintained or slowly amplified by the 3d
turbulence responsible, at the same time, for a decrease of the
kinetic energy.

At an intermediate stage, t = 60 (left panel of Fig. 22), the
instability has not yet affected the entire volume of the box
in y-direction. Both the velocity and the magnetic field of that
model exhibit a pronounced small-scale structure around the ini-
tial shearing layer. No preferred direction can be identified eas-
ily. We note that at this stage, the transverse kinetic energy ex-
ceeds the magnetic energy. This has changed at t = 200 (right
panel). Due to efficient turbulent deceleration, the kinetic energy
associated with all components has decreased by roughly an or-
der of magnitude, similarly to the transverse magnetic energy.
The longitudinal magnetic energy, in contrast, has remained at
the same level, now exceeding each of the transverse energies
and even their sum. The predominant x-component of the mag-
netic field exerts an ordering influence on the turbulent magnetic
and velocity fields, enforcing an alignment of the flow with the
field, similarly to the Alfvén effect of hydromagnetic turbulence.
As a result, we find prominent coherent structures elongated in
field direction.

5.3. Anti-parallel magnetic field

We have simulated a few of the models discussed above also
using anti-parallel initial magnetic fields. With the total flux
through surfaces x = const. vanishing, the x component of the
magnetic field can decay to zero. This will happen in particular
for weak fields; stronger fields decay less efficiently because of
resistive instabilities.

For a strong random perturbation, the evolution is very sim-
ilar to models with parallel initial fields. The shear flow is dece-
larated very efficiently, and kinetically dominated decaying tur-
bulence with a very weak degree of anisotropy develops. Once
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Fig. 21. The same Fig. 15, but for a model withM = 4 and A = 50.

the kinetic energy approaches the magnetic one, the deceleration
rate decreases, but it does not, as in the case of parallel field, go
to zero. Instead of levelling off at a constant value, the kinetic
and magnetic energies continue to decrease simultaneously.

Models with a weak random perturbation show, depending
on the initial field strength hydrodynamic or hydromagnetic de-
celeration. For this field type, the field strength required for
hydromagnetic to dominate over hydrodynamic deceleration is
higher than for parallel fields. In late phases of several of these
models, we find the same evolution as mentioned above: the ki-
netic and magnetic energies decay at a similar rate.

6. Merger-motivated models

After discussing basic properties of magnetised shear layers, we
turn now to an application: we performed simulations of models
mimicking the conditions of shear layers arising in the merger
of two magnetised neutron stars. This section contains a discus-
sion of the model system used for these simulations (Sect. 6.1),
including initial and boundary conditions, and the results of two-
dimensional (Sect. 6.2) and three-dimensional (Sect. 6.3) simu-
lations.

6.1. Physics, initial and boundary conditions

6.1.1. Equation of state

For this kind of models, we employed a parametrised equation
of state as a simple description of nuclear matter, viz. the hybrid
equation of state due to Keil et al. (1996). This equation of state
assumes that the total gas pressure is the sum of a barotropic
part, Pb, and a thermal part, Pth:

P = Pth + Pb, (13)

Pb = κρ
Γb . (14)

Pth = (Γth − 1)εth, (15)

where the thermal energy, εth is defined by

εth = ε − εb. (16)

c2
s =

ΓbPb + ΓthPth

ρ

b = th = 1.333
(relativistic, 
degenerate matter)

Initial conditions: 

(-2,-10) (-2,10)

(2,10)(2,-10)
(MNS/2)

computational
domain

(size: 100x100 m)

MNS = 1.4 M⊙

equatorial plane20 km
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Fig. 23. The initial conditions of a merger-motivated KH model with
vanishing dependence of the hydrodynamic background with x (a Y
model). The solid line (left ordinate) shows the gravitational potential
in which the box resides, and the dashed line (right ordinate) shows the
density profile.

vx
0
= 1.83 × 109 cm s−1 = 0.061c, corresponding to a Mach

number of the flow was M ≈ 0.9. The limited grid resolution
we could afford forced us to employ rather strong initial fields
of the order of bx

0
∼ 1014 G, corresponding to an Alfvén num-

ber of A ≈ 115

(

1014 G
bx

0

)

. The initial field was either symmetric or

antisymmetric about the shearing interface.
The KH instability develops within less than 0.05 millisec-

onds, establishing one large KH vortex. The choice of a par-
ticular class of initial conditions, i.e., Y or XY models, has little
influence on the dynamics of the KH phase of the model. Even if
we do not select a particular unstable mode by applying an initial
perturbation with a clearly defined wave number (i.e., if we use
only a random and no sinusoidal perturbation), the large-scale
geometry of a XY model favours the development of the longest
possible mode, i.e., its wavelength equalling the box size.

Afterwards, the magnetic field is amplified kinematically by
the vortical flow. The physics of the termination of this phase
is the same as described in Sect. 4.3 for dimensionless models.
Consequently, we find a similar dependence of the termination
amplitude of the kinematic phase on the initial field strength and
the grid resolution:

1. finer grids can resolve the increasingly thin structures of the
magnetic field better, leading to a more efficient amplifica-
tion, until, for a sufficiently fine grid, convergence of the am-
plification factor is achieved;

2. weaker fields are amplified by a larger amount, such that the
maximum value of the field strength at the termination of
exponential amplification depends only weakly on the initial
field (assuming numerical convergence), but the total mag-
netic energy increases with increasing initial field strength
due to the larger volume filling factor of magnetic flux tubes
for stronger initial fields.

After the termination of the kinematic phase, the turbulent
saturated phase develops. The topology of the field is dominated
by a multitude of thin flux sheets. Due to deceleration by mag-
netic stresses, the kinetic energy of the shear flow decreases at
a rate depending on the initial field strength. Lacking a driving

force, the turbulence decays gradually. In late stages, it is domi-
nated by the parallel x-component of the magnetic field, leading
to a strong alignment of the flux sheets with the x-direction.

The maximum field strengths of the models with initially
bx

0
= 5, 10 × 1013 G oscillate around 3 × 1015 G in the final

saturated state. The volume filling factor of the magnetic field,
i.e., the relative volume of the box occupied by intense magnetic
flux tubes, decreases with decreasing initial field strength, lead-
ing to a weaker mean magnetic field and consequently a slower
deceleration of the shear flow for weaker initial field. For the
fields considered here, the mean fields are ∼ 5 × 1014 G and
∼ 2.5×1014 G for bx

0
= 1014 G and bx

0
= 5×1013 G, respectively.

The time scale of deceleration of the shear flow is less than 1
millisecond. For a model with an initial field of 20 × 1013 G,
the deceleration is sufficiently rapid to cause a significant decay
(by about an order of magnitude) of the turbulent energy within
0.5 ms.

The evolution of the shear layer is affected by the choice of
the initial conditions in the following way:

1. Parallel initial fields have, similarly to our observations in
dimensionless models, a somewhat larger impact on the dy-
namics of the KH instability. In this case, the non-vanishing
magnetic flux through the x-surfaces is conserved due to
the boundary conditions, corresponding to an effective driv-
ing force. Apart from lacking this additional driver, anti-
parallel magnetic fields are prone to stronger dissipation due
to stronger currents at the boundaries between regions of op-
posite magnetic polarity.

2. The differences between X models and XY models are only
minor. We find a very similar evolution of the turbulent
magnetic and kinetic energies, and comparable deceleration
rates. This is a direct consequence of the weakness of the
variations of the background model in x-direction compared
to y-direction.

Hence, the results, and in particular their dependence on the ini-
tial physical and numerical parameters of the models as explored
in Sect. 4, are robust w.r.t. the described variations of the initial
conditions. Consequently, we can expect them to apply to the
merger system without too strong modifications.

6.3. Three-dimensional models

One of the main questions to be addressed by three dimensional
simulations is whether the dynamics of these models is domi-
nated by magnetic flux tubes or by three-dimensional hydrody-
namic instabilities. As we have seen in the previous sections,
this has a distinct influence on, e.g., the magnetic field strength
achieved in the saturated state of the model.

We selected models with a grid size of ∆x × ∆y × ∆z =
200 m × 200 m × 200 m for these simulations and used grids
of mx × my × mz = 2563 zones. The initial field strength was be-

tween 5 and 40×1013 G. Similarly to the dimensionless models,
we apply different combinations of sinusoidal and random per-
turbations to the shear layer. The models are listed in Tab. A.7,
and the time evolution of integral quantities (kinetic and mag-
netic energy components) of the models is shown in Fig. 24.

These models show the same overall dynamics and the same
evolutionary phases as their dimensionless counterparts. We find
the initial KH and kinematic phases, followed by the develop-
ment of parasitic instabilities leading to a non-linear saturated
state. The first two phases are very similar to the 2d case, and
field amplification follows the same trends with initial field and
resolution as outlined above.

 = 1013 gr/cm3

th= 0
Assume hydrostatic 
equilibrium

X

Y
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Fig. 20. The same the top panel of Fig. 14, but for a model with M = 4
and b0 = 0.

subsonic case, on the relative importance of hydrodynamic and
magnetic turbulence. There is, however, a physical difference
to the subsonic case: the supersonic instability is dominated by
strong three-dimensional hydrodynamic turbulence right from
the beginning as it does not grow by means of coherent two-
dimensional flows such as a KH vortex. Hence, there is no effi-
cient kinematic amplification, and the magnetic field can become
important only if it is maintained or slowly amplified by the 3d
turbulence responsible, at the same time, for a decrease of the
kinetic energy.

At an intermediate stage, t = 60 (left panel of Fig. 22), the
instability has not yet affected the entire volume of the box
in y-direction. Both the velocity and the magnetic field of that
model exhibit a pronounced small-scale structure around the ini-
tial shearing layer. No preferred direction can be identified eas-
ily. We note that at this stage, the transverse kinetic energy ex-
ceeds the magnetic energy. This has changed at t = 200 (right
panel). Due to efficient turbulent deceleration, the kinetic energy
associated with all components has decreased by roughly an or-
der of magnitude, similarly to the transverse magnetic energy.
The longitudinal magnetic energy, in contrast, has remained at
the same level, now exceeding each of the transverse energies
and even their sum. The predominant x-component of the mag-
netic field exerts an ordering influence on the turbulent magnetic
and velocity fields, enforcing an alignment of the flow with the
field, similarly to the Alfvén effect of hydromagnetic turbulence.
As a result, we find prominent coherent structures elongated in
field direction.

5.3. Anti-parallel magnetic field

We have simulated a few of the models discussed above also
using anti-parallel initial magnetic fields. With the total flux
through surfaces x = const. vanishing, the x component of the
magnetic field can decay to zero. This will happen in particular
for weak fields; stronger fields decay less efficiently because of
resistive instabilities.

For a strong random perturbation, the evolution is very sim-
ilar to models with parallel initial fields. The shear flow is dece-
larated very efficiently, and kinetically dominated decaying tur-
bulence with a very weak degree of anisotropy develops. Once
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Fig. 21. The same Fig. 15, but for a model withM = 4 and A = 50.

the kinetic energy approaches the magnetic one, the deceleration
rate decreases, but it does not, as in the case of parallel field, go
to zero. Instead of levelling off at a constant value, the kinetic
and magnetic energies continue to decrease simultaneously.

Models with a weak random perturbation show, depending
on the initial field strength hydrodynamic or hydromagnetic de-
celeration. For this field type, the field strength required for
hydromagnetic to dominate over hydrodynamic deceleration is
higher than for parallel fields. In late phases of several of these
models, we find the same evolution as mentioned above: the ki-
netic and magnetic energies decay at a similar rate.

6. Merger-motivated models

After discussing basic properties of magnetised shear layers, we
turn now to an application: we performed simulations of models
mimicking the conditions of shear layers arising in the merger
of two magnetised neutron stars. This section contains a discus-
sion of the model system used for these simulations (Sect. 6.1),
including initial and boundary conditions, and the results of two-
dimensional (Sect. 6.2) and three-dimensional (Sect. 6.3) simu-
lations.

6.1. Physics, initial and boundary conditions

6.1.1. Equation of state

For this kind of models, we employed a parametrised equation
of state as a simple description of nuclear matter, viz. the hybrid
equation of state due to Keil et al. (1996). This equation of state
assumes that the total gas pressure is the sum of a barotropic
part, Pb, and a thermal part, Pth:

P = Pth + Pb, (13)

Pb = κρ
Γb . (14)

Pth = (Γth − 1)εth, (15)

where the thermal energy, εth is defined by

εth = ε − εb. (16)

c2
s =

ΓbPb + ΓthPth

ρ

b = th = 1.333
(relativistic, 
degenerate matter)

Initial conditions: 

(-2,-10) (-2,10)

(2,10)(2,-10)
(MNS/2)

computational
domain

(size: 100x100 m)

MNS = 1.4 M⊙

equatorial plane20 km
 = 1013 gr/cm3

th= 0
Assume hydrostatic 
equilibrium

Shearing velocity = rotational velocity of the NSs

BCs: x(z)-direction: periodic, y-direction: reflection

X

Y



 Merger motivated models: 2D
• Reproduce the basic features shown in the dimensionless simulations (phases, 

saturation, dynamics, etc.).
• We use Cartesian grids with  lx x ly = 200 x 200 m, resolutions up to 20482, a=10 m, v0x = 

1.83x109 cm/s =0.061c, M=0.9.
• Because of the limited grid resolution, we use b0 ~ 1014 G or A~115 (1014 G / b0), with 

configurations parallel or antiparallel w.r.t. the SL.
• Find: 

• the KH vortex develops in less than 0.05 ms, with a wavelength ~ lx.
• For b0 ~ 5x1013 G, 1014 G: bmaxKA ~ 3x1015 G (localized in small areas), but the r.m.s. 

fields are much smaller brmsKA ~ 2.5x1014 G, ~ 5x1014 G, respectively.
• tdec ~ 1 ms, e.g., for a model with b0 = 2x1014 G, the deceleration is sufficiently rapid 

to cause a significant decay (by about an order of magnitude) of the turbulent energy 
within 0.5 ms.

• The evolution of the shear layer is affected by the choice of the initial conditions in 
the following way: 

• Parallel initial fields have, a somewhat larger impact on the dynamics of the KH 
instability. In this case, the non-vanishing B-flux through the x-surfaces is conserved 
due to the BCs, corresponding to an effective driving force. Apart from lacking this 
additional driver, antiparallel magnetic fields are prone to stronger dissipation due to 
stronger currents at the boundaries between regions of opposite polarity. 

• Very similar evolution of the turbulent emag and ekin, and comparable dec. This is a 
direct consequence of the weakness of the variations of the background modeling x-
direction compared to y-direction. 



 Merger motivated models: 3D
• Reproduce the basic features shown in the dimensionless simulations.
• We use Cartesian grids with  lx x ly x lz = 200 x 200 x 200 m, resolutions up to 5122, M=1.
• Because of the limited grid resolution, we use b0 = 5x1013 G - 4x1014 G, with 

configurations parallel or antiparallel w.r.t. the SL.
• Find: 

• The instability grows rapidly: saturation occurs within less than 0.1 ms, and  tdec  and 
tdis  << 1 ms.

• Field amplification leads to bmaxKA ≲ 1016 G (localized in small volumes), but the 
r.m.s. fields are much smaller brmsKA ~ 1.6x1015 G.
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Fig. 24. The time evolution of integral quantities of three-dimensional merger models with an initial field of bx
0
= ±20×1013 G and a weak random

perturbation (panel (a)), bx
0
= ±5 × 1013 G (panel (b)), bx

0
= 20 × 1013 G (panel (c)), and bx

0
= ±20 × 1013 G with a strong random perturbation

(panel (d)) (± preceeding the value of the field strength indicates a model with anti-parallel initial field). Models in panels (a) – (d) use Y initial
conditions. Panels (e) and (f) show models with bx

0
= 20 × 1013 G using XY and XYZ initial conditions, respectively.

Fig. 25. The three-dimensional structure of the final turbulent state of models with bx
0
= 5 × 1013 G (left panel) and bx

0
= 20 × 1013 G (right panel)

at time t = 1 ms. The plots show a volume rendering of the magnetic field strength (front half of the boxes, blue-green-yellow-red colours in an
order of increasing |b|) and of the enstrophy (rear half, red-yellow colours). The red, green (hidden, pointing downwards), and blue axes indicate
the x-, y-, and z-directions, respectively.

We interpret this as an a posteriori justification of our local ap-
proach.

7. Summary and conclusions

Global simulations indicate thate the contact layer between two
merging neutron stars is the site of very efficient field amplifi-
cation. The layer is prone to the Kelvin-Helmholtz instability,
and thus, exponential growth of any weak seed field is possible,



Summary and conclusions (I)



Summary and conclusions (I)

• We have performed more than 300 numerical models to asses the 
impact of the growth of KH instabilities in the contact layer of NSs.

• The magnetic field never reaches equipartition with the internal energy 
(neither in its r.m.s. value nor in the local maxima). Thus B~1018 G are 
excluded from the amplification of KH perturbations in the contact layer 
of NSs. 

• emag ~ ekin locally, implying Bmax~1016 G as speculated by Price & 
Rosswog (2006).

• However, Brms ~ few x 1015 G, at most, thus its direct dynamical impact 
(deceleration of the shear flow, disruption of the KH vortex) may be 
rather limited.

• Both, Bmax and Brms, are even smaller if the geometry of the system and/
or the merger dynamics yield a large role of HD (3D) instabilities.



Summary and conclusions (II)



Summary and conclusions (II)

• The small time scales over which Bmax is obtained and its fast decay 
impose severe constraints on the impact that the amplified fields may 
have on any hydromagnetic or electromagnetic jet-launching mechanism 
in a NS-NS-merger. We note that magnetically driven relativistic outflows 
may need much larger time scales (∼a few ms) to tap the rotational 
energy of either the BH or the accretion disk resulting after the merger.

• Though these results might limit the prospect for magnetic effects to play 
a major role in these systems, their proper inclusion to current 
simulations may be advantageous. Given the resolution requirements 
imposed by weak initial fields, a careful treatment has probably to go 
beyond the limit of a simple ideal MHD approach, involving, e.g., the 
formulation of a turbulence model for the unresolved magnetic fields.


