The little hierarchy problem at the LHC

Andrea Romanino SISSA/ISAS

 $m{\circ}$ Known fields: g_A^μ W_a^μ B^μ Q_i u_i^c d_i^c L_i e_i^c

 $lackbox{6}$ Known fields: g_A^μ W_a^μ B^μ Q_i u_i^c d_i^c L_i e_i^c G_a

$m{f G}$ Known fields: g_A^μ W_a^μ B^μ Q_i u_i^c d_i^c L_i e_i^c G_a

- Experimental "problems" of the SM:
 - Gravity
 - Dark matter
 - Baryon asymmetry
- Experimental "hints" of physics beyond the SM
 - Neutrino masses
 - Quantum number unification
- Theoretical puzzles of the SM:
 - @ <H> « MPI
 - Family replication
 - Small Yukawa couplings, pattern of masses and mixings
 - Gauge group, no anomaly, charge quantization, quantum numbers
- Theoretical problems of the SM:
 - Naturalness / unitarity problem
 - Cosmological constant problem
 - Strong CP problem

- ullet Known fields: g_A^μ W_a^μ B^μ Q_i u_i^c d_i^c L_i e_i^c G_a
- The unitarity/naturalness argument for new physics @ TeV: either a new strong scale $Q_{NP} \approx TeV$ or $G_a \leftrightarrow h$, with $\delta m^2_h/m^2_h \approx (Q_{NP}/TeV)^2$

- $m{f G}$ Known fields: g_A^μ W_a^μ B^μ Q_i u_i^c d_i^c L_i e_i^c G_a
- The unitarity/naturalness argument for new physics @ TeV: either a new strong scale $Q_{NP} \approx TeV$ or $G_a \leftrightarrow h$, with $\delta m^2_h/m^2_h \approx (Q_{NP}/TeV)^2$
- Many options; how do they confront the Little Hierarchy problem?

The little residual hierarchy (e.g. with h)

The little residual hierarchy (e.g. with h)

The little residual hierarchy (e.g. with h)

MSSM

MSSM

MSSM

Fine-tuning in the MSSM

$$M_Z^2 = -2\frac{m_{h_u}^2 \tan^2 \beta - m_{h_d}^2}{\tan^2 \beta - 1} - 2|\mu|^2 \approx -2m_{h_u}^2 - 2|\mu|^2 \quad \text{(large } \tan \beta\text{)}$$

$$\approx -2\left(m_{h_u}^2 (M_0) + |\mu|^2\right) + 2\delta m_{h_u}^2$$

 $\delta m_{h_u}^2 \gg M_Z^2$ (large logs + color + bounds on gluinos and squarks): a moderate (up to %) fine-tuning is required to obtain Mz = 91 GeV

Fine-tuning in the MSSM

$$M_Z^2 = -2\frac{m_{h_u}^2 \tan^2 \beta - m_{h_d}^2}{\tan^2 \beta - 1} - 2|\mu|^2 \approx -2m_{h_u}^2 - 2|\mu|^2 \quad \text{(large } \tan \beta)$$

$$\approx -2\left(m_{h_u}^2 (M_0) + |\mu|^2\right) + 2\delta m_{h_u}^2$$

 $\delta m_{h_u}^2 \gg M_Z^2$ (large logs + color + bounds on gluinos and squarks): a moderate (up to %) fine-tuning is required to obtain M_Z = 91 GeV

$$M_Z^2 \approx (91 \,\text{GeV})^2 \left[\frac{\tilde{m}_Q^2}{(70 \,\text{GeV})^2} - \frac{\tilde{m}_h^2}{(80 \,\text{GeV})^2} + \frac{M_{1/2}^2}{(40 \,\text{GeV})^2} - \frac{\mu^2}{(70 \,\text{GeV})^2} \right]_{M_0}$$

Fine-tuning in the MSSM

$$M_Z^2 = -2\frac{m_{h_u}^2 \tan^2 \beta - m_{h_d}^2}{\tan^2 \beta - 1} - 2|\mu|^2 \approx -2m_{h_u}^2 - 2|\mu|^2 \quad \text{(large } \tan \beta)$$
$$\approx -2\left(m_{h_u}^2 (M_0) + |\mu|^2\right) + 2\delta m_{h_u}^2$$

 $\delta m_{h_u}^2 \gg M_Z^2$ (large logs + color + bounds on gluinos and squarks): a moderate (up to %) fine-tuning is required to obtain M_Z = 91 GeV

$$M_Z^2 \approx (91 \,\text{GeV})^2 \left[\frac{\tilde{m}_Q^2}{(70 \,\text{GeV})^2} - \frac{\tilde{m}_h^2}{(80 \,\text{GeV})^2} + \frac{M_{1/2}^2}{(40 \,\text{GeV})^2} - \frac{\mu^2}{(70 \,\text{GeV})^2} \right]_{M_0}$$

Indirect bound on stop mass stronger (but direct one is also relevant)

$$(114 \,\text{GeV})^2 < m_h^2 < M_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} h_t^2 m_t^2 \log \frac{\tilde{m}_t^2}{m_t^2} \Rightarrow \text{FT} \sim 50 \div 100$$

A comment on scanning procedures

$$M_Z^2 \approx -2\left(m_{h_u}^2(M_0) + |\mu|^2\right) + 2\,\delta m_{h_u}^2$$

The FT problem then may introduce a bias in numerical scans of the MSSM parameter space: the (necessary) cancellation is forced to take place between μ^2 and all the rest

Example: LSP is rarely an Higgsino (work in progress)

What is left?

- Quantitative measure of naturalness nicely taking into account and combining all the considerations above
 - Scan the relative sizes of SUSY parameters and the SM parameters in their ranges
 - Set the overall scale of SUSY parameters from <H> = 174 GeV
 - Calculate SUSY spectrum and compare with experiment
- Few O(1%) of points satisfy all experimental constraints

Beyond MSSM: xMSSM

- Minimal extension: λSH_uH_d (symmetries forbid μH_uH_d)
 - harmless (unification OK)
 - welcome (μ = λ<S> ≈ susy scale)
- Spectrum: h H → h₁ h₂ h₃, A → a₁ a₂, N₁...N₄ → N₀ N₁...N₄
- Help with FT from $(114\,{\rm GeV})^2 < m_h^2 < M_Z^2\cos^22\beta + \frac{3}{4\pi^2}h_t^2m_t^2\log\frac{\tilde{m}_t^2}{m_t^2}$:
 - $\lambda_h = \frac{g^2 + g^{'2}}{4} \cos^2 2\beta + \frac{\lambda^2}{2} \sin^2 2\beta + \text{loops} \quad \text{gain limited by poles}$

 $\lambda(10 \text{ TeV}) < 3 \text{ (EWPTs) best, } \lambda(M_{GUT}) < 3 \text{ (unification) OK}$

- $m_h^2 < (114\,{
 m GeV})^2$ hidden Higgs: h ightarrow aa ightarrow 4X (ma protected by PQ, R)
- Persistent FT from
 - direct bounds on SUSY partners
 - arranging the invisible decay [Shuster Toro hep-ph/0512189]

Invisible Higgs decays: h → aa → 4X

- 3leptons → multileptons from additional steps in chargino/neutralino decays
 - \odot C₁+N₂ and then

 - © $C_1 \rightarrow N_0 + l + v$ (5l overall) or even $C_1 \rightarrow N_1 + l + v \rightarrow N_0 + 3l + v$ (7l overall)
- Deviation from MSSM coupling relations: VVh = VHA = $\sin^2(\alpha \beta)$, VVH = VhA = $\cos^2(\alpha \beta)$ (optimistic)
- \odot Z' if μ is protected by a gauge symmetry

Combine MSSM with extra-dimensions not far from TeV

Combine MSSM with extra-dimensions not far from TeV

Combine MSSM with extra-dimensions not far from TeV

Combine MSSM with (Simplest) Little Higgs

Combine MSSM with (Simplest) Little Higgs

SSM with $Q_3 = (t_L b_L) = gaugino$

 \odot G = SU(5) x G'_{SM} broken to the diagonal G_{SM}

[Cai Cheng Terning, arXiv:0806.0386]

- Extra vector superfields ≈ Q+Q̄, g' W' B'
- $gA_i^{\dagger}T_A^{ij}\lambda_A\psi_j \to \lambda_t H_d^{\dagger}QT^c$

Higgsless (technicolor & C): G_a Goldstones of global $SU(2)_L \times SU(2)_R$ EWPT not calculable or off; recent progress via duality to 5D

- B Higgsless (technicolor & C): G_a Goldstones of global $SU(2)_L \times SU(2)_R$ EWPT not calculable or off; recent progress via duality to 5D
- $m{\odot}$ Composite Higgs: Q_{NP} = Q_{strong}, $Q_{\mathrm{NP}} \gtrsim \sqrt{c_i} \cdot 5 \, \mathrm{TeV} \approx 5 \, \mathrm{TeV}$, $\mathbf{m_h} \approx 5 \, \mathrm{TeV}$

- B Higgsless (technicolor & C): G_a Goldstones of global $SU(2)_L \times SU(2)_R$ EWPT not calculable or off; recent progress via duality to 5D
- $m{\odot}$ Composite Higgs: Q_{NP} = Q_{strong}, $Q_{\mathrm{NP}} \gtrsim \sqrt{c_i} \cdot 5 \, \mathrm{TeV} \approx 5 \, \mathrm{TeV}$, $\mathbf{m_h} \approx 5 \, \mathrm{TeV}$
- Protect Higgs mass from Q_{NP}: h is also a pseudo-NGB (\Leftrightarrow shift symmetry H(x) \rightarrow H(x) + c). Explicit breaking by λ_t λ_H g:

$$\delta m_h^2 \sim \frac{3G_F}{\sqrt{2}\pi^2} m_t^2 Q_{\rm NP}^2 = m_h^2 \left(\frac{Q_{\rm NP}}{0.5 \,{\rm TeV}}\right) \text{ for } m_h = 115 \,{\rm GeV}$$

- B Higgsless (technicolor & C): G_a Goldstones of global $SU(2)_L \times SU(2)_R$ EWPT not calculable or off; recent progress via duality to 5D
- $m{\odot}$ Composite Higgs: Q_{NP} = Q_{strong}, $Q_{\mathrm{NP}} \gtrsim \sqrt{c_i} \cdot 5 \, \mathrm{TeV} \approx 5 \, \mathrm{TeV}$, $\mathbf{m_h} \approx 5 \, \mathrm{TeV}$
- Protect Higgs mass from Q_{NP}: h is also a pseudo-NGB (\Leftrightarrow shift symmetry H(x) \rightarrow H(x) + c). Explicit breaking by λ_t λ_H g:

$$\delta m_h^2 \sim \frac{3G_F}{\sqrt{2}\pi^2} m_t^2 Q_{\rm NP}^2 = m_h^2 \left(\frac{Q_{\rm NP}}{0.5 \,{\rm TeV}}\right) \text{ for } m_h = 115 \,{\rm GeV}$$

- B Higgsless (technicolor & C): G_a Goldstones of global $SU(2)_L \times SU(2)_R$ EWPT not calculable or off; recent progress via duality to 5D
- \odot Composite Higgs: Q_{NP} = Q_{strong}, $Q_{\rm NP} \gtrsim \sqrt{c_i} \cdot 5 \, {\rm TeV} \approx 5 \, {\rm TeV}$, m_h pprox 5 TeV
- Protect Higgs mass from Q_{NP} : h is also a pseudo-NGB (\Leftrightarrow shift symmetry $H(x) \rightarrow H(x) + c$). Explicit breaking by λ_t λ_H g:

$$\delta m_h^2 \sim \frac{3G_F}{\sqrt{2}\pi^2} m_t^2 Q_{\rm NP}^2 = m_h^2 \left(\frac{Q_{\rm NP}}{0.5 \,{\rm TeV}}\right) \text{ for } m_h = 115 \,{\rm GeV}$$

- More clever explicit breaking ("collective breaking"): Little Higgs
 - $m{\circ}$ no 1-loop Q_{NP}^2 terms (exact-NGB unless 2+ non-vanishing couplings)
 - the top (gauge, Higgs) loop must be cancelled at a lower scale (= global symmetry breaking scale f « Q_{strong}) by same statistics partners

Little Higgs

Higgs mass protected by $H(x) \rightarrow H(x) + c$

Little Higgs

Higgs mass protected by $H(x) \rightarrow H(x) + c$

LH @ LHC

- Observe the partners responsible for the divergence cancellation

 - T, T^c: single production (bWT) dominates (b pdf up to ≈0.2)
 - additional (++) Higgs states
- Observe the divergence cancellation

$$(a) = -6\lambda_t^2 \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2},$$

$$(b) = -6\lambda_T^2 \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 - m_T^2},$$

$$(c) = +6\frac{\lambda_T}{f} \int \frac{d^4k}{(2\pi)^4} \frac{m_T}{k^2 - m_T^2}$$

$$-\lambda_t^2 \qquad \qquad -\lambda_T^2 \qquad \qquad +\lambda_T \frac{m_T}{f} \qquad = 0$$

Warping and composite Higgs

k = curvature

- RS + bulk fermions + H as (A₅)₀ + deconstruction = Little Higgs + UV completion
- m_H protection: collective breaking =
 bc breaking of 5D gauge symmetry
- 4D dual: UV brane: elementary IR brane: composite (H, t_R)
- $Q_{\text{strong}} > 5 \text{ TeV as usual}$ $M_{KK} > \text{TeV}$, watch $Z \rightarrow bb$
- Gauge coupling unification in a novel way (but limited calculability)

@LHC (a first look)

- Keep only first excitation:
 - \odot ISM> = $\cos \varphi$ | elem> + $\sin \varphi$ | comp>
 - $|KK\rangle = -\sin\varphi | elem\rangle + \cos\varphi | comp\rangle$
- Production:

 - \odot SM₃ needs to be substantially composite: t_R (bW fusion) or V_{long} (DY) (analogous to LH)
- Decay:

 - \circ also: (gluon)_{KK} \rightarrow t_Rt_R
 - possibly lepton excitations (if open)

Back to the residual hierarchy

$$\delta m_h^2 \sim \frac{3G_F}{\sqrt{2}\pi^2} m_t^2 Q_{\rm NP}^2 = \begin{cases} m_h^2 \left(\frac{Q_{\rm NP}}{0.5\,{\rm TeV}}\right)^2 & \text{if } m_h = 115\,{\rm GeV} \\ m_h^2 \left(\frac{Q_{\rm NP}}{2\,{\rm TeV}}\right)^2 & \text{if } m_h = 250\,{\rm GeV} \end{cases}$$

$$Q_{\rm NP} \gtrsim \sqrt{c_i} \cdot 5\,{\rm TeV} \approx \begin{cases} 50\,{\rm TeV} \text{ composite SM fermions} \\ 5\,{\rm TeV} \text{ composite Higgs} \\ 0.5\,{\rm TeV} \text{ 1-loop perturbative} \end{cases}$$

- m_h = 500 GeV would help; disfavoured by EWPTs only
 within the SM
- Cancel SM heavy Higgs contributions to EWPT with NP (goodness off SM + light H fit accidental but not too much fine-tuned)
- Generic prediction of NP giving $\Delta T = 0.25\pm0.1$

An inert Higgs

- H₁ (h): usual Higgs (but heavier): EWSB, M_W M_Z, m_f
- ⊕ H₂ (H, A, H±): inert Higgs (60 GeV-1TeV): no vev, no coupling to fermions (H₂→-H₂), gives $\Delta T = 0.25\pm0.1$
- DM candidate for m_H ≈ 70 GeV (LEP?)
- @ Pair production: pp \rightarrow W* \rightarrow H+H, H+A or pp \rightarrow Z* \rightarrow H+H-, HA
- Decay into the lightest + gauge bosons (no fermions) → charged leptons in the final states
- UV completion?

- What about the cosmological constant?
- If the m_h naturalness criterium is irrelevant, what are the observable consequences?

- What about the cosmological constant?
- If the m_h naturalness criterium is irrelevant, what are the observable consequences?
- LHC..?

SM

- What about the cosmological constant?
- If the m_h naturalness criterium is irrelevant, what are the observable consequences?
- LHC..?
- Dark matter still motivates NP at the TeV scale

SM

- What about the cosmological constant?
- If the m_h naturalness criterium is irrelevant, what are the observable consequences?
- LHC..?
- Dark matter still motivates NP at the TeV scale

- What about the cosmological constant?
- If the m_h naturalness criterium is irrelevant, what are the observable consequences?
- LHC..?
- Dark matter still motivates NP at the TeV scale

- \odot DM: μ < 1.2 TeV (M₁ < M₂), mostly Bino favourable for LHC
- No bounds from EWPTs

- \odot DM: μ < 1.2 TeV (M₁ < M₂), mostly Bino favourable for LHC
- No bounds from EWPTs
- \odot m_H < 170 GeV, in terms of of \widetilde{m} , tan β

- \odot DM: μ < 1.2 TeV (M₁ < M₂), mostly Bino favourable for LHC
- No bounds from EWPTs
- \odot m_H < 170 GeV, in terms of of \widetilde{m} , tan β

- No bounds from EWPTs
- \odot m_H < 170 GeV, in terms of of \widetilde{m} , tan β

- No bounds from EWPTs
- \odot m_H < 170 GeV, in terms of of \widetilde{m} , tan β

- Wilder: stopping gluinos (1-2 jets in any direction from denser parts of the detector + m.e.), displaced vertexes (low m), charge flips

Summary

- Is a % tuning really worth worrying?
- If not, NP could as well be out of reach of the LHC
- Barring independent arguments (e.g. DM)
- Useful and fruitful guideline within models addressing the naturalness issue
- Surprises are not unlikely

- Experimental "problems" of the SM:
 - Gravity
 - Dark matter
 - Baryon asymmetry
- Experimental "hints" of physics beyond the SM
 - Neutrino masses
 - Quantum number unification
- Theoretical puzzles of the SM:
 - @ <H> « Mpl
 - Family replication
 - Small Yukawa couplings, pattern of masses and mixings
 - Gauge group, no anomaly, charge quantization, quantum numbers
- Theoretical problems of the SM:
 - Naturalness / unitarity problem
 - Cosmological constant problem
 - Strong CP problem