Can we get the Standard Model from String Theory?

Paolo Di Vecchia

Niels Bohr Instituttet, Copenhagen and Nordita, Stockholm

Stockholm, 12 June 2008

Plan of the talk

- String Theory and Experiments
- 2 Intersecting and magnetized D branes
- 3 A simple phenomenological model
- 4 Conclusions

String theory and Experiments

- The strongest motivation for string theory is the fact that it provides a consistent quantum theory of gravity unified with the gauge interactions.
- ► This is because string theory has a parameter α' of the dimension of a $(length)^2$ that acts as an ultraviolet cutoff $\Lambda = \frac{1}{\sqrt{\alpha'}}$.
- Because of it all loop integrals are finite in the UV.
- ▶ The string tension T is equal to $T = \frac{1}{2\pi\alpha'}$.
- String theory is an extension of field theory!

Quantum Mechanics
$$\underset{h \to 0}{\Longrightarrow}$$
 Classical Mechanics

Special Relativity
$$\stackrel{\Longrightarrow}{c \to \infty}$$
 Galilean Mechanics

String Theory
$$\underset{\alpha' \to 0}{\Longrightarrow}$$
 Field Theory

- ▶ In the limit $\alpha' \to 0$ one recovers all UV divergences of quantum gravity unified with gauge theories.
- They are due to the point-like structure of the elementary constituents.
- ► The possibility of seeing stringy effects in experiments depends then on the energy *E* available.
- ▶ If $\alpha' E^2 << 1$, then one will see only the limiting field theory.
- $ightharpoonup \alpha'$ is a parameter that tells us how much a string theory differs from field theory based on point-like objects.
- ► The simplest string theory is the bosonic string that is, however, not consistent because it contains tachyons in the spectrum.
- ▶ Around 1985 it was clear that we have 5 ten-dimensional consistent string theories: IIA, IIB, I, Het. $E_8 \times E_8$ and Het. SO(32).
- ► They are inequivalent in string perturbation theory ($g_s < 1$), supersymmetric and unify in a consistent quantum theory gauge theories with gravity.

- ▶ Unlike α' the string coupling constant g_s is not a parameter to be fixed from experiments.
- It corresponds to the vacuum expectation value of a string excitation, called the dilaton, $g_s = e^{\langle \phi \rangle}$, that should be fixed by the minima of the dilaton potential.
- But the potential for the dilaton is flat in any order of string perturbation theory.
- ▶ For each value of $\langle \phi \rangle$ we have an inequivalent theory.
- ► This is unsatisfactory for a theory, as string theory, that pretends to explain everything......
- But this is not the only problem....
- ▶ If string theory is the fundamental theory unifying all interactions, why do we have 5 theories instead of just one?

- ► The key to solve this problem came from the discovery of new p-dim. states, called D(irichlet)p branes.
- The spectrum of massless states of the II theories is given in the table

$G_{\mu u}$	$B_{\mu u}$	ϕ	NS-NS sector
Metric	Kalb-Ramond	Dilaton	
C_0, C_2	C_4, C_6	C_8	RR sector IIB
C_1, C_3	C_5	C_7	RR sector IIA

- ▶ the RR C_i stands for an antisymmetric tensor $C_{\mu_1\mu_2...\mu_i}$
- ightharpoonup They are generalizations of the electromagnetic potential A_{μ}

$$\int A_{\mu} dx^{\mu} \Longrightarrow \int A_{\mu_1 \mu_2 \dots \mu_{p+1}} d\sigma^{\mu_1 \mu_2 \dots \mu_{p+1}}$$

As the electromagnetic field is coupled to point-like particles so they are coupled to p-dimensional objects. There exist classical solutions of the low-energy string effective action that are coupled to the metric, the dilaton and are charged with respect a RR field. For them we get

$$C_{01...p} \sim \frac{1}{r^{d-3-p}} \Longleftrightarrow C_0 \sim \frac{1}{r} \text{ if } d=4, p=0$$

They are additional non-perturbative states of string theory with tension and RR charge given by:

$$au_{
m p}=rac{
m Mass}{
m p-volume}=rac{(2\pi\sqrt{lpha'})^{1-
ho}}{2\pilpha'g_{
m s}}$$
 ; $\mu_{
m p}=\sqrt{2\pi}(2\pi\sqrt{lpha'})^{3-
ho}$

► They are called D(irichlet)p branes because they have open strings attached to their (p+1)-dim. world-volume:

$$\partial_{\sigma}X^{\mu}(\sigma=0,\pi;\tau)=0$$
 $\mu=0\ldots p$ Neumann b.c. $\partial_{\tau}X^{i}(\sigma=0,\pi;\tau)=0$ $i=p+1\ldots 10$ Dirichlet b.c.

▶ Remember that a string is described by the string coordinate $X^{\mu}(\sigma,\tau)$ and $\sigma=0,\pi$ correspond to the two end-points of an open string.

► The open strings (gauge theory) live in the (p+1)-dim. volume of a Dp brane, while closed strings (gravity) live in the entire ten dimensional space.

▶ If we have a stack of N parallel D branes, then we have N^2 open strings having their endpoints on the D branes:

An open string attached to the same stack of D branes transforms according to the adjoint representation of U(N)

- ▶ The massless strings correspond to the gauge fields of U(N).
- ▶ A stack of N D branes has a $U(N) = SU(N) \times U(1)$ gauge theory living on their worldvolume.

- ► The discovery of Dp branes opened the way in 1995 to the discovery of the string dualities.
- and this led to understand that the 5 string theories were actually part of a unique 11-dimensional theory: M theory.
- However, in the experiments we observe only 4 and not 10 or 11 non-compact directions.
- ► Therefore 6 of the 10 dimensions must be compactified and small: $R^{1,9} \rightarrow R^{1,3} \times M_6$ where M_6 is a compact manifold.
- ▶ In order to preserve at least N = 1 supersymmetry M_6 must be a Calabi-Yau manifold.
- ▶ But this means that the low-energy physics will depend not only on α' and g_s , but also on the size and shape of the manifold M_6 .

- ▶ Originally the most promising string theory for phenomenology was considered the Heterotic $E_8 \times E_8$ that was studied intensively.
- ▶ But in this theory both the fundamental string length $\sqrt{\alpha'}$ and the size of the extra dimensions were supposed to be of the order of the Planck length $(\frac{1}{\sqrt{\alpha'}} \equiv M_S = \frac{M_{Pl.}\sqrt{\alpha_{GUT}}}{2} \sim \frac{M_{Pl.}}{10}$ and $\frac{R}{\sqrt{\alpha'}} \sim 1$ if $g_S < 1$).
- ▶ Too small to be observed in present and even future experiments!
- One needs a very good control of the theory to be able to extrapolate to low energy.
- Later on in 1998 it became clear that in type I and in a brane world one could allow for much larger values for the string length $\sqrt{\alpha'}$ and for the size of the extra dimensions without being in contradiction with the experimental data.

- When we compactify 6 of the 10 dimensions, in addition to the dilaton, we generate a bunch of scalar fields (moduli) corresponding to the components of the metric and of the other closed string fields in the extra dimensions.
- Their vacuum expectation values, corresponding to the parameters of the compact manifold, are not fixed in any order of perturbation theory because their potential is flat.
- We get a continuum of string vacua for any value of the moduli! No good for phenomenology!
- ► The problem of Moduli stabilization.
- ► In the last few years one has been able to stabilize the moduli by the introduction of non-zero fluxes for some of the NS-NS and R-R fields.

- But we still have a discrete (and huge) quantity of string vacua: "Landscape Problem".
- ▶ How do we fix the vacuum we live in?
- ► Anthropic principle or better understanding needed?
- Bottom-up approach: construct string extensions of the SM and of the MSSM.
- If we want to construct them in an explicit way we must limit ourselves to toroidal compactifications with orbifolds and orientifolds.
- and, most important, we need to have massless open strings corresponding to chiral fermions in four dimensions for describing quarks and leptons.
- The simplest models are those based on several stacks of intersecting branes and/or of their T-dual magnetized branes on R^{3,1} x T² x T² x T²

Intersecting and magnetized D branes

Intersecting branes

- ▶ Consider a rectangular torus \mathcal{T}^2 with radii R_1 and R_2 .
- ► Assume that the two stacks of branes are parallel and lying along the axis x^1 .
- ▶ An open string $(X^{1,2}(\sigma,\tau))$, having one end-point attached to one stack and the other end-point attached to the other stack, satisfies the following eq. of motion and boundary conditions:

$$\left(\frac{\partial^2}{\partial \sigma^2} - \frac{\partial^2}{\partial \tau^2}\right) X^i = 0$$

$$\partial_{\sigma} X^1|_{\sigma = \pi} = \partial_{\tau} X^2|_{\sigma = \pi} = 0$$

$$\partial_{\sigma} X^1|_{\sigma = 0} = \partial_{\tau} X^2|_{\sigma = 0} = 0$$
(1)

14 / 27

▶ We keep now the first stack along the axis x^1 , while we put the second stack at an angle θ with respect to the axis x^1 .

First stack of branes along x^1 .

Second stack at an angle θ with x^1

b.c. for an open string attached at $\sigma=\pi$ to the first stack and at $\sigma=0$ to the second stack:

$$\begin{split} \partial_{\sigma} X^1|_{\sigma=\pi} &= \partial_{\tau} X^2|_{\sigma=\pi} = 0 \\ \partial_{\sigma} \left[\cos \theta X^1 - \sin \theta X^2 \right]_{\sigma=0} &= \partial_{\tau} \left[\sin \theta X^1 + \cos \theta X^2 \right]_{\sigma=0} = 0 \end{split}$$

▶ If the brane at θ is wrapped n(m) times along the cycle 1(2) of the torus, then the angle between the two stacks of branes is given by:

$$\tan\theta = \frac{mR_2}{nR_1}$$

▶ Performing a T-duality along x^2 , that amounts to $\partial_{\sigma}X^2 \leftrightarrow \partial_{\tau}X^2$ and $R_2 \to \frac{\alpha'}{R_2}$, we get the following b.c.:

$$\begin{split} \partial_{\sigma} X^1|_{\sigma=\pi} &= \partial_{\sigma} X^2|_{\sigma=\pi} = 0 \quad ; \quad \tan\theta = \frac{m\alpha'}{nR_1R_2} \\ \left[\partial_{\sigma} X^1 - \tan\theta\partial_{\tau} X^2\right]_{\sigma=0} &= \left[\partial_{\sigma} X^2 + \tan\theta\partial_{\tau} X^1\right]_{\sigma=0} = 0 \end{split}$$

▶ These are the b.c. for an open string with the end-point at $\sigma = 0$ attached to a magnetized brane.

Magnetized branes

- Assume that on the first (second) stack of branes there is a constant magnetic $F^{(\pi)}(F^{(0)})$.
- The action describing the interaction of an open string with its end-points attached to these two stacks of branes is given by:

$$S = S_{bulk} + S_{boundary}$$

$$egin{aligned} S_{bulk} &= -rac{1}{4\pilpha'}\int d au \int_0^{\pi}d\sigma \left[G_{ab}\partial_{lpha}X^a\partial_{eta}X^b\eta^{lphaeta} - B_{ab}\epsilon^{lphaeta}\partial_{lpha}X^a\partial_{eta}X^b
ight] \ S_{boundary} &= & -q_0\int d au A_i^{(0)}\partial_{ au}X^i|_{\sigma=0} + q_\pi\int d au A_i^{(\pi)}\partial_{ au}X^i|_{\sigma=\pi} \end{aligned}$$

$$= \frac{q_0}{2} \int d\tau F_{ij}^{(0)} X^j \dot{X}^i |_{\sigma=0} - \frac{q_\pi}{2} \int d\tau F_{ij}^{(\pi)} X^j \dot{X}^i |_{\sigma=\pi}$$

The two gauge field strengths are constant:

$$A_i^{(0,\pi)} = -\frac{1}{2}F_{ij}^{(0,\pi)}x^j$$
.

- ► The data of the torus \mathcal{T}^2 , called moduli, are included in the constant G_{ij} and B_{ij} .
- ▶ They are the complex and Kähler structures of the torus:

$$U \equiv U_1 + iU_2 = \frac{G_{12}}{G_{11}} + i\frac{\sqrt{G}}{G_{11}}$$
; $T \equiv T_1 + iT_2 = B_{12} + i\sqrt{G}$

by

$$G_{ij} = rac{T_2}{U_2} \begin{pmatrix} 1 & U_1 \ U_1 & |U|^2 \end{pmatrix}$$
 and $B_{ij} = \begin{pmatrix} 0 & -T_1 \ T_1 & 0 \end{pmatrix}$

They are the closed string moduli.

F is constrained by the fact that its flux is an integer:

$$\int Tr\left(\frac{qF}{2\pi}\right) = m \Longrightarrow 2\pi\alpha' qF_{12} = \frac{m}{n}$$

They are the open string moduli.

▶ The D brane is wrapped n times on the torus and the flux of F, on a compact space as T^2 , must be an integer m (magnetic charge).

- The most general motion of an open string in this constant background can be determined and the theory can be explicitly quantized.
- One gets a string extension of the motion of an electron in a constant magnetic field on a torus (Landau levels).
- ► The ground state is degenerate and the degeneracy is given by the number of Landau levels.
- ▶ When $\alpha' \rightarrow$ 0 one goes back to the problem of an electron in a constant magnetic field.
- ▶ The mass spectrum of the string states can be exactly determined:

$$\alpha' M^2 = N_4^X + N_4^{\psi} + N_{comp.}^X + N_{comp}^{\psi} + \frac{x}{2} \sum_{i=1}^3 \nu_i - \frac{x}{2}$$

x = 0 for fermions (R sector) and x = 1 for bosons (NS sector)

$$N_4^X = \sum_{n=1}^\infty n a_n^\dagger \cdot a_n$$
 ; $N_4^\psi = \sum_{n=rac{\chi}{2}}^\infty n b_n^\dagger \cdot b_n$

$$N_{comp}^{X} = \sum_{i=1}^{3} \left[\sum_{n=0}^{\infty} (n + \nu_i) A_{n+\nu_i}^{\dagger i} A_{n+\nu_i}^{i} + \sum_{n=1}^{\infty} (n - \nu_i) A_{n-\nu_i}^{\dagger i} A_{n-\nu_i}^{i} \right]$$

$$N_{comp}^{\psi} = \sum_{i=1}^{3} \left[\sum_{n=\frac{x}{2}}^{\infty} (n+\nu_i) B_{n+\nu_i}^{\dagger i} B_{n+\nu_i}^{i} + \sum_{n=1-\frac{x}{2}}^{\infty} (n-\nu_i) B_{n-\nu_i}^{\dagger i} B_{n-\nu_i}^{i} \right]$$

where

$$u_i = \nu_i^0 - \nu_i^{\pi} \quad ; \quad \tan \pi \nu_i^{0,\pi} = \frac{m_i^{(0,\pi)}}{n_i^{(0,\pi)} T_2^{(i)}}$$

 $T_2^{(i)}$ is the volume of one of the three tori.

- ▶ In the fermionic sector the lowest state is the vacuum state.
- It is a 4-dimensional massless chiral spinor!!

- ▶ For generic values of ν_1, ν_2, ν_3 there is no massless state in the bosonic sector.
- ▶ In general the original 10-dim supersymmetry is broken.
- ▶ The lowest bosonic states are

$$B_{\frac{1}{2}-\nu}^{\dagger i}|0> ; \quad \alpha'M^2 = \frac{1}{2}\sum_{j=1}^3 \nu_j - \nu_i ; \quad i=1,2,3$$

$$B_{\frac{1}{2}-\nu_1}^{\dagger 1}B_{\frac{1}{2}-\nu_2}^{\dagger 2}B_{\frac{1}{2}-\nu_3}^{\dagger 3}|0> ; \quad \alpha'M^2 = \frac{2-\nu_1-\nu_2-\nu_3}{2}$$

One of these states becomes massless if one of the following identities is satisfied:

$$\nu_1 = \nu_2 + \nu_3$$
; $\nu_2 = \nu_1 + \nu_3$; $\nu_3 = \nu_1 + \nu_2$; $\nu_1 + \nu_2 + \nu_3 = 2$

▶ In each of these cases four-dimensional $\mathcal{N} = 1$ supersymmetry is restaured!

- In general the ground state for the open strings, having their end-points respectively on stacks a and b, is degenerate.
- ► Its degeneracy is given by the number of Landau levels as in the case of a point-like particle:

$$I_{ab} = \prod_{i=1}^{3} \left\{ n_i^{(a)} n_i^{(b)} \int \left[\frac{q_a F_i^{(a)} - q_b F_i^{(b)}}{2\pi} \right] \right\} = \prod_{i=1}^{3} \left[m_i^{(a)} n_i^{(b)} - m_i^{(b)} n_i^{(a)} \right]$$

that gives the <u>number of families</u> in the phenomenological applications.

▶ It corresponds to the number of intersections in the case of intersecting branes.

A simple phenomenological model

magnetized branes: a, b, c, d.

Four stacks of

$$SU(3)_a \times SU(2)_b \times U(1)_a \times U(1)_b \times U(1)_c \times U(1)_d$$

Marchesano, thesis, 2003

- Having a chiral theory we must be careful to cancel all anomalies.
- Need to introduce an orientifold projection.
- For each stack of D branes we must introduce its image.
- Choose intersecting numbers or number of Landau levels as follows:

$$I_{ab} = 1$$
 ; $I_{ab^*} = 2$ (2)
 $I_{ac} = -3$; $I_{ac^*} = -3$
 $I_{bd} = -3$; $I_{bd^*} = 0$
 $I_{cd} = 3$: $I_{cd^*} = -3$

with all others being zero.

- ► The previous numbers insure that there is no non-abelian anomaly ⇒ Tadpole cancellation conditions.
- ► The anomaly cancellation requires that the number of generations be equal to the number of colors!!

- ▶ But there are mixed and *U*(1) anomalies that, however, are eliminated by a stringy "Green-Schwarz" mechanism.
- ▶ In addition to the non-abelian gauge symmetries $SU(3) \times SU(2)$ we have four additional U(1) gauge symmetries instead of only one.
- ► It turns out that the gauge boson, corresponding to a combination of the U(1)'s,

$$Q_Y = \frac{1}{6}Q_a - \frac{1}{2}Q_c - \frac{1}{2}Q_d$$

is massless \Longrightarrow hypercharge U(1).

- ➤ On the other hand the gauge bosons corresponding to the other U(1)'s get a mass by a generalized Stückelberg mechanism
- ▶ The gauge symmetry corresponding to the U(1)'s with a massive gauge bosons becomes a global symmetry.
- They correspond to

$$Q_a = 3B$$
 ; $Q_d = -L$; $Q_b \rightarrow PQ$ symm.

- ► These U(1)'s are exact global symmetries at each order of string perturbation theory.
- ► The baryon and lepton numbers are exactly preserved.
- Majorana neutrino masses are also not allowed at each order of perturbation theory.
- ► However, they can be broken by instantons.
- ► They may be pure stringy effects that disappear in the field theory limit ($\alpha' \rightarrow 0$).

Conclusions

- I have presented the problems that one encounters in connecting string theory to experiments.
- ▶ I have discussed intersecting and magnetized D branes and used them for constructing string extensions of the Standard Model.
- ▶ A lot more work should be done to clarify their properties.