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Heat Transfer of Stars
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The classic view of envelope convection
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[Image courtesy of Daniel Lecoanet]



Solar Convective Flows
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Flows in Simple Stratified Convection

4 B +8.03x107° (2D | =107 | Ra= 10%) 4932 % 107

[Anders & Brown 2017; PRF 2]



The Solar Convective Conundrum:
Horizontal Surface Flows
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The Solar Convective Conundrum:
Helioseismology

Expected from
simulations
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The Convective
Conundrum cont'd
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Theory (Miesch et al. 2012)
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Extra motivation In the asteroseismic age

Many observations which
PLATO rely on stellar structure

WFIRST models.

- Stellar structure models
rely on convection
parameterizations like

CoRoT >
i MLT.
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Takeaways

1) There is an absence of large-scale convective power Iin
observations of the Sun.



What’s going on?

Some options:
1) The observations are wrong
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What’s going on?

Some options:
1)Fhe-ebservationsare-WronRg

2) Some dynamical process masks giant cells
3)_Giant cells are not driven

.

Entropy Rain Hypothesis: Cold downflows
from the solar surface carry the solar

luminosity to the bottom of the CZ, not warm
upflows which would manifest as giant cells.

[Spruit 1997; Brandenburg 2016; and results of Kapyla et al. 2017]




Corona

Convection Zone [65

Deep Convection Zone

Radiative Zone




Radiative Zone




Thermals as a model for Entropy Rain

Starts as a blob of
buoyant fluid

Evolves into a
buoyant vortex ring

Entrains fluid from
environment

[Suggested by Brandenburg 2016]



Thermals as a model for Entropy Rain

sim_time = 2.1026e-01

sl w u w

EHE TEE E T B aaE e e

+1.00e + 00 +1.41e—01 +5.37e — 02 *1.12e+ 00
20.0

D
17.5
15.0
12.5
10.0
7.5
5.0

2.5

0.0
-5.0 —25 00 25 50 -50 —-25 00 25 50-50 -25 00 25 50-50 -25 00 25 5.0





3D Visualization of an Evolved Thermal

O




Flows in Simple Stratified Convection
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[Anders & Brown 2017; PRF 2]



[Anders & Brown 2017; PRF 2]



Thermals as a model for Entropy Rain

Fundamental Questions:

1.) Can entropy rain survive
throughout the depth of the CZ?

2.) Can entropy rain carry the stellar
luminosity?

[Suggested by Brandenburg 2016]



Thermal Entrainment in the Incompressible Limit

L} growth of thermal through transport of
environmental fluid into the thermal

[Lecoanet & Jeevanjee 2019]



Thermal Entrainment in the Incompressible Limit

Volume:
V « r3(measured)
V « z3(spheroidal)

Re =630
= Re=6300

[Lecoanet & Jeevanjee 2019]



Thermal Entrainment in the Incompressible Limit

Volume: V « r*« 23, so
Radius: z « r o« t2

Even though thermals buoyantly
accelerate, they entrain enough
to stall themselves.

[Lecoanet & Jeevanjee 2019]



Fundamental problem of thermals
as a model for entropy rain:

[f thermals entrain & slow down,
how can they cross the solar CZ?



Stratification breaks symmetry

Cold thermals:
* Boussinesg-like entrainment
* stratification-enduced compression

Hot thermals:
* Boussinesg-like entrainment
* stratification-enduced expansion




Stratification effects without buoyancy

Compression should go as:
*r < p? for horizontal compression
*r x p2 for spherical compression

For p, the atmospheric density,

and r, the radius:
( E o)

[Brandenburg 2016]



Buoyantly neutral Hill vortices
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Non-buoyant hill vortex simulations were between
expected limits (slope of -0.8).

[Brandenburg 2016]



Takeaways

1) There is an absence of large-scale convective power in
observations of the Sun.

2) Entropy rain (the nonlocal transport of heat by downflows)
may make giant cells unnecessary.



Experiment. Evolve thermals In
atmospheres with different stratifications

Fundamental control parameter:
S = (size of thermal) / (atmospheric scale height)

Limits:
S - 0 (Boussinesq)
S - O(1) (stratification matters)




To first order, we see what we expect:
blended compression & entrainment

fd d’; 0)319)

simulation (N, = 3)

[Anders, Lecoanet & Brown 2019; ApJ 884]



Sims soon; First, some theory

Goal: Model vortex ring stage of
thermal’s evolution

Important quantities:

* Buoyancy of the thermal, B
 Circulation of the vortex ring, I
* Volume of the thermal, V

* Radius of the thermal, r

* Impulse of the thermal, |




Theory of stratified vortex ring entrainment

Fundamental Quantity: Impulse

1

I— Efvx « (V x (pu))dV.,



Theory of stratified vortex ring entrainment

...which is similar to the momentum

I, = (1 + k) pVwa,



Theory of stratified vortex ring entrainment

...which is similar to the momentum

I, = (1 + k) pVwa,

and which 1s approximately (thin core vortex ring)

I ~ 7wp,r<T,



Theory of stratified vortex ring entrainment

Assume the volume-integrated buoyancy force of
the thermal is ~constant in time,




Theory of stratified vortex ring entrainment

Assume the volume-integrated buoyancy force of
the thermal is ~constant in time,

...and assume buoyancy Is the only force acting on
the thermal.



Theory of stratified vortex ring entrainment

Assume circulation is
constant (no baroclinic
torques)




Theory of stratified vortex ring entrainment

We can solve impulse for radius vs time,

-t « p2 for purely horizontal compression, and
- « t¥2 for boussinesqg regime.



Theory of stratified vortex ring entrainment

Assume spheroidal volume
3

YV ~ mr

Substitute in the definition of velocity,



Theory of stratified vortex ring entrainment

Step 6: Solve for depth vs time

(Simple ODE which can be solved for a prescribed
density stratification)



Experiment: two types of simulations

1) 2D anelastic, cylindrically symmetric
— Computationally cheap
— Limit in which theory was derived

2) 3D fully compressible, cartesian boxes
— The “true” solution




Simulations vs. Theory

Highly
Stratified, t* £7

[Anders, Lecoanet, & Brown 2019, ApJ 884]



Simulations vs. Theory

Highly
Stratified, t°

[Anders, Lecoanet, & Brown 2019, ApJ 884]



Simulations vs. Theory

Shrink w/ depth

[Anders, Lecoanet, & Brown 2019, ApJ 884]



Simulations vs. Theory

1% difference

20

Depth

[Anders, Lecoanet, & Brown 2019, ApJ 884]







Takeaways

1) There is an absence of large-scale convective power in
observations of the Sun.

2) Entropy rain (the nonlocal transport of heat by downflows) may
make giant cells unnecessary

3) Buoyancy makes vortex rings expand & entrain, while stratification
compresses them. Entropy rain feels both of these effects.

4) We develop a theory that describes the size & depth of
entropy rain vs. time and verify that theory with simulations.
There are two regimes: “stalling” and “falling”.



Extrapolation to solar parameters

Simulation Output Parameterization
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Extrapolation to solar parameters

Simulation Output Parameterization

Ny B, T m
Stratification 2D Anelastic Simulations (Cylindrical)
Increases : —0.548
~0.569
: —0.602
_ W'th_ —0.713
Increasing —0.947
stratification | -1.47
—2.70
~5.73
Changes —0.547
with —0.568
: : —0.601
Y Increasing 011
stratification | _g.949

k) We calculated what B would be for a solar downflow....



Extrapolation to solar parameters

Simulation Output Par We eStImate th a-t
x5 1 solar downflows
2D Anclastic Simulations (Cyimarica | @€ 1N this range,

0.1 —0.548 : : PR
05 T Yvhlc_:h ”IS In the
: -0602 2 “falling” regime.

—0713 —
—0.947 —1.73 9.81 0.807 0.654

—1.47 —1.59 10.2 0.794 0.642
—2.70 —1.49 10.7 0.781 0.609

—5.73 —1.43 10.8 0.787 0.616
3D Fully Compressible Simulations (Cartesian)
0.1 —0.547 —2.17 8.98 1.06 0.636
0.5 —0.568 —2.12 8.79 0.978 0.678
1 —0.601 —2.05 8.87 0.907 0.689
2 —0.711 —1.89 9.31 0.828 0.680
3 —0.949 —1.75 9.99 0.815 0.648

[Anders, Lecoanet, & Brown 2019, ApJ 884]



Extrapolation to solar parameters
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Extrapolation to solar parameters
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Extrapolation to solar parameters
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Extrapolation to solar parameters
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Only a small fraction of the area of the CZ is required to carry the solar luminosity using thermals



Radiative Zone




Takeaways

1) There is an absence of large-scale convective power in
observations of the Sun.

2) Entropy rain (the nonlocal transport of heat by downflows) may
make giant cells unnecessary

3) Buoyancy makes vortex rings expand & entrain, while stratification
compresses them. Entropy rain feels both of these effects.

4) We develop a theory that describes the size & depth of entropy
rain vs. time and verify that theory with simulations. There are two
regimes: “stalling” and “falling”

5) The enthalpy fluxes carried by solar downflows is sufficient to
carry the solar luminosity in the deep CZ

For more specifics, see the paper:
[Anders, Lecoanet & Brown 2019; ApJ 884, arXiv: 1906.02342]



Preliminary Turbulent Results

Entrainment behavior ~the same

Acceleration & velocity behavior is quite
different than the laminar cases

Hunch: baroclinic torques
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