→
Europe/Stockholm

122:026 (Nordita, Stockholm)
### 122:026

#### Nordita, Stockholm

, , ,

Description

Nordita, Stockholm, Sweden

**IMPORTANT NOTICE**

**Due to the COVID-19 pandemic this program has been postponed by one year and will (most likely) take place in August/September 2021.**

**We will update this webpage (and re-open registration) as soon as the situation "clears up" and allows for more reliable planning.**

Equilibrium statistical physics provides an extremely powerful, universal formalism that tells us how many-particle systems in thermal equilibrium behave, and how we can characterize their properties by only a few macroscopic quantities.

However, most systems and processes found in nature are out of equilibrium. Think of any living organism, or directed transport in cells mediated by molecular motors. On a more abstract level, the most important examples include systems in a non-equilibrium initial or transient state, systems which are driven away from equilibrium by externally imposed forces, gradients or other non-equilibrium sources, or systems which are maintained in a non-equilibrium steady state by perpetual energy conversion.

Often these systems consist of only a few entities and are so small that thermal fluctuations play a prominent role. It has been a vision from the early days of statistical mechanics to develop a theoretical description for such small non-equilibrium systems that is comparably powerful and universal as is equilibrium statistical physics.

In recent years a number of new ideas and approaches in this direction, such as largedeviation theory, non-equilibrium phase transitions, and stochastic thermodynamics, have led to the first discoveries of exact relations characterizing universal properties of small non-equilibrium systems, which are valid beyond linear response.

The aim of this program is to bring together the leading experts in (non-equilibrium) statistical physics to critically discuss and evaluate the latest developments towards a universal theory for non-equilibrium systems.

(use the link below or in the menu to the left)

Contact

The agenda of this meeting is empty