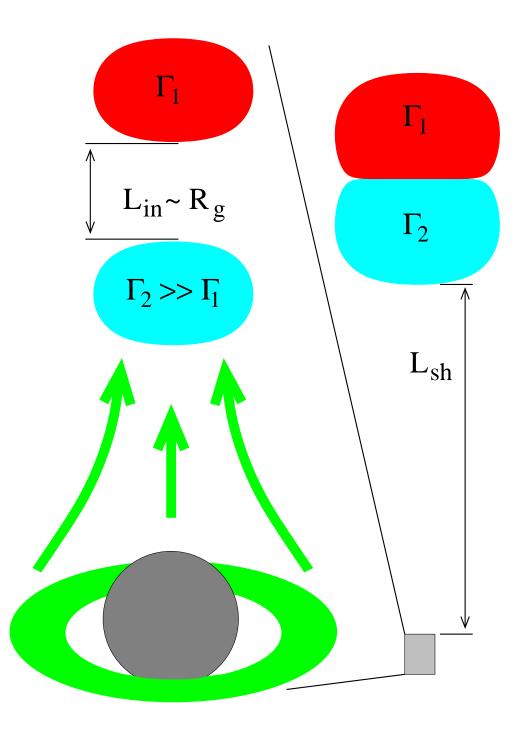
Constraints on the parameters of efficiently radiating relativistic jets

E.V. Derishev

Institute of Applied Physics, Nizhny Novgorod, Russia

Physical limit to variability timescale



The central engine can change its state in a time $\sim R_g/c$

 R_g – Schwarzschild radius

The faster blob catches up with the slower one at the distance

$$L_{\rm sh} = c \; \frac{L_{\rm in}}{v_2 - v_1} \simeq 2 \, \Gamma_1^2 \, L_{\rm in}$$

The minimum apparent duration of the light burst (at $\theta = 0$):

$$\tau \simeq \frac{L_{\rm sh}}{2\,\Gamma^2\,c} \sim \frac{R_g}{c}$$

An (arguable) assumption

The variability timescale measured in the comoving frame

is approximately equal to the light-crossing time.

Increase Lorentz factor!

• The emitting region moves further away

 $L_{\rm sh} \propto \Gamma^2$

Comoving photon density rapidly decreases

$$w'_{\text{ph}} \simeq \frac{1}{\Gamma^2} \frac{\mathcal{L}}{4\pi L_{\text{sh}}^2 c} \simeq \frac{\mathcal{L}}{4\pi (c\tau)^2 \Gamma^6 c}$$

 $\ensuremath{\mathcal{L}}$ – the isotropic luminosity

• Two-photon absorption threshold increases

An arbitrarily large Lorentz factor ...

- (1) The synchrotron peak is at $\varepsilon = \Gamma \gamma'^2 \hbar \frac{eB}{m_e c}$
- (2) Radiation flux is a fraction of the magnetic-energy flux

$$w_{\rm ph}' = \eta_1 \frac{B^2}{8\pi}$$

(3) Radiation efficiency is

$$\eta_2 \le \frac{4}{9} \frac{\Gamma \tau \, \gamma' \left(\frac{e^2}{mc^2}\right)^2 B^2}{m_e c}$$

For a given isotropic luminosity

$$w_{\rm ph}' = \frac{\mathcal{L}\,\tau}{4\pi(\Gamma^2 c\tau)^3}$$

- τ the dynamical timescale (\approx the observed variability timescale) ε the observed photon energy Γ the jet's Lorentz factor γ' the electron's Lorentz factor

 - the electron's Lorentz factor in the jet comoving frame

... cannot be arbitrarily large.

Derishev, Kocharovsky, Kocharovsky, A&A **372**, 1071 (2001) Begelman, Fabian, Rees, MNRAS Letters **384**, L19 (2008)

Substitute:

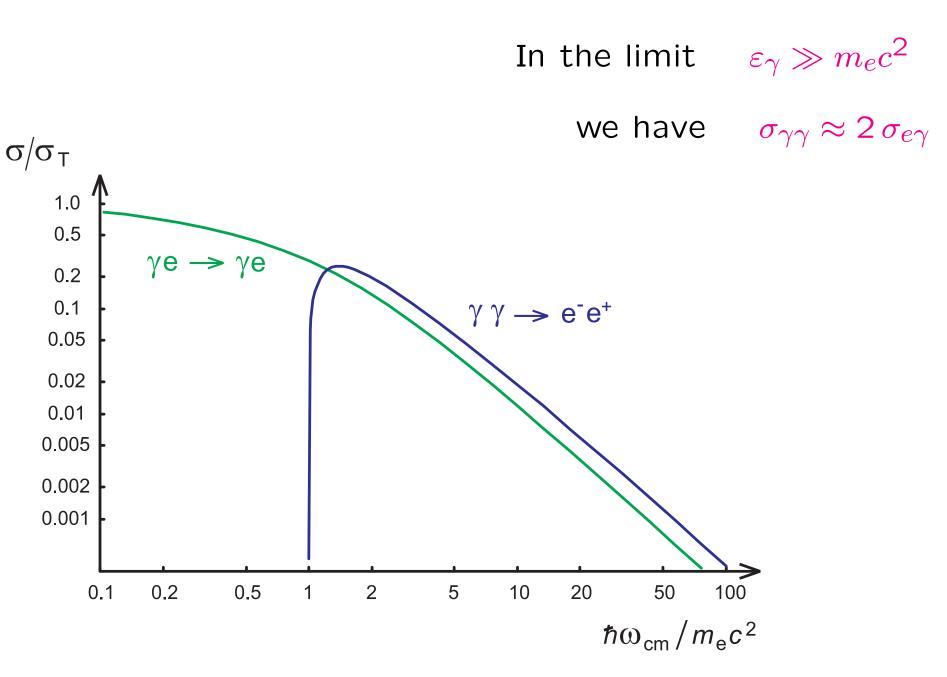
- γ' from expression (1) into inequality (3)
- *B* from expression (2) into inequality (3)

Obtain:

the upper limit to the Lorentz factor

$$\Gamma < \left(\frac{\left[2^{11}/3^8\right] \ e^{14} \ \varepsilon^2 \ \mathcal{L}^3}{\eta_1^3 \eta_2^4 \ \hbar^2 \ (m_e c^2)^{10} \ c^7 \ \tau^2}\right)^{1/16} \simeq 55 \left(\frac{1}{\eta_1^3 \eta_2^4}\right)^{1/16} \frac{\varepsilon_6^{1/8} \ \mathcal{L}_{45}^{3/16}}{\tau_3^{1/8}}$$

Interlude: Two-photon absorption



Two-photon absorption

Optical depth for two-photon absorption

 $au_{\gamma\gamma}(\omega) \simeq \sigma_{\gamma\gamma} N_{ph}(\omega_*) R$

Inverse Compton energy losses per particle

$$\dot{\varepsilon} \simeq \frac{1}{2} \varepsilon \, \sigma_{e\gamma} \, N_{ph}(\omega_*) \, c$$

Under assumption of high radiation efficiency $(\dot{\varepsilon} > \varepsilon/t)$ the optical depth of a source with size $R \simeq ct$ is

$$au_{\gamma\gamma}>2rac{\sigma_{\gamma\gamma}(arepsilon/2)}{\sigma_{e\gamma}(arepsilon)}\gg1$$

 $N_{ph}(\omega_*)$ – number density of photons with frequency $\sim \omega_*$

Self-Compton radiation

(1) The peak is at $\varepsilon = \Gamma \gamma'^4 \hbar \frac{eB}{m_e c}$ (Thomson regime!)

or

(2) Radiation flux is a fraction of the magnetic-energy flux

 $w_{\rm ph}' = \eta_1 \frac{B^2}{8\pi}$

(3) Radiation efficiency is

$$\eta_2 \le \frac{4}{9} \frac{\Gamma \tau \, \gamma' \left(\frac{e^2}{mc^2}\right)^2 B^2}{m_e c}$$

$$\eta_{2} \leq \frac{4}{9} \eta_{1}^{1/2} \frac{\Gamma \tau \gamma' \left(\frac{e^{2}}{mc^{2}}\right)^{2} B^{2}}{m_{e}c}$$

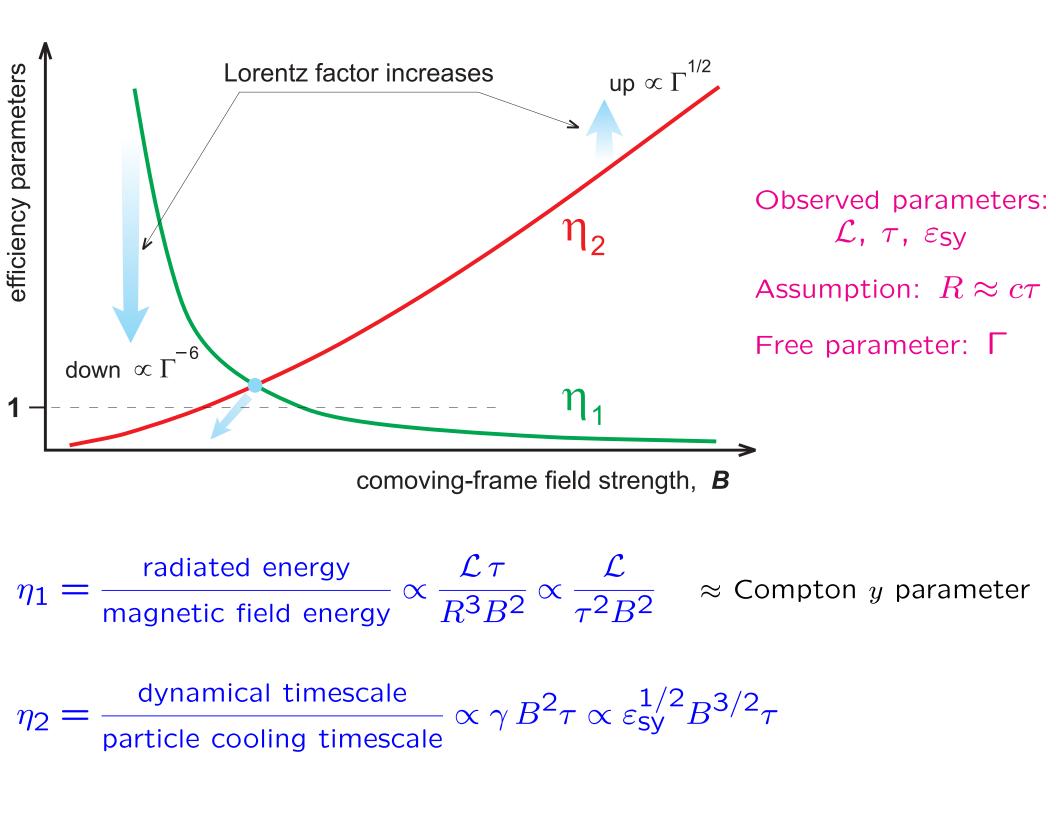
$$\Gamma < \left(\frac{\left[2^{23}/3^{16}\right] \ e^{30} \ \varepsilon^2 \ \mathcal{L}^7}{\eta_1^7 \eta_2^8 \ \hbar^2 \ (m_e c^2)^{22} \ c^{15} \ \tau^6}\right)^{\frac{1}{36}}$$

For active galactic nuclei

$$\Gamma \leq 21 \left(\frac{1}{\eta_1^7 \eta_2^8}\right)^{1/36} \frac{\varepsilon_{12}^{1/18} \mathcal{L}_{45}^{7/36}}{\tau_3^{1/6}}$$

For gamma-ray bursts

$$\Gamma \leq 1400 \left(\frac{1}{\eta_1^7 \eta_2^8}\right)^{1/36} \frac{\varepsilon_6^{1/18} \mathcal{L}_{51}^{7/36}}{\tau_{-3}^{1/6}}$$



2nd interlude: SSC vs ERC

Efficient cooling means that

$$w_{\text{ph}}' > \frac{m_e c}{\frac{32 \pi}{9} \gamma' \left(\frac{e^2}{m_e c^2}\right)^2 \Gamma \tau}$$

Photons' occupation number

$$K \simeq w'_{\rm ph} \frac{2\pi^2 (\hbar c)^3}{\varepsilon_*^4}$$

Comptonization in the Thomson regime, i.e.

 $\varepsilon_* < m_e c^2 / \gamma'$ and $\Gamma \gamma' > \varepsilon / m_e c^2$

 $K > \frac{9\pi}{16} \left(\frac{\varepsilon}{m_e c^2}\right)^3 \frac{\lambda_c}{\alpha^2 \Gamma^4 c\tau} \quad \text{(for SSC)}$ Hence, $K > \frac{9\pi}{16} \left(\frac{\varepsilon}{m_{c}c^{2}}\right)^{3} \frac{\lambda_{c}}{c^{2} \Gamma^{2} \Gamma^{2}} \quad \text{(for ERC)}$

- $\begin{array}{lll} \varepsilon_* & & \mbox{the energy of comptonized photon in the comoving frame} \\ \alpha & & \mbox{the fine-structure constant} \end{array}$

 - the electron Compton wavelength

SSC vs ERC

Assume:

the photons' occupation number does not exceed its magnitude at the peak of black-body spectrum, i.e. K < 0.02

obtain:

independent *lower* limit to the Lorentz factor

• For synchrotron self Compton

$$\Gamma > \frac{3}{\alpha^{1/2}} \left(\frac{\varepsilon}{m_e c^2}\right)^{3/4} \left(\frac{\lambda_c}{c \tau}\right)^{1/4} \simeq 2 \frac{\varepsilon_{12}^{3/4}}{\tau_3^{1/4}}$$

• For external radiation Compton

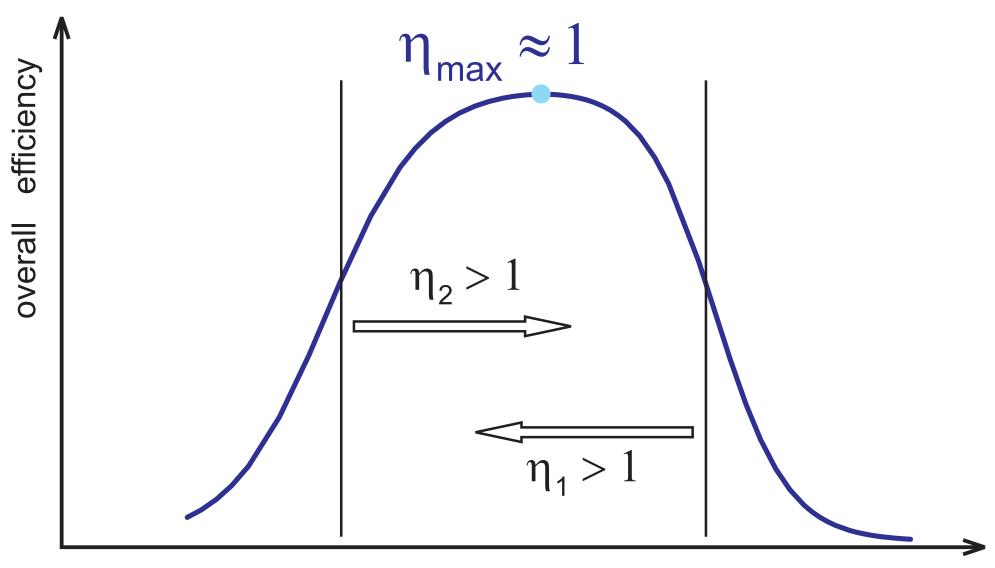
$$\Gamma > \frac{9}{\alpha} \left(\frac{\varepsilon}{m_e c^2}\right)^{3/2} \left(\frac{\lambda_c}{c \tau}\right)^{1/2} \simeq 4 \frac{\varepsilon_{12}^{3/2}}{\tau_3^{1/2}}$$

Inefficient sources



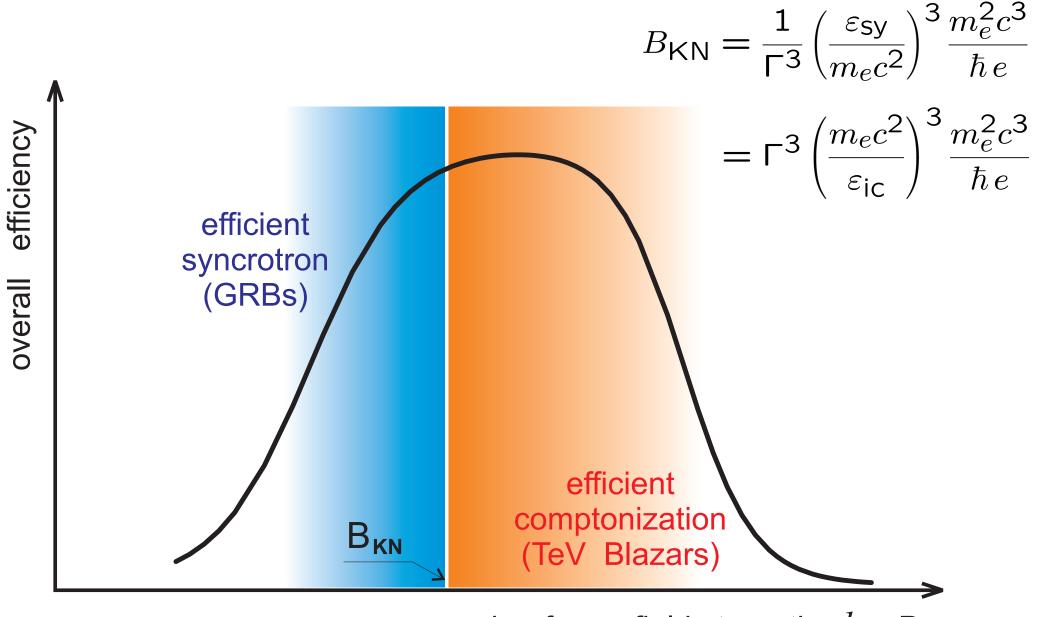
comoving-frame field strength, log B

Efficient sources



comoving-frame field strength, log B

Living rooms for GRBs and TeV Blazars



comoving-frame field strength, log B

Gamma-ray Bursts

There is a window in the parameter space, where the sources are

- radiatively efficient
- opaque for the inverse Compton radiation

at the same time.

This leads to the condition $B < B_{KN}$, equivalent to

$$\tau > \frac{1}{\alpha} \frac{r_e}{c} \left(\frac{2 \mathcal{L} r_e/c}{m_e c^2} \right)^{1/2} \left(\frac{m_e c^2}{\varepsilon} \right)^3 \simeq 3 \times 10^{-5} \, \mathrm{s} \ \mathcal{L}_{51}^{1/2} \varepsilon_6^{-3}$$

- α ~- the fine-structure constant
- r_e the classical electron radius

If a Gamma-Ray Burst is powered by a black hole,

then its mass must be

$$M > 3 \mathcal{L}_{51}^{1/2} \varepsilon_6^{-3} M_{\odot}$$

TeV Blazars

A good TeV Blazar must be

- radiatively efficient
- *transparent* for the inverse Compton radiation

The window opens if $\eta_1(B_{\mathrm{KN}}) > 1$, which may be treated in two ways

(1)
$$\tau < \frac{1}{\Gamma^6} \frac{1}{\alpha} \frac{r_e}{c} \left(\frac{2\mathcal{L}r_e/c}{m_e c^2} \right)^{\frac{1}{2}} \left(\frac{\varepsilon}{m_e c^2} \right)^3 \simeq 1.5 \times 10^{12} \, \mathrm{s} \, \frac{\mathcal{L}_{45}^{1/2} \varepsilon_{12}^3}{\Gamma^6}$$

(2)
$$\Gamma < \left(\frac{2\mathcal{L}r_e/c}{\alpha^2 m_e c^2}\right)^{\frac{1}{12}} \left(\frac{r_e}{c\tau}\right)^{\frac{1}{6}} \left(\frac{\varepsilon}{m_e c^2}\right)^{\frac{1}{2}} \simeq 30 \frac{\mathcal{L}_{45}^{1/12} \varepsilon_{12}^{1/2}}{\tau_3^{1/6}}$$

lpha – the fine-structure constant r_e – the classical electron radius

A byproduct limit for blazars

If a TeV blazar is powered by a black hole,

then its mass must be

$$M < 1.5 \times 10^{17} \frac{\mathcal{L}_{45}^{1/2} \varepsilon_{12}^3}{\Gamma^6} \quad M_{\odot}$$