Hyperbolic Extra Dimensions at the Large Hadron Collider

Henrik Melbéus melbeus@kth.se

Royal Institute of Technology (KTH), Stockholm, Sweden

Nordic Workshop on LHC and Beyond June 12, 2008

Outline

Outline

- Motivation and description of the model
- Possible signals at the LHC
- Conclusions

The paper

- Based on arXiv:0806.1841 [hep-ph]
- In collaboration with Tommy Ohlsson

- ullet The electroweak scale $M_{
 m ew} \sim 100~{
 m GeV}$
- ullet The Planck scale $M_{
 m Pl} \equiv G_N^{-1/2} \sim 10^{18} {
 m ~GeV}$

- ullet The electroweak scale $M_{
 m ew} \sim 100 {
 m ~GeV}$
- The Planck scale $M_{\rm Pl} \equiv G_N^{-1/2} \sim 10^{18} \; {
 m GeV}$

- ullet Theoretically, $M_{
 m ew}$ is expected to obtain loop corrections of order $M_{
 m Pl}\gg M_{
 m ew}$
- ullet Miraculous cancellation needed to keep $M_{
 m ew}$ at $\sim 100~{
 m GeV}$

- ullet The electroweak scale $M_{
 m ew} \sim 100~{
 m GeV}$
- The Planck scale $M_{\rm Pl} \equiv G_N^{-1/2} \sim 10^{18} \; {
 m GeV}$

- ullet Theoretically, $M_{
 m ew}$ is expected to obtain loop corrections of order $M_{
 m Pl}\gg M_{
 m ew}$
- ullet Miraculous cancellation needed to keep $M_{
 m ew}$ at $\sim 100~{
 m GeV}$

• Popular solution: SUSY (cancellation of divergences)

- ullet The electroweak scale $M_{
 m ew} \sim 100~{
 m GeV}$
- The Planck scale $M_{\rm Pl} \equiv G_N^{-1/2} \sim 10^{18} \; {
 m GeV}$

- ullet Theoretically, $M_{
 m ew}$ is expected to obtain loop corrections of order $M_{
 m Pl}\gg M_{
 m ew}$
- ullet Miraculous cancellation needed to keep $M_{
 m ew}$ at $\sim 100~{
 m GeV}$

- Popular solution: SUSY (cancellation of divergences)
- Alternative solution: Large extra dimensions

Extra dimensions — the ADD model

- The ADD model:
 - Arkani-Hamed, Dimopolous, and Dvali (1998)
 - d extra spatial dimensions
 - Compactified on a torus (a flat space)
 - SM fields confined to a 4-dimensional brane
 - Only gravity can probe the extra dimensions

Extra dimensions — the ADD model

- The ADD model:
 - Arkani-Hamed, Dimopolous, and Dvali (1998)
 - d extra spatial dimensions
 - Compactified on a torus (a flat space)
 - ▶ SM fields confined to a 4-dimensional brane
 - Only gravity can probe the extra dimensions
- \bullet The extra dimensions can be large, \sim 10 $\mu m_{\rm h}$ i.e., Large extra dimensions

- Because gravity propagates in 4 + d dimensions, the Planck scale is only an effective scale valid at low energies
- ullet New fundamental mass scale for gravity, M_*

- Because gravity propagates in 4 + d dimensions, the Planck scale is only an effective scale valid at low energies
- ullet New fundamental mass scale for gravity, M_*
- $M_{\rm Pl}^2 = V M_*^{2+d} = (2\pi L)^d M_*^{2+d}$
- ullet If V is sufficiently large, then we could have $M_* \sim M_{
 m ew}$

- Because gravity propagates in 4 + d dimensions, the Planck scale is only an effective scale valid at low energies
- New fundamental mass scale for gravity, M_*
- $M_{\rm Pl}^2 = V M_*^{2+d} = (2\pi L)^d M_*^{2+d}$
- If V is sufficiently large, then we could have $M_* \sim M_{\mathrm{ew}}$
- ullet Large extra dimensions expected at $\sim 1~{
 m TeV}$ (like SUSY)

- Because gravity propagates in 4 + d dimensions, the Planck scale is only an effective scale valid at low energies
- New fundamental mass scale for gravity, M_*
- $M_{\rm Pl}^2 = V M_*^{2+d} = (2\pi L)^d M_*^{2+d}$
- If V is sufficiently large, then we could have $M_* \sim M_{\mathrm{ew}}$
- ullet Large extra dimensions expected at $\sim 1~{
 m TeV}$ (like SUSY)
- However, if $M_*=1~{\rm TeV}$, then $L\sim 10^{31/d}~{\rm TeV}^{-1}\gg M_*^{-1}$
- New hierarchy between M_* and L^{-1}

Hyperbolic extra dimensions

- Hyperbolic geometry: constant negative curvature v
- Hyperbolic disc of radius *L*:

$$V = \frac{4\pi}{v^2} \sinh^2\left(\frac{vL}{2}\right) \sim \frac{\pi}{v^2} \exp\left(vL\right)$$

ullet Possible to have $M_* \sim M_{
m ew}$ and $M_* \sim L^{-1}$

Hyperbolic extra dimensions

- Hyperbolic geometry: constant negative curvature v
- Hyperbolic disc of radius *L*:

$$V = \frac{4\pi}{v^2} \sinh^2\left(\frac{vL}{2}\right) \sim \frac{\pi}{v^2} \exp\left(vL\right)$$

- ullet Possible to have $M_*\sim M_{
 m ew}$ and $M_*\sim L^{-1}$
- Hyperbolic extra dimensions provide a more satisfactory solution to the hierarchy problem
 - ► Kaloper, March-Russell, Starkman, and Trodden (2000)

Hyperbolic extra dimensions

- Hyperbolic geometry: constant negative curvature v
- Hyperbolic disc of radius *L*:

$$V = \frac{4\pi}{v^2} \sinh^2\left(\frac{vL}{2}\right) \sim \frac{\pi}{v^2} \exp\left(vL\right)$$

- ullet Possible to have $M_*\sim M_{
 m ew}$ and $M_*\sim L^{-1}$
- Hyperbolic extra dimensions provide a more satisfactory solution to the hierarchy problem
 - Kaloper, March-Russell, Starkman, and Trodden (2000)
- Our model: two extra dimensions with the geometry of a hyperbolic disc

The ADD model

• 1 free parameter: M_*

The hyperbolic disc model

ullet 3 free parameters: M_* , v, and au_b

The ADD model

- 1 free parameter: M_*
- KK spectrum starts out at $m \approx 0$

- 3 free parameters: M_* , v, and τ_b
- KK spectrum starts out at $m \approx v/2 > 0$

The ADD model

- 1 free parameter: M_*
- KK spectrum starts out at $m \approx 0$
- For d=2, M_* is constrained to $M_* \geq 50 \,\, \mathrm{TeV}$ from astrophysics

- 3 free parameters: M_* , v, and τ_b
- KK spectrum starts out at $m \approx v/2 > 0$
- Weak restrictions on the parameter space

The ADD model

- 1 free parameter: M_*
- KK spectrum starts out at $m \approx 0$
- For d=2, M_* is constrained to $M_* \geq 50 \text{ TeV}$ from astrophysics
- Universal coupling of KK modes

- 3 free parameters: M_* , v, and τ_b
- KK spectrum starts out at $m \approx v/2 > 0$
- Weak restrictions on the parameter space
- Different KK modes have different couplings to SM fields

The ADD model

- 1 free parameter: M_*
- KK spectrum starts out at $m \approx 0$
- For d=2, M_* is constrained to $M_* \geq 50 \text{ TeV}$ from astrophysics
- Universal coupling of KK modes
- Physical results independent of the position of the brane

- 3 free parameters: M_* , v, and τ_b
- KK spectrum starts out at $m \approx v/2 > 0$
- Weak restrictions on the parameter space
- Different KK modes have different couplings to SM fields
- Physical results depend on the position of the brane

- The LHC phenomenology for the ADD model has been investigated
 - ► Giudice, Rattazzi, and Wells (2000)
 - ► Hinchliffe and Vacavant (2001)

- The LHC phenomenology for the ADD model has been investigated
 - ► Giudice, Rattazzi, and Wells (2000)
 - ▶ Hinchliffe and Vacavant (2001)
- Interesting reactions at the LHC:
 - $p + p \rightarrow \text{jet} + G$
 - ▶ $p + p \rightarrow \gamma + G$ where G is a graviton
- The graviton is not observed missing energy signatures

- The LHC phenomenology for the ADD model has been investigated
 - Giudice, Rattazzi, and Wells (2000)
 - ► Hinchliffe and Vacavant (2001)
- Interesting reactions at the LHC:
 - $P + p \rightarrow \text{jet} + G$
 - ▶ $p + p \rightarrow \gamma + G$ where G is a graviton
- The graviton is not observed missing energy signatures
- We have studied the LHC phenomenology for the hyperbolic disc model

- The LHC phenomenology for the ADD model has been investigated
 - ► Giudice, Rattazzi, and Wells (2000)
 - ▶ Hinchliffe and Vacavant (2001)
- Interesting reactions at the LHC:
 - $P + p \rightarrow \text{jet} + G$
 - ▶ $p + p \rightarrow \gamma + G$ where G is a graviton
- The graviton is not observed missing energy signatures
- We have studied the LHC phenomenology for the hyperbolic disc model
- The main SM background, from $p+p \to {
 m jet}/\gamma + Z(\to \nu \bar{\nu})$, has been simulated in PYTHIA

Cross sections — hadronic jet production

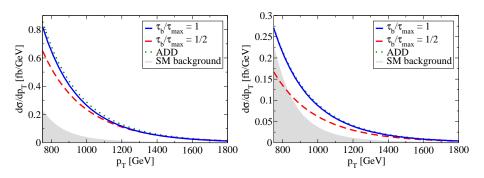


Figure: The differential cross section for graviton plus jet production with respect to $p_{\rm T}$. Left panel: $M_*=1.5~{\rm TeV}$. Right panel: $M_*=2~{\rm TeV}$.

Cross sections — hadronic jet production

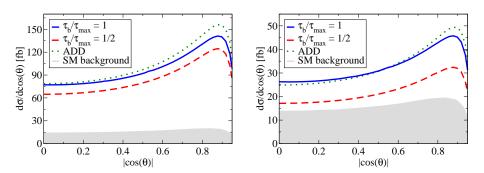


Figure: The differential cross section for graviton plus jet production with respect to $\cos(\theta)$. Left panel: $M_* = 1.5 \text{ TeV}$. Right panel: $M_* = 2 \text{ TeV}$.

Cross sections — photon production

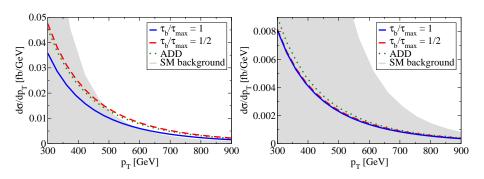


Figure: The differential cross section for graviton plus photon production with respect to p_T . Left panel: $M_* = 1 \text{ TeV}$. Right panel: $M_* = 1.5 \text{ TeV}$.

Cross sections — photon production

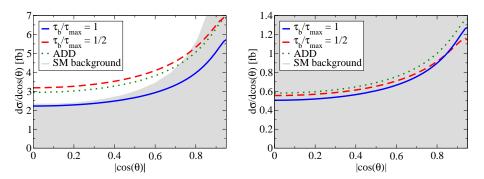


Figure: The differential cross section for graviton plus photon production with respect to $\cos(\theta)$. Left panel: $M_* = 1 \text{ TeV}$. Right panel: $M_* = 1.5 \text{ TeV}$.

Summary and conclusions

- The ADD model provides a possible solution to the hierarchy problem
- Hyperbolic extra dimensions improve this solution

Summary and conclusions

- The ADD model provides a possible solution to the hierarchy problem
- Hyperbolic extra dimensions improve this solution

- Large extra dimensions can be studied at the LHC
 - Signals similar to the ADD model
 - In some cases indistinguishable
 - Most promising signal from the jet channel
 - More difficult for the photon channel

Summary and conclusions

- The ADD model provides a possible solution to the hierarchy problem
- Hyperbolic extra dimensions improve this solution

- Large extra dimensions can be studied at the LHC
 - Signals similar to the ADD model
 - In some cases indistinguishable
 - Most promising signal from the jet channel
 - More difficult for the photon channel

Paper on arXiv:0806.1841 [hep-ph]