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Physical limit to variability timescale
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The central engine can change its
state in a time ∼ Rg/c
Rg – Schwarzschild radius

The faster blob catches up with
the slower one at the distance
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The minimum apparent duration
of the light burst (at θ = 0):
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An (arguable) assumption

The variability timescale measured in the comoving frame

is approximately equal to the light-crossing time.



Increase Lorentz factor!

• The emitting region moves further away

Lsh ∝ Γ2

• Comoving photon density rapidly decreases
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L – the isotropic luminosity

• Two-photon absorption threshold increases



An arbitrarily large Lorentz factor ...

(1) The synchrotron peak is at ε = Γγ′2~ eB

mec

(2) Radiation flux is a fraction
of the magnetic-energy flux w′ph = η1
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For a given isotropic luminosity w′ph =
L τ

4π(Γ2cτ)3

τ – the dynamical timescale ( ≈ the observed variability timescale)
ε – the observed photon energy
Γ – the jet’s Lorentz factor
γ′ – the electron’s Lorentz factor in the jet comoving frame



... cannot be arbitrarily large.
Derishev, Kocharovsky, Kocharovsky, A&A 372, 1071 (2001)
Begelman, Fabian, Rees, MNRAS Letters 384, L19 (2008)

Substitute:

γ′ from expression (1) into inequality (3)

B from expression (2) into inequality (3)

Obtain:

the upper limit to the Lorentz factor
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Interlude: Two-photon absorption

In the limit εγ � mec2

we have σγγ ≈ 2σeγ



Two-photon absorption

Optical depth for two-photon absorption

τγγ(ω) ' σγγNph(ω∗)R

Inverse Compton energy losses per particle

ε̇ ' 1

2
ε σeγNph(ω∗) c

Under assumption of high radiation efficiency (ε̇ > ε/t)

the optical depth of a source with size R ' ct is

τγγ > 2
σγγ(ε/2)

σeγ(ε)
� 1

Nph (ω∗) – number density of photons with frequency ∼ ω∗



Self-Compton radiation

(1) The peak is at ε = Γγ′4 ~ eB

mec
(Thomson regime!)

(2) Radiation flux is a fraction
of the magnetic-energy flux w′ph = η1
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The limiting Lorentz factor (inverse Compton radiation)
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For gamma-ray bursts

Γ ≤ 1400
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η1 =
radiated energy

magnetic field energy
∝ L τ
R3B2

∝ L
τ2B2

≈ Compton y parameter

η2 =
dynamical timescale

particle cooling timescale
∝ γ B2τ ∝ ε1/2

sy B3/2τ

Observed parameters:
L, τ , εsy

Assumption: R ≈ cτ
Free parameter: Γ



2nd interlude: SSC vs ERC

• Efficient cooling means that w′ph >
mec

32π
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• Photons’ occupation number K ' w′ph
2π2(~c)3

ε4∗
• Comptonization in the Thomson regime, i.e.

ε∗ < mec2/γ′ and Γγ′ > ε/mec2

Hence,

ε∗ – the energy of comptonized photon in the comoving frame
α – the fine-structure constant
λc – the electron Compton wavelength

K >
9π

16

(
ε

mec2

)3 λc

α2Γ4 cτ
(for SSC)

K >
9π

16

(
ε

mec2

)3 λc

α2Γ2 cτ
(for ERC)



SSC vs ERC

Assume:
the photons’ occupation number does not exceed its
magnitude at the peak of black-body spectrum, i.e. K < 0.02

obtain:
independent lower limit to the Lorentz factor

• For synchrotron self Compton
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• For external radiation Compton
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Inefficient sources



Efficient sources



Living rooms for GRBs and TeV Blazars
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Gamma-ray Bursts

There is a window in the parameter space, where the sources are

• radiatively efficient
• opaque for the inverse Compton radiation

at the same time.

This leads to the condition B < BKN , equivalent to
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α – the fine-structure constant
re – the classical electron radius



A byproduct limit for GRB sources

If a Gamma-Ray Burst is powered by a black hole,

then its mass must be

M > 3 L1/2
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TeV Blazars

A good TeV Blazar must be

• radiatively efficient
• transparent for the inverse Compton radiation

The window opens if η1(BKN) > 1 , which may be treated in
two ways
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α – the fine-structure constant
re – the classical electron radius



A byproduct limit for blazars

If a TeV blazar is powered by a black hole,

then its mass must be

M < 1.5× 1017 L1/2
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