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Sources for Stably Stratified Turbulence

> External Large-Scale Shear (mean wind In
atmospheric turbulence);

> Shear In large-scale circulation in convection
> Internal Gravity Waves

> Forcing iIn DNS, LES and |laboratory
experiments (oscillating grids; propellers, etc).



Budget Equation for. TKE

aEK :Htot_T -D
ot

Balance In R-space
Htot ~ D

Steady-State 16y,
NGMOBYENEGUSTURLUIENCE:

_ ! _8 EKth(KMSZ_IB“:zD




oE
ot

S —

E th(KMSZ_ﬂ|FZ )
"S":"B"
1
Ri,. ~0.25

Ri—
N

E
K =K, S% - B =T

TKE

1
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Budget Equations for Stably Stratified

Turbulence
_1/0
> Turbulent kinetic energy: Eg _§<“ >
> Potential temperature fluctuations: Ey :%<¢92>
> Flux of potential temperature: F=<u 9)
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Budget Equations for Stably
Stratified Turbulence
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Total Turbulent Energy
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Budget Equations for Stably
Stratified Turbulence
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No Critical Richardson Number
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Comparisons
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Fig. 4 Ri-dependence of the flux Richardson number Rif = —fAF; /(t§) for meteorological ebservations:
slanting black triangles (Kondo et al. 1978), snowflakes (Bertin et al. 1997); laboratory experiments: slanting
crosses (Rehmann and Koseff 2004), diamonds (Ohya 2001), black circles (Strang and Fernando 2001); DNS:
five-pointed stars (Stretch et al. 2001); LES: triangles (our DATABASE64). Solid line shows the steady-state

EFB model, Eq. 56, with Rif — R = 0.25at Ri — oo
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Fig. 5 Ri-dependence of the turbulent Prandtl number Prr = Kyq/Kpy. after the same data as in Fig. 4

(meteorological observations, laboratory experiments, DNS, and LES). Solid line shows the steady-state EFB
model, Eq. 56




Comparisons
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Fig. 9 Ri-dependence of the squared dimensionless turbulent flux of potential temperature FS*'J.-’ (Ex Eg), for
meteorological observations: squares (CME), circles (SHEBA), overturned triangles (CASES-99): laboratory
experiments: diamonds (Ohya 2001); LES: triangles (our DATABASEG4). Solid line shows the steady-state

EFB model, Eq. 61
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Fig. 7 Ri-dependence of the potential-to-total turbulent energy ratio Ep/ E. for meteorological observations:
overturned triangles (CASES-99), and laboratory experiments: diamonds (Ohya 2001). Solid line shows the

steady-state EFB model, Egs. 34, 36
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Large-Scale Internal Gravity Waves (IGW)

Basic Equations:
avW
dt
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Solutions of the Linearized Equations for propagating IGW.:
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Sources for Internal Gravity Waves

> Random convective motions underlying the
stably stratified turbulence.

> Strong large-scale shear.
> LLarge-scale flows over complex terrain.

> Wave-wave Interactions.



Large-Scale Internal Gravity Waves (IGW)

» We consider the large-scale IGW whose
periods and wave lengths are much larger than the turbulent
time and length scales.

>

v=U+4+u+VY%,

» We neglect the wave-wave Iinteractions at large scales, but take
Into account the turbulence-wave interactions.

» We assume that the energy spectrum of the ensemble of IGW

is isotropic and has the power-law form: BRI nel A AR

WIS Ew = [ [ew(ko)/27kildko = [ ew(ko)dko



Large-Scale Internal Gravity Waves
with Random phases
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Budget Equations for SST with
Large-Scale Internal Gravity Waves
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Turbulent Prandtl Number vs. RI
(IG-Waves)
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Meteorological observations: slanting black triangles (Kondo et al., 1978), snowflakes
(Bertin et al., 1997); laboratory experiments: black circles (Strang and Fernando, 2001),
slanting crosses (Rehmann and Koseff, 2004), diamonds (Ohya, 2001); LES: triangles
(Zilitinkevich et al., 2008); DNS: five-pointed stars (Stretch et al., 2001). Our model with
|G-waves at Q=10 and different values of parameter G: G=0.01 (thick dashed), G= 0.1
(thin dashed-dotted), G=0.15 (thin dashed), G=0.2 (thick dashed-dotted ), at Q=1 for
G=1 (thin solid) and without IG-waves at G=0 (thick solid).
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Meteorological observations: slanting black triangles (Kondo et al., 1978), snowflakes
(Bertin et al., 1997); laboratory experiments: black circles (Strang and Fernando, 2001),
slanting crosses (Rehmann and Koseff, 2004), diamonds (Ohya, 2001); LES: triangles
(Zilitinkevich et al., 2008); DNS: five-pointed stars (Stretch et al., 2001). Our model with
|G-waves at Q=10 and different values of parameter G: G=0.01 (thick dashed), G=0.1
(thin dashed-dotted), G=0.15 (thin dashed), G=0.2 (thick dashed-dotted ), at Q=1 for
G=1 (thin solid); and without IG-waves at G=0 (thick solid).



Meteorological observations: squares [CME, Mahrt and Vickers (2005)], circles [SHEBA,
Uttal et al. (2002)], overturned triangles [CASES-99, Poulos et al. (2002), Banta et al.
(2002)], slanting black triangles (Kondo et al., 1978), snowflakes (Bertin et al., 1997);
laboratory experiments: black circles (Strang and Fernando, 2001), slanting crosses
(Rehmann and Koseff, 2004), diamonds (Ohya, 2001); LES: triangles (Zilitinkevich et al.,
2008); DNS: five-pointed stars (Stretch et al., 2001). Our model with |IG-waves at Q=10
and different values of parameter G: G=0.001 (thin dashed), G=0.005 (thick dashed),
G= 0.01 (thin dashed-dotted), G=0.05 (thick dashed-dotted), at Q=1 for G=0.1 (thin
solid); and without IG-waves at G=0 (thick solid).
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Meteorological observations: overturned triangles [CASES-99, Poulos et al. (2002),
Banta et al. (2002)]; laboratory experiments: diamonds (Ohya, 2001); LES: triangles
(Zilitinkevich et al., 2008). Our model with IG-waves at Q=10 and different values of
parameter G: G=0.2 (thick dashed-dotted), at Q=1 for G=1 (thin solid); and without I1G-
waves at G=0 (thick solid for Ri;’co = 0.4) and (thick dashed for Ri?co = 0.2).



Large-Scale Internal Gravity Waves
(Two-way Coupling)
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Budget Equations for IGW: S=0
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Figure 1. The anisotropy parameter 4. versus the parameter for different values of the
parameter Cy: C, =1/15 (solid). C, =0.1 (dashed). C; =0.217 (dashed-doted).
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Figure 2. The ratio of potential to the total energy versus the parameter Ri,,.
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Figure 3. Kinetic energy (in Ozmidov units) versus the parameter Ri, .
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Figure 5. The turbulent Prandtl number Pr; versus the parameter Ri, .
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Figure 11. The vertical profile of the turbulent Prandtl number, Pr;.

E JE

Figure 9. The vertical profile of the non-dimensional squared flux of the potential temperature.
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Figure 12. The vertical profile of the ratio of the potential to the total energy.



|_aboratory Experiments in Convective turbulence
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FIG. 5. Profiles of the vertical mean temperature gradient
V.T in the experiments with the wavy bottom surface for
AT = 50 K for different cross-sections on the left at y = 193.6

FIG. 2. A sketch of the chamber: heat exchangers at the bot-
tom (4) and top (1) surfaces; temperature probe (2) equipped
with 12 E-thermocouples; a wavy bottom surface (3) with a
sinusoidal modulation.
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FIG. 6. Profiles of the vertical mean temperature gradi-
ent V.T in the experiments with the wavy bottom surface
for AT = 50 K for different cross-sections on the right at




Standing Internal Grawty \Waves (IGW)
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Laboratory Experiments in Convective turbulence
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FIG. 5. Profiles of the vertical mean temperature gradient

V.T in the experiments with the wavy bottom surface for . . .
AT = 50 K for different cross-sections on the left at y = 193.6 FIG. 6. The frequencies of the internal gravity waves (mea-
sured in Hz) versus the normalized horizontal wavelength

An/Ln: theoretical curves for different modes m = 1 (solid),
m = 2 (dashed) and m = 3 (dashed-dotted) and measured fre-
quencies associated with different modes: m = 1 (diamonds),
m = 2 (snowflakes) and m = 3 (circles) in the experiments for
the temperature differences AT = 50 K between the bottom
and top walls.
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FIG. 9. The averaged spectrum function Ej(f) of the tem-
perature field obtained in the experiments for the temperature
differences AT = 50 K between the bottom and top surfaces.
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' lens }

pulsed
laser

Experimental set - up:
oscillating grids turbulence
generator and particle image
velocimetry system



Particle Image Velocimetry System

double pulsed
Nd:Yag laser

Raw image of the incense
smoke tracer particles in
oscillating grids turbulence

cross correlation peak search

Particle Image
Velocimetry Data

Processing



Unforced Convection: A =1

Mean temperature field

Ul(y,z) T (y,2)



Temperature Field in Forced and Unforced
Turbulent Convection

Mean temperature field

0 20 40 60 80 100 120 140 160 180 200 Y, mm

80 100 120 140 160 180 200 ymm

Forced turbulent convection Unforced convection
(two oscillating grids)



The atmospheric convective boundary layer
(CBL) consists In three basic parts:

> Surface layer strongly unstably stratified and dominated by small-
scale turbulence of very complex nature including usual 3-D turbulence,
generated by mean-flow surface shear and structural shears
), and unusual strongly anisotropic buoyancy-
driven turbulence ;

> CBL core dominated by the structural energy-, momentum- and
mass-transport, with only minor contribution from usual 3-D turbulence
generated by local structural shears on the background of almost zero
vertical gradient of potential temperature (or buoyancy);

> Turbulent entrainment layer at the CBL upper boundary,
characterised by essentially stable stratification with negative
(downward) turbulent flux of potential temperature (or buoyancy).



Budget Equations for Shear-Free Convection




CBL-Core for Shear-Free Convection
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Solution for Cloud Cells (CBL-core)
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EFB-Theory for CBL-Core
for Shear-Free Convection

MR implies the averaging over the volume
of the semi-organized structure.
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EFB-Theory for CBL-Core
for Shear-Free Convection

The kinetic energy of the semi-organized structures (cloud cells):

The thermal energy of the semi-organized structures (cloud cells):
5 213




EFB-Theory for CBL-Core
for Shear-Free Convection

The vertical flux of entropy transported by the semi-organized structures:
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Production in Sheared Convection

The production of turbulence is caused by three sources:
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Sheared Convection (CBL-core)

D® The shear velocity:
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The solution of
linearized equations:




Budget Equations for Sheared Convection




EFB-Theory for CBL-Core
for Sheared Convection

The kinetic energy of the semi-organized structures (cloud streets):
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The Deardorff velocity scale:

U, =(ev.) pL.)"

The vertical turbulent flux of entropy:

B |(1+4T
TC’PIT. )

)

e T . ' ™ 4 'Irj L S
"'} Al _12 \
o2 G| I [
) L

](1 F) o,(4),

7P| L, |



References (Stably Stratified Turbulence)

Zilitinkevich, S., Elperin, T., Kleeorin, N., and Rogachevskii, I, 2007: Energy- and flux-
budget (EFEB) turbulence closure model for stably stratified flows. Boundary Layer.
Meteorology, Part 1: steady-state homogeneous regimes. Boundary-Layer Meteoraol.,
125, 167-191..

Zilitinkevich ' S., Elperin T., Kleeorin N., Rogachevskii I., Esau I., Mauritsen T. and Miles
M., 2008: Turbulence energetics in stably stratified geophysical flows: strong and weak
mixing regimes. Quarterly J. Royal Meteorol. Society, 134, 793-7909.

Zilitinkevich, S.S., Elperin, T., Kleeorin, V. L’vov, N., Rogacheyvskii, I., 2009: Energy- and
flux-budget turbulence closure model for. stably stratified flows. Part II: the role of
internal gravity waves. Boundary-Layer Meteorol. 133, 139-164.

Zilitinkevich, S.S., Elperin, T., Kleeorin, N., Rogachevskii, I., and Esau, I., 2013: A
hierarchy of energy and flux- -budget (EFB) turbulence closure models for stably
stratified geophysical flows. Boundary-Layer Meteorol. 146, 341-373.

Eidelman A., Elperin T., Gluzman Y., Kleeorin N.; and RogachevsKii I., 201.3:
“Experimental study of temperature fluctuations in forced stably stratified turbulent
flows". Phys. Fluids, 25, 015111.

Cohen N., Eidelman A., Elperin T., Kieearin N., and'Rogachevskii'l., 20145 *“Sheared
stably stratified turbulence and |large-scale waves in a lid driven cavity*. Phys. Eluids, 26,
105106.

Kieeorin N., RogachevskKii l., Seustova l: Troitskaya Yu., Ermakova ©O., Zilitnkevich'S:,
2019: “Internal gravity.: waves in energy. and flux:budget turbulence-closure theory for.
shear-free stably stratified flows". Phys. Rev. E; 99, 063106.



References (Convective Turbulence)

Elperin T., Kleeorin N., Rogachevskii I., and Zilitinkevich S., Fermation of large-
scale semi-organized structures in turbulent convection, Phys. Rev. E 66, 066305
(1—15), (2002).

Elperin T., Kleeorin N., Rogachevskii I., and Zilitinkevich S., Tangling turbulence
and semi-organized structures in convective boundary layers, Boundary-Layer
Meteorol., 119, 449-472 (2006).

Elperin T., Golubeyv I., Kleeorin N., and Rogachevskii I., Large-scale instabilities in
turbulent convection, Phys. Fluids, 18, 126601 (1—11), (2006).

Bukai M., Eidelman A., Elperin T., Kleeorin N., Roagachevskii'l., Sapir-Katiraie |.,
Effect of Large-Scale Coherent Structures on Turbulent Convection, Phys. Rev. E
79, 066302, (2009); "Transition Phenomena in Unstably Stratified Turbulent Flows".
Phys. Rev. E, 83, 036302 (2011).

Rogachevskii I. and Kleeorin N., "Turbulent Fluxes of Entropy and Internal
Energy in Temperature Stratified Flows". J. Plasma Phys., 81, 395810504
(2015).

Zilitinkevich S.; Kleeorin N., RogachevskKii |., "EFEB theory for Atmospheric
Turbulent Convection: Surface Layers®, in preparation.

Zilitinkevich' S.; Kieeorin N., RogachevskKii ., "EFB theory for Atmospheric
Turbulent Convection: CBL-Core”, Iin preparation.



Conclusions

Budget equations for the kinetic and potential energies  and for
the heat flux play a crucial role for analysis of stably stratified
turbulence.

Explanation for no critical Richardson number in stably stratified
turbulence.

Reasonable Ri-dependencies of the turbulent Prandtl number, the
anisotropy of stably stratified turbulence, the normalized heat flux
and TKE which follow from the developed theory.

The scatter of observational, experimental, LES and DNS data In
stably stratified turbulence are explained by effects of large-scale
Internal gravity waves on stably stratified turbulence.

We have developed the energy and flux budget (EFB) turbulence
theory that takes iInto account a two-way coupling between
Internal gravity waves (IGW) and the shear-free stably stratified

turbulence produced by IGWA. Due to the nonlinear effects more intensive
|G\ produce more: strong turbulence. hne lovw amplitude GV produce
furpulence consisting up:te 90 % of:turbulent potential Energy.



Conclusions

¢ Predictions of energy- and flux-budget turbulence (EFB) theory are in
a good agreement with the experimental results on stably stratified and
convective turbulence, and with observations in atmospheric turbulence.

“* In experiments with turbulent convection, we have found that there
are many locations with stably stratified regions in the flow core of the
large-scale circulation.

“* In experiments with turbulent convection, we detect large-scale
standing internal gravity waves excited in the regions with the stably
stratified flow, and the spectrum of these waves contains several
localized maxima.



THE END



