Search for the lightest MSSM Higgs boson in cascades of supersymmetric particles in ATLAS

Eirik Gramstad

Experimental particle physics Department of physics University of Oslo

June 12, 2008

Outline

Introduction Production of the lightest SUSY Higgs boson h production Background Results Conclusion

- introduction
- lightest SUSY Higgs production
- Standard Model and SUSY background
- results
- conclusion

- Supersymmetry (SUSY) is one of the most believed *new physics* phenomena.
- need two Higgs doublets in MSSM:

$$H_u = \begin{pmatrix} h_u^+ \\ h_u^0 \end{pmatrix}, \qquad H_d = \begin{pmatrix} h_d^- \\ h_d^0 \end{pmatrix},$$

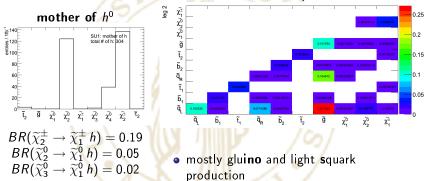
to give mass to up and down type fermions

- 8° of freedom, so SUSY predicts 5 Higgs bosons
 - the lightest Higgs, h^0 . $m_h < 135$ GeV
 - heavy CP-even Higgs, H⁰
 - charged Higgs, H[±]
 - CP-odd Higgs, A⁰
- Ratio of vacuum expectation values (vev) of up and down field: $\tan \beta = v_u/v_d$
- gravity mediated soft SUSY breaking (mSUGRA)
 - described by five parameters at the GUT scale: common scalar (m_0) and gaugino mass $(m_{1/2})$, a common trilinear coupling (A_0) and the two Higgs parameters tan β and the sign of μ

Two of the ATLAS benchmark points

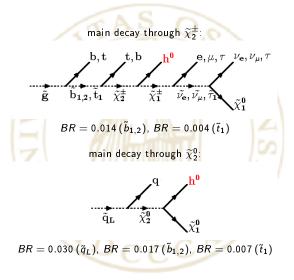
- the lightest Higgs is light (< 135 GeV) so $h^0 \rightarrow b\bar{b}$ dominates (BR = 0.7 0.85). The remaining is into $\tau^+ \tau^-$
 - this motivates us to search for h^0 in SUSY cascade since the direct production (e.g. gluon-gluon fusion) will suffer from large QCD background
- most obvious channel is $\widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0 h$ (if open)
 - only dominant if $\widetilde{\chi}^0_2 \rightarrow \widetilde{l}l$ is inaccessible
 - $\widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0 h$ dominates $\widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0 Z$ due to the mostly gaugino like $\widetilde{\chi}_2^0$ in mSUGRA
- also other Higgs production decays are possible
 - $\widetilde{\chi}^0_{3,4} \to \widetilde{\chi}^0_{1,2} h$, although $\widetilde{\chi}^0_{3,4}$ decays are mostly dominated by decays into $\widetilde{\chi}^\pm_1$ and W^\pm
 - $\tilde{\chi}_2^{\pm} \to \tilde{\chi}_1^{\pm} h$, although $\tilde{\chi}_2^{\pm}$ decay are mostly dominated by decays into $\tilde{\chi}_2^0$ and W^{\pm}
 - ullet also possible with $ilde{t}_2 o ilde{t}_1 \, h$ or $ilde{ au}_2 o ilde{ au}_1 \, h$

Two of the ATLAS benchmark points

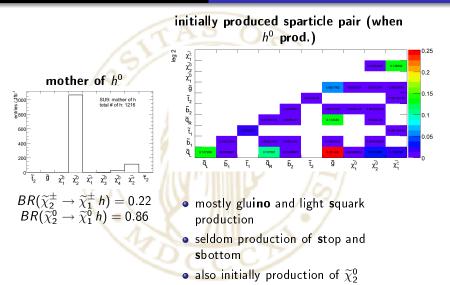

	SU1	SU9		
sparticle	mass [GeV]			
h ⁰	116	114		
scalars	$\approx 570 - 760$	$\approx 730-950$		
gluino 🖌	832	990		
$\widetilde{\chi}_1^0$ (LSP)	137	173		
$\widetilde{\chi}_2^0$	264	325		
$ \begin{array}{c} \widetilde{\chi}_{2}^{0} \\ \overline{\chi}_{3,4}^{0} \\ \overline{\chi}_{1}^{\pm} \\ \overline{\chi}_{2}^{\pm} \\ \overline{\chi}_{2}^{\pm} \\ \overline{\chi}_{0}^{0} \\ \end{array} $	\sim 480	~ 540		
$\widetilde{\chi}_1^{\pm}$	262	325		
$\widetilde{\chi}_2^{\pm}$	484	545		
A ₀	512	625		
decay	Branching Ratio [%]			
$\widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0 h$	5	86		
$\widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0 Z$	1	12		
$\widetilde{\chi}_2^{\pm} \to \widetilde{\chi}_1^{\pm} h$	19	27		
$\widetilde{\chi}_2^{\pm} \to \widetilde{\chi}_1^{\pm} Z$	25	22		

Two benchmark points are presented here $(m_0, m_{1/2}, A_0, \tan \beta, sgn(\mu))$ SU1: (70, 350, 0, 10, +)SU9: (300, 425, 200, 20, +)

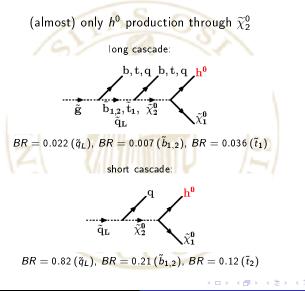
Eirik Gramstad The lightest MSSM Higgs boson in cascades of SUSY particles


Co-annihilation - SU1 Higgs point - SU9

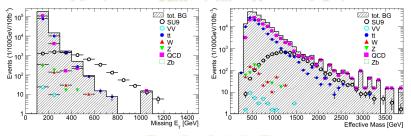
initially produced sparticle pair (when h^0 prod.)



 seldom production of stop and sbottom


Co-annihilation - SU1 Higgs point - SU9

Co-annihilation - SU1 Higgs point - SU9


Co-annihilation - SU1 Higgs point - SU9

Standard Model background SUSY background

	SU1	
number of Higgs $(\mathscr{L} = 1 f b^{-1})$	304	1216
typical final state	b or light jets, leptons, ∉ _T	light jets, ∉ _T

 Standard Model is not the biggest challenge, can be rejected by using the ∉_T and effective mass:

..., however the SUSY background is problematice > < 🖘 🔳 🔗 🔍

Eirik Gramstad The lightest MSSM Higgs boson in cascades of SUSY particles

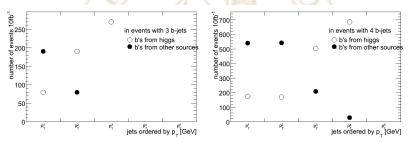
 $\tilde{g} \rightarrow b \, \tilde{b}_{1,2} \rightarrow b \, b \, \tilde{\chi}^0_{1,2,3,4}$

 $\widetilde{g}
ightarrow b \, \widetilde{b}_{1,2}
ightarrow b \, t \, \widetilde{\chi}_{1,2}^{\pm}$

 $\tilde{g} \rightarrow t \, \tilde{t}_1 \rightarrow t \, b \, \tilde{\chi}_{1,2}^{\pm}$

 $\tilde{g} \rightarrow t \, \tilde{t}_1 \rightarrow t \, t \, \tilde{\chi}^0_{1,2,3,4}$

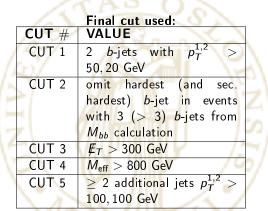
Standard Model background SUSY background


- also *b*-jets from W^{\pm} and *Z*-decays
- since all SUSY events contain two LSPs, *𝐾*_𝕇 can not be used to reduce SUSY background
- in case of SU9 a lepton veto could be efficient, remove some of the background, both SM and SUSY
- ... however; not good for SU1

lepton veto after cuts: $\not\!\!E_T > 100 \text{ GeV}$ and $\geq 2 \text{ jets}$, $p_T^{1/2} > 100/50$:

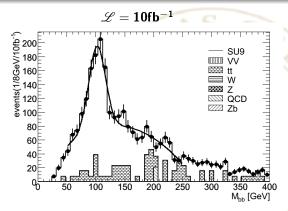
$\mathscr{L} = 10 f b^- 1$	SU1		SU9	
	S	В	S	В
no lep. veto	165	116875	1413	115030
lep. veto	101	95618	1121	94855
$efficiency(\varepsilon), rejection(R)$	0.6,0.18		0.80,0.18	

Standard Model background SUSY background


- there are often produced *b*-jets in SUSY cascades
- might have high p_T since they come from decays of heavy squarks or gluinos

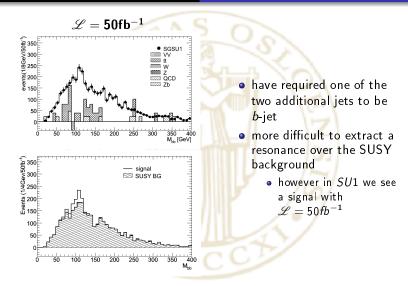
From this:

omitting the hardest (and second hardest) b-jet(s) in events with 3 (> 3) b-jets we remove some of the wrong b-jet combinations in the M_{bb} calculation


Higgs point - SU9 Co-annihilation - SU1

b-tagging efficiency: $60\% \Rightarrow$ efficiency of 36% per *b*-jet pair.

Outline Production of the lightest SUSY Higgs boson h production Background Conclusion Conclusion


Higgs point - SU9 Co-annihilation - SU1

- have required the two additional jets to be light flavored
- see a clear signal above SUSY + SM background
- fitted with a Gaussian superimposed to a second degree polynomial

Number of events in $\pm 1\sigma$:signalSUSY BGSM BGsignificanceevents68177742615.1

Higgs point - SU9 Co-annihilation - SU1

- lightest MSSM Higgs boson is light (< 135 GeV) so $h \rightarrow b \bar{b}$ dominates
- when $\widetilde{\chi}_2^0 \to \widetilde{II}$ is not kinematically allowed, $\widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0 h$ dominates
 - if not: h^0 is produced mainly through chargino and heavy neutralino decays
 - these decays are never dominated by the decay into h^0 , leading to few Higgses
- Standard Model background not the main challenge ($\not\!\!\!E_T$ and $M_{\rm eff}$)
- the SUSY events contain many *b*-jets and is the main background, some is removed by:
 - omit the hardest (and second hardest) *b*-jet in the M_{bb} calculation in events with 3 (> 3) *b*-jets
 - require more jets with specific flavors
- in all SUX samples except SU9 the $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h$ is suppressed and to extract a Higgs resonance one will need high luminosity and/or more sophisticated methods