HOW TO LAUNCH MAGNETICALY DRIVEN GRB COLLAPSAR MODEL?

Maxim Barkov University of Leeds, UK, Space Research Institute, Russia

> Serguei Komissarov University of Leeds, UK

17/06/09

Relativistic jet/pancake model of GRBs and afterglows:

I. Numerical simulations

(Barkov & Komissarov 2008a,b) (Komissarov & Barkov 2009)

Rotation:

$$l = l_0 \sin^3 \theta \min(r / r_c, 1)^2$$

 $r_c = 6.3 \times 10^3 \text{km}$
 $l_0 = 10^{17} \text{ cm}^2 \text{ s}^{-1}$

- 2D axisymmetric GRMHD;
- Kerr-Schild metric;
- Realistic EOS;
- Neutrino cooling;
- Starts at 1s from collapse onset. Lasts for < 1s₃

Free fall model of collapsing star (Bethe, 1990)

radial velocity:
$$v^{\hat{r}} = -(2GM/r)^{1/2}$$

mass density: $\rho = C_1 \times 10^7 \left(\frac{t}{1s}\right)^{-1} \left(\frac{r}{100km}\right)^{-3/2} \text{g/cm}^3$
accretion rate: $\dot{M} = 0.1C_1 \left(\frac{t}{1s}\right)^{-1} \left(\frac{M}{10M_{sun}}\right)^{1/2} M_{sun} s^{-1}$

Gravity: gravitational field of Black Hole only (Kerr metric); no self-gravity;

Microphysics: neutrino cooling ;

realistic equation of state, (HELM, Timmes & Swesty, 2000); dissociation of nuclei (Ardeljan et al., 2005); Ideal Relativistic MHD - no physical resistivity (only numeric

Ideal Relativistic MHD - no physical resistivity (only numerical);

magnetic field lines, and velocity vectors

17/06/09

NORDITA, Stockholm

5

Model:A $C_1=9; B_p=3x10^{10} G$

unit length=4.5km t=0.31s

$\log_{10}\rho$ (g/cm³)

magnetic field lines, and velocity vectors

17/06/09

Model:A $C_1=9; B_p=3x10^{10} G$

unit length=4.5km t=0.31s

 $\log_{10} B$

 $\log_{10} P/P_m$

magnetic field lines, and velocity vectors NORDITA, Stockholm Model:A $C_1=9; B_p=3x10^{10} G$

 $log_{10}\rho$ (g/cm³)

magnetic field lines

Model:C $C_1=3; B_p=10^{10} G$

 $\log_{10} P/P_m$

velocity vectors

II. Magnetic Unloading

What is the condition for activation of the BZ-mechanism?

1) MHD waves must be able to escape from the black hole ergosphere to infinity for the BZ-mechanism to operate, otherwise expect accretion.

or
$$B^2/4\pi\rho c^2 > 1$$

2) The torque of magnetic lines from BH should be sufficient to stop accretion

(Barkov & Komissarov 2008b) (Komissarov & Barkov 2009)

17/06/09

The disk accretion makes easier the explosion conditions. The MF lines shape reduce local accretion rate.

 $\dot{E}_{BZ} / \dot{M}c^2 = \kappa > 1/10$

III. Numerical simulations II: Angular Momentum

(Barkov & Komissarov 2008a,b) (Komissarov & Barkov 2009)

Rotation:

$$l = l_0 \sin^2 \theta \min(r / r_c, 1)^2$$

 $r_c = 6.3 \times 10^3 \text{km}$
 $l_0 = 1 - 3 \times 10^{17} \text{ cm}^2 \text{ s}^{-1}$

- 2D axisymmetric GRMHD;
- Kerr-Schild metric;
- Realistic EOS;
- Neutrino cooling;
- Starts at 1s from collapse onset. Lasts for < 1s12

Preliminary results

\Box	D	1		Employing	νTr	Ė		
	B_{10}	$\iota_{max,17}$		Explosion	$\Psi_{BH,27}$	$E_{BH,51}$	series	-
3	3	1	0.9	yes	11.0	9	Z	
3	1	1	0.9	yes	3.2	0.73	Z	
3	0.3	1	0.9	yes	from 0.78 to 0.66	0.07	Z	
9	3	1	0.9	yes	8.4	4.8	Z	
9	1	1	0.9	yes	3.1	0.7?	Z	
9	0.3	1	0.9	yes?	0.8	0.05?	Z	-
3	3	3	0.9	yes	6.5	2.8	X	
3	1	3	0.9	yes	2.1	0.43	x	
3	0.3	3	0.9	no	0.5	-	X	
9	3	3	0.9	yes	5.5	2.3	X	
9	1	3	0.9	no	1.5	-	x	
9	0.3	3	0.9	no	0.23	-	X	
3	3	1	0.5	yes	11	2.0	р	
3	1	1	0.5	no?	3.4	-	р	
3	0.3	1	0.5	no	0.4	-	р	
9	3	1	0.5	yes	10.5	0.5 one side	р	
9	1	1	0.5	no	2.5	-	р	
9	0.3	1	0.5	no	0.51	-	р	
3	3	1	0.0	yes	12.8	0.2 one side	<− 0−_ (1/50 of case a=0.9
3	1	1	0.0	no	2.7	-	0	
3	0.3	1	0.0	no	from 0.85 to 0.47	-	0	
9	3	1	0.0				0	
9	1	1	0.0				0	
9	0.3	1	0.0	no	1.05	-	0	

17/06/09

$$\dot{M} = 0.15 M_{SUN} s^{-1}$$
 (C₁ = 3)
 $B = 3 \times 10^{10} G$
 $d_0 = 10^{17} cm^2 s^{-1}$
 $a = 0.9$

$$l_0 = 3 \times 10^{17} \ cm^2 s^{-1}$$

 $a = 0.9$

$$l_0 = 10^{17} \ cm^2 s^{-1}$$

 $a = 0.5$

$$l_0 = 10^{17} \ cm^2 s^{-1}$$

 $a = 0.0$

17/06/09

$$\dot{M} = 0.15 M_{SUN} s^{-1}$$
 (C₁ = 3) $l_0 = 10^{17} cm^2 s^{-1}$
B = 0.3×10¹⁰ G $a = 0.9$

100

50

м О

-50

-100

 $\log_{10}(\rho\,)$

$$\log_{10}\left(\frac{P_g}{P_m}\right)$$

Jets are powered mainly by the black hole via the Blandford-Znajek mechanism !!

Model: A

- No explosion if a=0;
- Jets originate from the black hole;
- ~90% of total magnetic flux is accumulated by the black hole;
- Energy flux in the ouflow ~ energy flux through the horizon (disk contribution < 10%);

• Theoretical BZ power:
$$\dot{E}_{BZ} = 3.6 \times 10^{50} f(a) \Psi_{27}^2 M_2^{-2} = 11 \times 10^{51} \ ergs^{-1}$$

Jets are powered mainly by the black hole via the Blandford-Znajek mechanism !!

Model: C

- No explosion if a=0;
- Jets originate from the black hole;
- ~90% of total magnetic flux is accumulated by the black hole;
- Energy flux in the ouflow ~ energy flux through the horizon (disk contribution < 10%);

• Theoretical BZ power:
$$\dot{E}_{BZ} = 3.6 \times 10^{50} f(a) \Psi_{27}^2 M_2^{-2} = 0.48 \times 10^{51} \ erg \ s^{-1}$$

<u>results</u>

name	B ₁₀	C ₁	a	Expl	t _e	Ψ ₂₇	V _s	<l<sub>51></l<sub>
Α	3	3	0.9	Yes	0.174	11.6	0.49	9.6
В	3	9	0.9	Yes	0.245	13.1	0.40	12.7
С	1	3	0.9	Yes	0.453	2.8	0.10	0.4
D	1	9	0.9	No				
E	0.3	3	0.9	No				
F	0.3	9	0.9	No				
G	3	9	0.0	No				

Magnetic Flux

Models: A,B,C,D,E,F,G

Uniform field models 3x109 G

1	Ψ ₂₇	t _{expl}	$dM_{\rm BH}/dt$	L ₅₁	η
l _o	1.9	0.74	0.007	0.22	0.016
0.6 l ₀	3.1	0.68	0.018	0.40	0.012
0.01 ₀	17	1.37	0.11	16	0.08

 $\eta = \frac{1}{\dot{M}_{BH}c^2}$

17/06/09

Summary:

- Jets are formed when BH accumulates sufficient magnetic flux.
 Jets power 0.4 ÷ 13×10⁵¹ erg s⁻¹
- Total energy of BH $\simeq 8 \times 10^{53}$ erg
- Expected burst duration > 1s (?)
- Jet advance speed $V_s \approx 0.1 \div 0.5 c$
- Expected jet break out time $\simeq 4$ s ($r_* \simeq 2 \times 10^5$ km)
- Jet flow speed $\Gamma_j \leq 3$ (method limitation)
- Jets are powered by the Blandford-Znajek mechanism

Good news for the collapsar model of long duration GRBs !