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Can we construct an Inflaton which carries the 
Standard Model charges ?



Motivation 
Inflation dilutes everything :                                                                         

1) How to create Standard Model baryons & 

Cold dark matter                                            

Mass and couplings of the Inflaton should be 

known :                                                                                                                                                                                               

1)  Quantum stability,  UV corrections                                                                      
2)  Predictivity and reliability                                                                                 

3)  Testability         

 Can we test the Inflaton in a laboratory ?                                                        
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Existing models of inflation

Particle physics motivated examples: 
V (φ, χ) = λ2φ2(χ2 − χ2

0)
2 + g2φ2χ2 + m2φ2

φ, χ⇒ (Absolute Gauge Singlets)

λ, m, g ⇒ (Ad− hoc numbers just to match the CMB data)

φ

SM degrees of freedom Hidden degrees of freedom

φ2(Higgs)2 (Hidden)2φ2

Why the Inflaton predominantly decays into the 
SM baryons ?



Challenge is to get rid of the 
bump?

In reality the potential is rather steep

Radiative corrections spoil the shape 

Gauge Singlet



Existing models of inflation

String inspired models:                                     
1) Inflation happens in the bulk of space-time                    
2) Inflation at the tip of the throat

SM

SM

D̄3

   How to transfer the energy from the 
bulk to the observable sector is not known

How to transfer the energy from one throat 
to another is still plagued by many issues

1) UV corrections
2) Boundary conditions

Q) Why the energy will be transferred only 
to the observable sector ?

Now imagine having a landscape of such shapes and throats

Q) Why can’t we inflate the SM sector  ?

A. Frey,  A.M., R. Myers, 2005



SM Higgs 
SM Higgs with a Standard GR :                                                         
1)  Potential is too steep                                                                             
2)  Energy density in the Higgs is not sufficient to generate 
observed density perturbations  

What if there exists:                                                               
1) Potential can be flattened and you can match the observations     
2) Who selects the coupling                               

ξRH2

ξ ∼ 10−6

Shaposhnikov 2006

How would we test such non-conformal 
coupling ?



A gauged Inflaton
 Embed inflation within a SM gauge thory

Choice of Vacuum

Provided the order parameter 
carries SM charges

Point of enhanced symmetry Color & charge breaking minimum

Note: The Higgs cannot be the inflaton without modifying GR

disfavoredfavored



SUSY
SUSY address the hierarchy issue

SUSY has scalars, i.e.  squarks, sleptons, etc.

SUSY has flat directions                                      
1) Gauge invariant combination of squarks and sleptons    
2) F-and D- flat directions

ũd̃d̃ LLẽ

NHuL

LHuHuHd QQQLũũd̃ẽ

All carry SM charges 

SU(2)L × U(1)Y × U(1)B−L



SUSY provides flat directions
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SUSY is broken 

Enqvist,  Mazumdar  Phys.  Rept.  (2004)

Dine,  Kusenko,  Rev. Mod. Phys.  (2005) 
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Gauged  Inflaton

Inflaton carries Standard Model Charges
Allahverdi,  Enqvist,  Jokinen,  Garcia-Bellido,   Mazumdar,  PRL   (2006)

Allahverdi,  Kusenko,  Mazumdar,  JCAP  (2006)

ũd̃d̃ LLẽ NHuL



Gauged Inflaton 

V ′(φ0) = 0, V ′′(φ0) = 0V ′′′(φ0) != 0

X: - Y: -

 A slow roll phase of inflation 
driven by third derivative of the 
potential, sufficiently large e-
foldings of inflation

 No SUGRA eta problem

 UV / Trans-Planckin corrections 
are negligible

 No Moduli problem

 Low Reheat temperature but 
sufficient to excite thermal dark 
matter & baryogenesis

φ̇/Hinf > Hinf/2π ⇒
φ0 − φ

φ0

≥

(

mφφ2
0

M3
P

)1/2

Allahverdi, Enqvist Garcia-Bellido & Mazumdar,   Phys. Rev. Lett. (2006)

V =
1
2
m2φ2 −A

λ6φ6

M3
∗

+ λ2
6
φ10

M6
∗

M∗ ∼MGUT , λ6 ∼ 0.1− 0.01, m ∼ m3/2 ∼ 100 GeV, A2 = 40m3/2

∆φ << MP , φ0 << MP

Eternal  
regime

Slow roll 
regime

Inflation around Point of Inflection



Highlights of MSSM inflation

φ0 − ∆φ φ0 + ∆φ

φ0 = 3 × 10
14 GeV1) Sub-Planckian VeV:

V = 10
34

− 10
38

GeV
4

Hinf = (1 − 10) GeV

2) Low scale inflation:

Ne ∼

(

φ2
0

mφMP

)

∼ 10
6

3) Enough e-foldings:

4) Maximum temperature:
Tmax ∼ V (φ)1/4

∼ 108 GeV

5) Reheat temperature: Trh ∼ 1 − 10 TeV Allahverdi & Mazumdar  
JCAP (2005), (2006)

mφ ∼ 1 TeV " Hinf ∼ 1 GeV

(SUGRA corrections are negligible)

X: - Y: -



CMB Predictions for the MSSM Inflaton

 Inflaton mass governs the spectral tilt & the amplitude of perturbations

Allahverdi, Dutta, Mazumdar,  Phy. Rev. D. (2007)
Allahverdi, Enqvist, Garcia-Bellido, Jokinen & Mazumdar,  JCAP (2007)
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at which

V (φ0) =
4

15
m2

φφ2
0 + O(α2) , (7)

V ′(φ0) = 4α2m2
φφ0 + O(α4) , (8)

V ′′′(φ0) = 32
m2

φ

φ0
+ O(α2) . (9)

From now on we only keep the leading order terms in all
expressions. Note that in gravity mediated SUSY break-
ing, the A-term and the soft SUSY breaking mass are of
the same order of magnitude as the gravitino mass, i.e.
mφ ∼ A ∼ m3/2 ∼ (100 GeV − 1 TeV). Therefore the
condition in Eq. (4) can indeed be satisfied. We then
have φ0 ∼ O(1014 GeV).

Inflation occurs within an interval

|φ − φ0| ∼
φ3

0

60M2
P

, (10)

in the vicinity of the point of inflection, within which
the slow roll parameters ε ≡ (M2

P/2)(V ′/V )2 and η ≡
M2

P(V ′′/V ) are smaller than 1. The Hubble expansion
rate during inflation is given by

HMSSM $ 1√
45

mφφ0

MP
∼ (100 MeV − 1 GeV) . (11)

The amplitude of density perturbations δH and the scalar
spectral index ns are given by [6, 16]:

δH =
8√
5π

mφMP

φ2
0

1

∆2
sin2[NCOBE

√
∆2] , (12)

and

ns = 1 − 4
√

∆2 cot[NCOBE

√
∆2], , (13)

where

∆2 ≡ 900α2N−2
COBE

(MP

φ0

)4
. (14)

NCOBE is the number of e-foldings between the time
when the observationally relevant perturbations are gen-
erated till the end of inflation and follows: NCOBE $
66.9 + (1/4)ln(V (φ0)/M4

P) ∼ 50 [19]. We note that re-
heating after MSSM inflation is very fast, due to gauge
couplings of the inflaton to gauge/gaugino fields, and re-
sults in a radiation-dominated universe within few Hub-
ble times after the end of inflation [6].

B. Parameter space of MSSM inflation

A remarkable property of MSSM inflation, which is due
to inflation occurring near a point of inflection, is that
it can give rise to a wide range of scalar spectral index.
This is in clear distinction with other models (for exam-
ple, chaotic inflation, hybrid inflation natural inflation,
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FIG. 1: ns is plotted as a function of δH for different values
of mφ. The 2σ region for δH is shwon by the blue horizontal
band and the 2σ allowed region of ns is shown by the vertical
green band. The 1σ allowed region of ns is within the solid
vertical lines. We choose λ = 1.

etc. [24]) and makes the model very robust. Indeed it
can yield a spectral index within the whole 2σ allowed
range by 5-year WMAP data 0.934 ≤ ns ≤ 0.988 2. This
happens for

0 ≤ ∆2 ≤ π2

4N 2
COBE

. (15)

In Fig. (1), we show δH as a function of ns for different
values of mφ. The horizontal blue band shows the 2σ
experimental band for δH . The vertical green shaded
region is the 2σ experimental band for ns. The region
enclosed by solid lines shows the 1σ experimental allowed
region.

We find that smaller values of mφ are preferred for
smaller values of ns. We also find that the allowed range
of mφ is 90 − 330 GeV for the experimental ranges of
ns and δH . This figure is drawn for λ $ 1, which is
natural in the context of effective field theory (unless it
is suppressed due to some symmetry). Smaller values of
λ will lead to an increase in mφ [14].

2 Note that for for α2 = 0, Eqs. (12,13) are reduced to the case of
a saddle point inflation, for which the spectral index is strictly
0.92, for details see [5]. For α2 < 0, the spectral index will be
smaller than the 0.92 (for NCOBE = 50 and more than 3σ region
away from observations. The more interesting case, as pointed
out in [6], happens for α2 > 0.

WMAP 5-year Cosmological Interpretation 13

Fig. 5.— Constraint on three representative inflation models
whose potential is positively curved, V ′′ > 0 (§ 3.3). The contours
show the 68% and 95% CL derived from WMAP+BAO+SN. (Top)
The monomial, chaotic-type potential, V (φ) ∝ φα (Linde 1983),
with α = 4 (solid) and α = 2 (dashed) for single-field models,
and α = 2 for multi-axion field models with β = 1/2 (Easther
& McAllister 2006) (dotted). The symbols show the predictions
from each of these models with the number of e-folds of inflation
equal to 50 and 60. The λφ4 potential is excluded convincingly,
the m2φ2 single-field model lies outside of (at the boundary of) the
68% region for N = 50 (60), and the m2φ2 multi-axion model with
N = 50 lies outside of the 95% region. (Middle) The exponential
potential, V (φ) ∝ exp[−(φ/Mpl)

p

2/p], which leads to a power-law
inflation, a(t) ∝ tp (Abbott & Wise 1984; Lucchin & Matarrese
1985). All models but p ∼ 120 are outside of the 68% region. The
models with p < 60 are excluded at more than 99% CL, and those
with p < 70 are outside of the 95% region. For multi-field models
these limits can be translated into the number of fields as p → npi,
where pi is the p-parameter of each field (Liddle et al. 1998). The
data favour n ∼ 120/pi fields. (Bottom) The hybrid-type potential,
V (φ) = V0 + (1/2)m2φ2 = V0(1 + φ̃2), where φ̃ ≡ mφ/(2V0)1/2

(Linde 1994). The models with φ̃ < 2/3 drive inflation by the
vacuum energy term, V0, and are disfavoured at more than 95%
CL, while those with φ̃ > 1 drive inflation by the quadratic term,
and are similar to the chaotic type (the left panel with α = 2).
The transition regime, 2/3 < φ̃ < 1 are outside of the 68% region,
but still within the 95% region.

Regime.” When φ̃ ! 1, the potential is indistin-
guishable from the chaotic-type (model (a)) with
α = 2. We call this region “Chaotic Inflation-like
Regime.” When φ̃ ∼ 1, the model shows a tran-
sitional behaviour, and thus we call it “Transition
Regime.” We find that the flat potential regime
with φ̃ ! 2/3 lies outside of the 95% region. The
transition regime with 2/3 ! φ̃ ! 1 is within the
95% region, but outside of the 68% region. Finally,
the chaotic-like regime contains the 68% region.
Since inflation in this model ends by the second
field whose dynamics depends on other parameters,
there is no constraint from the number of e-folds.

These examples show that the WMAP 5-year data,
combined with the distance information from BAO and
SN, begin to disfavour a number of popular inflation
models.

3.4. Curvature of the observable universe

3.4.1. Motivation

The flatness of the observable universe is one of the
predictions of conventional inflation models. How much
curvature can we expect from inflation? The common
view is that inflation naturally produces the spatial cur-
vature parameter, Ωk, on the order of the magnitude of
quantum fluctuations, i.e., Ωk ∼ 10−5. On the other
hand, the current limit on Ωk is of order 10−2; thus, the
current data are not capable of reaching the level of Ωk
that is predicted by the common view.

Would a detection of Ωk rule out inflation? It is possi-
ble that the value of Ωk is just below our current detec-
tion limit, even within the context of inflation: inflation
may not have lasted for so long, and the curvature radius
of our universe may just be large enough for us not to
see the evidence for curvature within our measurement
accuracy, yet. While this sounds like fine-tuning, it is a
possibility.

This is something we can test by constraining Ωk bet-
ter. There is also a revived (and growing) interest in
measurements of Ωk, as Ωk is degenerate with the equa-
tion of state of dark energy, w. Therefore, a better de-
termination of Ωk has an important implication for our
ability to constrain the nature of dark energy.

3.4.2. Analysis

Measurements of the CMB power spectrum alone do
not strongly constrain Ωk. More precisely, any experi-
ments that measure the angular diameter or luminosity
distance to a single redshift are not able to constrain Ωk
uniquely, as the distance depends not only on Ωk, but
also on the expansion history of the universe. For a uni-
verse containing matter and vacuum energy, it is essential
to combine at least two absolute distance indicators, or
the expansion rates, out to different redshifts, in order
to constrain the spatial curvature well. Note that CMB
is also sensitive to ΩΛ via the late-time integrated Sachs-
Wolfe (ISW) effect, as well as to Ωm via the signatures of
gravitational lensing in the CMB power spectrum. These
properties can be used to break the degeneracy between
Ωk and Ωm (Stompor & Efstathiou 1999) or ΩΛ (Ho et al.
2008).

It has been pointed out by a number of people (e.g.,
Eisenstein et al. 2005) that a combination of distance



Probing the Inflaton @ LHC in conjunction with CMB 
observations

• LHC will constrain the masses for squarks,         
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Figure 1: Renormalization group running of LLē mass squared with φ0 = 2.6 · 1014GeV

(corresponding to n = 6, mφ(φ0) = 1 TeV and λ = 1) and the ratio of gaugino mass and

flat direction mass at the GUT scale ξ = 2 (dashed), ξ = 1 (solid) and ξ = 0.5 (dash-dot).

Thus radiative corrections modify α, or the ratio A/m, by terms of order of

O(∞′−∈. Since slow roll requires that α < 10−8, it would appear that we need to

finetune the potential up to third or fourth order in perturbation theory, but not at all

orders. However, although not completely disastrous, this can hardly be considered a

satisfactory situation, and in the Conclusions we speculate about possible remedies.

4.3 The constraints at LHC

Let us recall that the constraint on the mass of the n = 6 flat direction inflaton in

Eq. (2.22) reads

mφ(φ0) = 550 GeV · λ−1
n

(
NCOBE

50

)−4

. (4.18)

As mentioned earlier, this is the bound on the mass of the flat direction during

inflation, determined at the scale φ = φ0. As the inflaton mass runs from φ0 down

to the LHC energy scales, the inflaton mass will also get scaled.

– 18 –

LHC

Allahverdi,  Enqvist,  Jokinen,  Garcia-Bellido,   Mazumdar JCAP  (2006)
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of the universe and other experimental results. We find
that tan β needs to be smaller to allow for smaller values
of ns < 1. It is also interesting to note that the allowed
region of mφ, as required by the inflation data for λ = 1
lies in the stau-neutralino coannihilation region which re-
quires smaller values of the SUSY particle masses. The
SUSY particles in this parameter space are, therefore,
within the reach of the LHC very quickly. The detection
of the region at the LHC can be done and the masses can
be measured accurately [29].

So far we have chosen λ = 1. Now if λ is small e.g.,
λ <∼ 0.1, we find allowed values of mφ to be large. In this
case the dark matter allowed region requires the light-
est neutralino to have larger Higgsino component in the
mSUGRA model. As we will see shortly, this small value
of λ is accommodated in SO(10) type model. In figure 5,
we show ns = 1, 0.98 contours for δH = 1.91 × 10−5 in
the mSUGRA parameter space for tan β = 10.

In figure 6, we show the contours of λ for different val-
ues of mφ which are allowed by ns and δH = 1.91×10−3.
The blue bands show the dark matter allowed regions
for tanβ = 10. The band on the left is due to the
stau-neutralino coannihilation region allowed by other
constraints and the allowed values of λ are 0.3-1. The
gluino masses for the minimum and maximum values of
mφ allowed by the dark matter and other constraints are
765 GeV and 2.1 TeV respectively. The squarks(barring
the stop squarks) masses are similar to the gluino mass
in this region. The band is slightly curved due to the
shifting of φ0 as a function λ. (We solve for SUSY pa-
rameters from the inflaton mass at φ0). The band on
the right which continues beyond the plotting range of
the figure 6 is due to the Higgsino dominated dark mat-
ter. We find that λ is mostly ≤ 0.1 in this region and
mφ > 1.75 TeV. In this case the squark masses are much
larger than the gluino mass since m0 is much larger than
m1/2.

V. GRAND UNIFIED MODELS AND
INCLUSION OF RIGHT-HANDED NEUTRINOS

A. Embedding MSSM inflation in SU(5) or SO(10)
GUT

As we have pointed out, mSUGRA makes a mild as-
sumption that there exists a GUT physics which encom-
passes MSSM beyond the unification scale MG

10. Here
we wish to understand how such embedding would affect
inflationary scenario, for instance, would it be possible
to single out either LLe or udd as a candidate for the
MSSM inflaton.

10 We remind the readers that inflation occurs around a flat direc-
tion VEV φ0 ∼ 1014 GeV. Since φ0 " MG, heavy GUT degrees
of freedom play no role in the dynamics of MSSM inflation, and
hence they can be ignored.
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FIG. 3: The contours for different values of ns and δH are
shown in the m0 − m1/2 plane for tan β = 10. We show the
dark matter allowed region narrow blue corridor, (g-2)µ region
(light blue) for aµ ≤ 11× 10−8, Higgs mass ≤ 114 GeV (pink
region) and LEPII bounds on SUSY masses (red). We also
show the the dark matter detection rate by vertical blue lines.

The lowest order non-renormalizable superpotential
terms which lift LLe and udd are (see Eq. (1)):

(LLe)2

M3
P

,
(udd)2

M3
P

. (16)

It is generically believed that gravity breaks global sym-
metries. Then all gauge invariant terms which are MP

suppressed should appear with λ ∼ O(1). Obviously
the above terms in Eq. (16) are invariant under the SM.
Once the SM is embedded within a GUT at the scale
MG, where gauge couplings are unified, the gauge group
will be enlarged. Then the question arises whether such
terms in Eq. (16) are invariant under the GUT gauge
group or not. Note that a GUT singlet is also a singlet
under the SM, however, the vice versa is not correct. To
answer this question, let us consider SU(5) and SO(10)
cases separately.

• SU(5):
We briefly recollect representations of matter fields
in this case: L and d belong to 5̄, while e and u
belong to 10 of SU(5) group. Thus under SU(5)
the superpotential terms in Eq. (16) read

5̄× 5̄× 10× 5̄× 5̄ × 10
M3

P

. (17)

This product clearly includes a SU(5) singlet.
Therefore in the case of SU(5), we expect that

Allahverdi, Dutta, Mazumdar 
  Phys. Rev. D (2007)



 Point of inflection is a dynamical attractor 
during false vacuum inflation
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FIG. 4: We plot φ as a function of time in presence of Hfalse.
The plot depicts the sow roll phase which lasts very long but
asymptotes to the point of inflection φ0 with φ̇ → 0.
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FIG. 5: We plot initial values of φ versus φ̇ for Hfalse = 102mφ.
The dots show the initial values for which φ settles to ±φ0

and the white bands ∩ show the critically damped regions
where φ settles to zero.
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FIG. 6: Same as in Fig. (5) for Hfalse = 103mφ.
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FIG. 7: Same as in Fig. (5) for Hfalse = 104mφ.
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FIG. 8: We plot φ as a function of time when φ does not
settle to φ0 for Hfalse = 102mφ for φ = 0.5, φ̇ = 28 (top
panel) and φ = 0.5, φ̇ = −2 (bottom panel). These are the
typical trajectories for ∩ regions shown in Figs. (5,6,7).

to φ0. The time is scaled by H−1
false, and we have used

Hfalse = 1000mφ. Note that an initial oscillatory phase
ends within few Hubble times.

Fig. (4) shows the slow roll motion of φ towards φ0,
during which φ → 1 and φ̇ → 0 in a finite time. The slow
roll regime happens inspite of the initial oscillatory phase.
We see that, as explained before, the slow roll phase takes
a much longer time than the oscillatory phase. The at-
tractor behavior holds for larger values of Hfalse, but it
takes longer for φ to settle within the plateau of the po-

6

V (φ), i.e. V (φ) ∝ φ10. Hence we are in the oscillatory
phase if

φi >∼ (HfalseM
3
P)1/4. (27)

For V (φ) ∝ φn, the Hubble expansion redshifts the am-
plitude of oscillations ∝ a−6/n+2. In the case at hand
n = 10, implying that φ ∝ a−1/2, which during false vac-
uum inflation reads φ ∝ exp(−Hfalset/2). Once φ reaches
the VEV in Eq. (27), V ′′ < H2

false, and oscillations end.
The maximum time spent in the oscillatory regime is
found when the initial amplitude of oscillations is close
to MP. This leads to

tosc <
1

2
H−1

false ln
( MP

Hfalse

)

, (28)

which amounts to several e-foldings of false vacuum in-
flation.

C. Slow roll motion

Once an initial phase of kinetic energy dominance or
oscillations end, φ starts a slow roll motion towards φ0.
The equation of motion in this regime is determined by

3Hfalseφ̇ + V ′(φ) ≈ 0 . (29)

Initially the field is under the influence of the non-
renormalizable potential for φ % φ0, VNR ∝ φ2(n−1),
for which a generic solution is given by

φ

φi
&

(

1 +
1

3(2n − 3)

V ′′(φi)

H2
false

∆Nfalse

)−
1

2(n−2)

, (30)

where ∆Nfalse is the number of e-foldings and ′i′ denotes
the initial VEV. For n = 6, VNR ∝ φ10, and for a slow
roll regime it is reasonable to assume V ′′(φi)/H2

false ≤
1. In this regime the field moves very slowly, i.e. for
∆Nfalse ≥ 1016 e-folds, the displacement is φ/φi ≤ 0.01.
The lower bound on the number of e-folds becomes clear
when we move close to the point of inflection, φ0.

For φ ∼ φ0, we have V ′(φ) = V ′(φ0) + V ′′′(φ0)(φ −
φ0)2/2. We would like to find how long does it take for
φ to reach the edge of the plateau in Eq. (10). Outside
the plateau, V ′(φ0), is subdominant, see Eqs. (8, 9), and
hence we obtain

φ̇ = −
32m2

φ(φ − φ0)2

3Hfalseφ0
. (31)

This results in

(φ − φ0) ≈
3Hfalseφ0

32m2
φt

, (32)

for large t. Therefore the inflection point acts as an at-
tractor for the classical equation of motion. After using
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FIG. 3: We plot φ as a function of time during the oscillatory
phase which happens only when V ′′(φi) ≥ H2

false. The field
undergoes rapid oscillations before settling down to the slow
roll regime. The amplitude decreases due to the dominance
of the Hubble expansion rate.

Eq. (10), we find the time spent in the slow roll phase
until φ reaches the edge of the plateau 5 is given by

tslow >∼ 180H−1
false

(Hfalse

mφ

)2(MP

φ0

)2
, (33)

which amounts to >∼ 1010 e-foldings of false vacuum in-
flation 6. It is seen from Eqs. (26,28,33) that the total
time that it takes for φ to settle within the plateau is
dictated by the slow roll regime. Hence the total number
of e-foldings required to achieve this is given by

Nfalse >∼ 180
(Hfalse

mφ

)2(MP

φ0

)2
> 1010. (34)

After this time φ is settled within the plateau in the bulk
of the space-time. This implies that the bubbles which
nucleate henceforth have the right initial conditions for
the subsequent stage of MSSM inflation.

D. Numerical Results

In all figures we scale φ by φ0 ∼ 1014 GeV, see Eq. (6).
Fig. (3) shows the rapid oscillations of the φ field for large
VEVs, i.e. the chosen values are φi = 10 and φ̇i = 100.
The field amplitude decreases by virtue of the false vac-
uum dominated expansion but eventually settles down

5 Actually this will be faster due to effect of quantum fluctuations.
As φ gets closer to the inflection point, V ′(φ) becomes smaller.
Once V ′(φ) ∼ 3H3

false
/2π, quantum jumps dominate the slow

roll motion. This happens at (φ−φ0) ∼ (3H3
false

φ0/32πm2
φ)1/2.

From this point on fluctuations take over and move φ to the
plateau in random walk fashion.

6 Note that φ0 ∼ 1014 GeV, and Hfalse > mφ.
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panel) and φ = 0.5, φ̇ = −2 (bottom panel). These are the
typical trajectories for ∩ regions shown in Figs. (5,6,7).

to φ0. The time is scaled by H−1
false, and we have used

Hfalse = 1000mφ. Note that an initial oscillatory phase
ends within few Hubble times.

Fig. (4) shows the slow roll motion of φ towards φ0,
during which φ → 1 and φ̇ → 0 in a finite time. The slow
roll regime happens inspite of the initial oscillatory phase.
We see that, as explained before, the slow roll phase takes
a much longer time than the oscillatory phase. The at-
tractor behavior holds for larger values of Hfalse, but it
takes longer for φ to settle within the plateau of the po-
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to φ0. The time is scaled by H−1
false, and we have used

Hfalse = 1000mφ. Note that an initial oscillatory phase
ends within few Hubble times.

Fig. (4) shows the slow roll motion of φ towards φ0,
during which φ → 1 and φ̇ → 0 in a finite time. The slow
roll regime happens inspite of the initial oscillatory phase.
We see that, as explained before, the slow roll phase takes
a much longer time than the oscillatory phase. The at-
tractor behavior holds for larger values of Hfalse, but it
takes longer for φ to settle within the plateau of the po-

6

V (φ), i.e. V (φ) ∝ φ10. Hence we are in the oscillatory
phase if

φi >∼ (HfalseM
3
P)1/4. (27)

For V (φ) ∝ φn, the Hubble expansion redshifts the am-
plitude of oscillations ∝ a−6/n+2. In the case at hand
n = 10, implying that φ ∝ a−1/2, which during false vac-
uum inflation reads φ ∝ exp(−Hfalset/2). Once φ reaches
the VEV in Eq. (27), V ′′ < H2

false, and oscillations end.
The maximum time spent in the oscillatory regime is
found when the initial amplitude of oscillations is close
to MP. This leads to

tosc <
1

2
H−1

false ln
( MP

Hfalse

)

, (28)

which amounts to several e-foldings of false vacuum in-
flation.

C. Slow roll motion

Once an initial phase of kinetic energy dominance or
oscillations end, φ starts a slow roll motion towards φ0.
The equation of motion in this regime is determined by

3Hfalseφ̇ + V ′(φ) ≈ 0 . (29)

Initially the field is under the influence of the non-
renormalizable potential for φ % φ0, VNR ∝ φ2(n−1),
for which a generic solution is given by

φ

φi
&

(

1 +
1

3(2n − 3)

V ′′(φi)

H2
false

∆Nfalse

)−
1

2(n−2)

, (30)

where ∆Nfalse is the number of e-foldings and ′i′ denotes
the initial VEV. For n = 6, VNR ∝ φ10, and for a slow
roll regime it is reasonable to assume V ′′(φi)/H2

false ≤
1. In this regime the field moves very slowly, i.e. for
∆Nfalse ≥ 1016 e-folds, the displacement is φ/φi ≤ 0.01.
The lower bound on the number of e-folds becomes clear
when we move close to the point of inflection, φ0.

For φ ∼ φ0, we have V ′(φ) = V ′(φ0) + V ′′′(φ0)(φ −
φ0)2/2. We would like to find how long does it take for
φ to reach the edge of the plateau in Eq. (10). Outside
the plateau, V ′(φ0), is subdominant, see Eqs. (8, 9), and
hence we obtain

φ̇ = −
32m2

φ(φ − φ0)2

3Hfalseφ0
. (31)

This results in

(φ − φ0) ≈
3Hfalseφ0

32m2
φt

, (32)

for large t. Therefore the inflection point acts as an at-
tractor for the classical equation of motion. After using
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FIG. 3: We plot φ as a function of time during the oscillatory
phase which happens only when V ′′(φi) ≥ H2

false. The field
undergoes rapid oscillations before settling down to the slow
roll regime. The amplitude decreases due to the dominance
of the Hubble expansion rate.

Eq. (10), we find the time spent in the slow roll phase
until φ reaches the edge of the plateau 5 is given by

tslow >∼ 180H−1
false

(Hfalse

mφ

)2(MP

φ0

)2
, (33)

which amounts to >∼ 1010 e-foldings of false vacuum in-
flation 6. It is seen from Eqs. (26,28,33) that the total
time that it takes for φ to settle within the plateau is
dictated by the slow roll regime. Hence the total number
of e-foldings required to achieve this is given by

Nfalse >∼ 180
(Hfalse

mφ

)2(MP

φ0

)2
> 1010. (34)

After this time φ is settled within the plateau in the bulk
of the space-time. This implies that the bubbles which
nucleate henceforth have the right initial conditions for
the subsequent stage of MSSM inflation.

D. Numerical Results

In all figures we scale φ by φ0 ∼ 1014 GeV, see Eq. (6).
Fig. (3) shows the rapid oscillations of the φ field for large
VEVs, i.e. the chosen values are φi = 10 and φ̇i = 100.
The field amplitude decreases by virtue of the false vac-
uum dominated expansion but eventually settles down

5 Actually this will be faster due to effect of quantum fluctuations.
As φ gets closer to the inflection point, V ′(φ) becomes smaller.
Once V ′(φ) ∼ 3H3

false
/2π, quantum jumps dominate the slow

roll motion. This happens at (φ−φ0) ∼ (3H3
false

φ0/32πm2
φ)1/2.

From this point on fluctuations take over and move φ to the
plateau in random walk fashion.

6 Note that φ0 ∼ 1014 GeV, and Hfalse > mφ.
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Hfalse = 1000mφ. Note that an initial oscillatory phase
ends within few Hubble times.

Fig. (4) shows the slow roll motion of φ towards φ0,
during which φ → 1 and φ̇ → 0 in a finite time. The slow
roll regime happens inspite of the initial oscillatory phase.
We see that, as explained before, the slow roll phase takes
a much longer time than the oscillatory phase. The at-
tractor behavior holds for larger values of Hfalse, but it
takes longer for φ to settle within the plateau of the po-
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Fig. (4) shows the slow roll motion of φ towards φ0,
during which φ → 1 and φ̇ → 0 in a finite time. The slow
roll regime happens inspite of the initial oscillatory phase.
We see that, as explained before, the slow roll phase takes
a much longer time than the oscillatory phase. The at-
tractor behavior holds for larger values of Hfalse, but it
takes longer for φ to settle within the plateau of the po-
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V (φ), i.e. V (φ) ∝ φ10. Hence we are in the oscillatory
phase if

φi >∼ (HfalseM
3
P)1/4. (27)

For V (φ) ∝ φn, the Hubble expansion redshifts the am-
plitude of oscillations ∝ a−6/n+2. In the case at hand
n = 10, implying that φ ∝ a−1/2, which during false vac-
uum inflation reads φ ∝ exp(−Hfalset/2). Once φ reaches
the VEV in Eq. (27), V ′′ < H2

false, and oscillations end.
The maximum time spent in the oscillatory regime is
found when the initial amplitude of oscillations is close
to MP. This leads to

tosc <
1

2
H−1

false ln
( MP

Hfalse

)

, (28)

which amounts to several e-foldings of false vacuum in-
flation.

C. Slow roll motion

Once an initial phase of kinetic energy dominance or
oscillations end, φ starts a slow roll motion towards φ0.
The equation of motion in this regime is determined by

3Hfalseφ̇ + V ′(φ) ≈ 0 . (29)

Initially the field is under the influence of the non-
renormalizable potential for φ % φ0, VNR ∝ φ2(n−1),
for which a generic solution is given by

φ

φi
&

(

1 +
1

3(2n − 3)

V ′′(φi)

H2
false

∆Nfalse

)−
1

2(n−2)

, (30)

where ∆Nfalse is the number of e-foldings and ′i′ denotes
the initial VEV. For n = 6, VNR ∝ φ10, and for a slow
roll regime it is reasonable to assume V ′′(φi)/H2

false ≤
1. In this regime the field moves very slowly, i.e. for
∆Nfalse ≥ 1016 e-folds, the displacement is φ/φi ≤ 0.01.
The lower bound on the number of e-folds becomes clear
when we move close to the point of inflection, φ0.

For φ ∼ φ0, we have V ′(φ) = V ′(φ0) + V ′′′(φ0)(φ −
φ0)2/2. We would like to find how long does it take for
φ to reach the edge of the plateau in Eq. (10). Outside
the plateau, V ′(φ0), is subdominant, see Eqs. (8, 9), and
hence we obtain

φ̇ = −
32m2

φ(φ − φ0)2

3Hfalseφ0
. (31)

This results in

(φ − φ0) ≈
3Hfalseφ0

32m2
φt

, (32)

for large t. Therefore the inflection point acts as an at-
tractor for the classical equation of motion. After using
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Eq. (10), we find the time spent in the slow roll phase
until φ reaches the edge of the plateau 5 is given by

tslow >∼ 180H−1
false

(Hfalse

mφ

)2(MP

φ0

)2
, (33)

which amounts to >∼ 1010 e-foldings of false vacuum in-
flation 6. It is seen from Eqs. (26,28,33) that the total
time that it takes for φ to settle within the plateau is
dictated by the slow roll regime. Hence the total number
of e-foldings required to achieve this is given by

Nfalse >∼ 180
(Hfalse

mφ

)2(MP

φ0

)2
> 1010. (34)

After this time φ is settled within the plateau in the bulk
of the space-time. This implies that the bubbles which
nucleate henceforth have the right initial conditions for
the subsequent stage of MSSM inflation.

D. Numerical Results

In all figures we scale φ by φ0 ∼ 1014 GeV, see Eq. (6).
Fig. (3) shows the rapid oscillations of the φ field for large
VEVs, i.e. the chosen values are φi = 10 and φ̇i = 100.
The field amplitude decreases by virtue of the false vac-
uum dominated expansion but eventually settles down

5 Actually this will be faster due to effect of quantum fluctuations.
As φ gets closer to the inflection point, V ′(φ) becomes smaller.
Once V ′(φ) ∼ 3H3

false
/2π, quantum jumps dominate the slow

roll motion. This happens at (φ−φ0) ∼ (3H3
false

φ0/32πm2
φ)1/2.

From this point on fluctuations take over and move φ to the
plateau in random walk fashion.

6 Note that φ0 ∼ 1014 GeV, and Hfalse > mφ.
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during which φ → 1 and φ̇ → 0 in a finite time. The slow
roll regime happens inspite of the initial oscillatory phase.
We see that, as explained before, the slow roll phase takes
a much longer time than the oscillatory phase. The at-
tractor behavior holds for larger values of Hfalse, but it
takes longer for φ to settle within the plateau of the po-
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MSSM

Simplest extension of the SM 

Nearly 300 gauge invariant  
combinations you can construct

Their potentials are flat in a SUSY 
limit

1. Introduction

Supersymmetric gauge theories often possess a remarkable vacuum degeneracy at the

classical level. The renormalizable scalar potential in supersymmetry is a sum of squares

of F -terms and D-terms, and so may vanish identically along certain “flat directions”

in field space. The space of all such flat directions is called the moduli space, and the

massless chiral superfields whose expectation values parameterize the flat directions are

known as moduli. The properties of the space of flat directions of a supersymmetric model

are crucial considerations for cosmology and whenever the behavior of the theory at large

field strengths is an issue.

In realistic models such as the Minimal Supersymmetric Standard Model [1] (MSSM),

the “flat” directions are only approximately flat; the vacuum degeneracy of the scalar

potential is lifted by soft supersymmetry-breaking terms, and by non-renormalizable terms

in the superpotential. The soft terms contribute terms to the scalar potential which are

schematically of the form

Vsoft = m2|φ|2 (1.1)

where φ represents the scalar component of the moduli fields. Now, if supersymmetry is

to provide a successful explanation for the hierarchy problem associated with the mass of

the Higgs scalar boson, m must be of the order of the electroweak scale. The terms in

(1.1) can never be forbidden by any symmetry (unlike soft terms of the form φ2 and φ3),

and so we expect that all flat directions will be lifted weakly in this way.

The question of which non-renormalizable terms in the superpotential also lift a given

flat direction is more complicated. It is useful to think of the non-renormalizable super-

potential as an expansion in inverse powers of some large mass scale M (presumably the

Planck scale or some other physical cutoff); schematically

W = Wrenorm +
∑

n>3

λ

Mn−3Φn . (1.2)

Each flat direction may be labeled by an order parameter modulus φ which can take on

values with |φ| < M . Therefore it is sufficient to consider separately the contributions

to the superpotential first from renormalizable terms Wrenorm and then for each value of

n > 3 in turn. Renormalizable flat directions are those for which all F -terms following

from Wrenorm and all D-terms vanish. Of these renormalizable flat directions, some are

lifted when F -terms from the n = 4 superpotential are included; some may survive until

2

SU(3)c × SU(2)L × U(1)Y

and provide a basis of gauge-invariant monomials which parameterize all D-flat directions.

These monomials are subject to redundancy relations which are easily understood in terms

of identities obtained by antisymmetrizing over SU(3)C and SU(2)L indices. We will then

identify a smaller basis of monomials which parameterize all renormalizable F -flat and

D-flat directions. In section 3 we will study how each of the renormalizable flat directions

associated with the monomials identified in section 2 are lifted by non-renormalizable terms

in the superpotential. Most of the flat directions are lifted already at the n = 4 level by

non-renormalizable terms in the superpotential. However, we will show that there exists a

unique flat direction (which carries B − L = 1) which is not lifted by non-renormalizable

operators until the n = 9 level, and one other flat direction (which carries B − L = −3)

which is not lifted until the n = 7 level. We will also identify other flat directions which

survive until the n = 5 and n = 6 levels. Section 4 contains some concluding remarks.

2. Renormalizable flat directions of the MSSM

Let us begin by specifying our notation and assumptions regarding the MSSM. The

chiral superfields consist of three families of SU(2)L-doublet quarks Q and leptons L and

SU(2)L-singlet quarks and leptons u, d, e, and two Higgs superfields Hu and Hd which

couple respectively to up- and down- type quark superfields. We will use the same symbol

for chiral superfields and for their scalar components. We will often be able to suppress

gauge and family indices in the following, but when necessary, Greek letters α, β, γ, . . . will

be used to refer to SU(2)L indices; Latin letters a, b, c . . . to refer to SU(3)C indices; and

Latin letters i, j, k . . . = 1, 2, 3 to refer to family indices. All interactions (including soft

and non-renormalizable ones) are assumed to be invariant under an exact Z2 matter parity

which is trivially related to R-parity by a minus sign for fermions and which is defined

by (−1)3(B−L). [This assumption follows most naturally [14] in models in which B − L is

gauged at very high energies and is broken by order parameter(s) with only even values of

3(B − L).] The renormalizable superpotential is given by

Wrenorm = µHuHd + yij
u HuQiuj + yij

d HdQidj + yij
e HdLiej . (2.1)

We will assume in the following that the 3 × 3 Yukawa matrices yij
u , yij

d , yij
e are each non-

degenerate (have rank 3), although it is worth noting that this assumption is perhaps not

inevitable.

The configuration space of the scalar fields of the MSSM has 49 complex dimensions

(18 for Qi; 9 each for ui and di; 6 for Li; 3 for ei; and 2 each for Hu and Hd). The

5

3 < n ≤ 9

Dine, Randall, Thomas, Nucl. Phys. B. (1995)
Gherghetta, Martin, Kolda   Phys. Rev. D (1996)
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FIG. 4: The contours for different values of ns and δH are
shown in the m0 −m1/2 plane for tan β = 40. We used λ = 1
for the contours. We show the dark matter allowed region
narrow blue corridor, (g-2)µ region (light blue) for aµ ≤ 11×

10−8, b → sγ allowed region (brick) and LEPII bounds on
SUSY masses (red).

suppressed should appear with λ ∼ O(1). Obviously
the above terms in Eq. (16) are invariant under the SM.
Once the SM is embedded within a GUT at the scale
MG, where gauge couplings are unified, the gauge group
will be enlarged. Then the question arises whether such
terms in Eq. (16) are invariant under the GUT gauge
group or not. Note that a GUT singlet is also a singlet
under the SM, however, the vice versa is not correct. To
answer this question, let us consider SU(5) and SO(10)
models separately.

• SU(5):
We briefly recollect representations of matter fields
in this case: L and d belong to 5̄, while e and u
belong to 10 of SU(5) group. Thus under SU(5)
the superpotential terms in Eq. (16) read

5̄× 5̄× 10× 5̄ × 5̄× 10

M3
P

. (17)

This product clearly includes a SU(5) singlet.
Therefore in the case of SU(5), we expect that
MP suppressed terms as in Eq. (1) appear with
λ ∼ O(1) 11.

11 If we were to obtain the (LLe)2 term by integrating out the
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FIG. 5: The contours for different values of ns and δH are
shown in the m0−m1/2 plane for tanβ = 10. We used λ = 0.1
for the contours. We show the dark matter allowed region nar-
row blue corridor, g-2 region (light blue) for aµ ≤ 11 × 10−8,
Higgs mass ≤ 114 GeV (pink region) and LEPII bounds on
SUSY masses (red). The black region is not allowed by radia-
tive electroweak symmetry breaking. We use mt = 172.7 GeV
for this graph.

• SO(10):
In this case all matter fields of one generation
are included in the spinorial representation 16 of
SO(10). Hence the superpotential terms in Eq. (16)
are [16]6 under SO(10), which does not provide
a singlet. A gauge invariant operator will be ob-
tained by multiplying with a 126-plet Higgs. This
implies that in SO(10) the lowest order gauge in-
variant superpotential term with 6 matter fields
arises at n = 7 level:

16× 16× 16× 16× 16× 16× 126H

M4
P

. (18)

Once 126H acquires a VEV, S0(10) can break
down to a lower ranked subgroup, for instance
SU(5). This will induce an effective n = 6 non-
renormalizable term as in Eq. (1) with

λ ∼ 〈126H〉
MP

∼ O(MGUT)

MP
. (19)

heavy fields of the SU(5) GUT, then λ = 0. This is due to the
fact that SU(5) preserves B − L.
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Hence, in the case of SO(10), we can expect
λ ∼ O(10−2 − 10−1) depending on the scale where
SO(10) gets broken.

We conclude that embedding MSSM in SO(10) nat-
urally implies λ # 1. Hence an experimental confir-
mation of the focus point region may be considered as
an indication for SO(10). More precise determination
of the spectral index ns from future experiments (such
as PLANCK) can in addition shed light on the scale of
SO(10) breaking. Smaller values of ns (within the range
0.92 ≤ ns ≤ 1) point to smaller λ, as can be seen from
figure 6. This, according to Eq. (19), implies a scale of
SO(10) breaking, i.e. 〈126H〉, which is closer to the GUT
scale.

Further note that embedding the MSSM within
SO(10) also provides an advantage for obtaining a right
handed neutrino.

B. Including Right-Handed Majorana Neutrinos

Eventually one would need to supplement MSSM
with additional ingredients to explain the tiny neutrino
masses. Here we consider the most popular framework;
the see-saw mechanism which invokes MSSM plus three
RH (s)neutrinos N1, N2, N3 with respective Majorana
masses Mi. By adding new superfields to MSSM, one
can write a larger number of non-renormalizable gauge-
invariant terms of the form in Eq. (1). As a result, a
given flat direction might be lifted at a a different su-
perpotential level. Then a natural question arises that

whether/how adding new superfields will affect the infla-
ton candidates, i.e. LLe and udd flat directions.

Since, Ni, 1 ≤ i ≤ 3, are SM singlets, we can write the
following n = 4 superpotential terms:

NiLLe

MP
,

Niudd

MP
. (20)

Note that these terms are also singlet under SU(5) and
SO(10). In the case of SU(5), the terms in Eq. (20)
read 5̄ × 5̄ × 10 × 1, which includes a singlet. While
in the case of SO(10), since N belongs to the 16, the
terms in Eq. (20) read 16×16×16×16, which includes
a singlet. Hence both terms in Eq. (20) are allowed in
SU(5) or SO(10) embedding of MSSM as well 12.

We now analyze the case for two flat directions sepa-
rately.

• LLe:
First let us consider the LLe flat direction. Tak-
ing into account of the family indices, there are 5
independent D-flat directions as such [16]. Within
MSSM, there are three directions which are F -flat
at the n = 3 level, one of which survives until n = 6.
However the term in Eq. (20) leads to three addi-
tional F -term constraints FNi

= 0, which are more
than sufficient to lift the remaining direction at the
n = 4 superpotential level 13.

Generically in this case we would expect LLe to be
lifted by a non-renormalizable operator n < 6.

• udd:
Next consider the udd direction. With family in-
dices taken into account, there are 9 independent
D-flat directions as such [16]. Within MSSM, 3 di-
rections are lifted by n = 4 terms uude/MP, while
the remaining 6 will be lifted at the n = 6 level.
Note that the superpotential term in Eq. (20) lead
to three F -term constraints at the n = 4 level. Nev-
ertheless, 3 directions will still survive until n = 6.

Based on the above analysis, if we include the RH neu-
trinos, we conclude that udd direction is a more promis-
ing inflaton candidate than LLe. The reason is that the
flatness of the former will not be lifted in the presence
of physically motivated right handed neutrino fields in
addition to that of the MSSM fields.

VI. DISCUSSION AND CONCLUSIONS

A successful inflation with the right amplitude of the
scalar density perturbations, negligible gravity waves and

12 In the case of SO(10) one can naturally obtain a right-handed
neutrino.

13 The gauge invariant LLe direction will survive until n = 6 if
all Mi ! φ0. However this is not a phenomenologically viable
situation.
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tours correspond to ns = 1 for the maximum value of
δH = 2.03 × 10−5 (at 2σ level) and ns = 1.0, 0.98, 0.96
for δH = 1.91 × 10−5. The constraints on the parameter
space arising from the inflation appearing to be consistent
with the constraints arising from the dark matter content
of the universe and other experimental results. We find
that tanβ needs to be smaller to allow for smaller values
of ns < 1. It is also interesting to note that the allowed
region of mφ, as required by the inflation data for λ = 1
lies in the stau-neutralino coannihilation region which re-
quires smaller values of the SUSY particle masses. The
SUSY particles in this parameter space are, therefore,
within the reach of the LHC very quickly. The detection
of the region at the LHC has been considered in refs [26].
From the figures, one can also find that as tanβ increases,
the inflation data along with the dark matter, rare decay
and Higgs mass constraint allow smaller ranges of m1/2.
For example, the allowed ranges of gluino masses are 765
GeV-2.1 TeV and 900 GeV-1.7 TeV for tan β = 10 and
40 respectively.

So far we have chosen λ = 1. Now if λ is small e.g.,
λ <∼ 10−1, we find that the allowed values of mφ to be
large. In this case the dark matter allowed region requires
the lightest neutralino to have larger Higgsino component
in the mSUGRA model. As we will see shortly, this small
value of λ is accommodated in SO(10) type model. In
figure 5, we show ns = 1, 0.98 contours for δH = 1.91 ×
10−5 in the mSUGRA parameter space for tanβ = 10. In
this figure, we find that ns can not smaller than 0.97, but
if we lower λ which will demand larger mφ and therefore
ns can be lowered down to 0.92.

In figure 6, we show the contours of λ for different val-
ues of mφ which are allowed by ns and δH = 1.91×10−3.
The blue bands show the dark matter allowed regions for
tan β = 10. The band on the left is due to the stau-
neutralino coannihilation region allowed by other con-
straints and the allowed values of λ are 0.3-1. The first
two generation squarks masses are 690 GeV and 1.9 TeV
for the minimum and maximum values of mφ allowed
by the dark matter and other constraints. The gluino
masses for these are 765 GeV and 2.1 TeV respectively.
The band is slightly curved due to the shifting of φ0 as
a function λ. (We solve for SUSY parameters from the
inflaton mass at φ0). The band on the right which con-
tinues beyond the plotting range of the figure 6 is due to
the Higgsino dominated dark matter. We find that λ is
mostly ≤ 0.1 in this region and mφ > 1.9 TeV. In this
case the squark masses are much larger than the gluino
mass since m0 is much larger than m1/2.

200

400

600

800

250 500 750 1000

m
1/2
[GeV]

m
0
[G
e
V
]

A
0
=0, µ>0

tan!=10

m
h
"

1
1
4
 G

e
V

m #̃0
>m $̃

a
µ
<11%10

-10

n
s =1, &

H =2.03x10 -5n
s =1, &

H =1.91x10 -5

n
s =0.98, &

H =1.91x10 -5
n
s =0.96, &

H =1.91x10 -5

FIG. 3: The contours for different values of ns and δH are
shown in the m0 −m1/2 plane for tan β = 10. We used λ = 1
for the contours. We show the dark matter allowed region
narrow blue corridor, (g-2)µ region (light blue) for aµ ≤ 11×
10−8, Higgs mass ≤ 114 GeV (pink region) and LEPII bounds
on SUSY masses (red). We also show the the dark matter
detection rate by vertical blue lines.

V. GRAND UNIFIED MODELS AND
INCLUSION OF RIGHT-HANDED NEUTRINOS

A. Embedding MSSM inflation in SU(5) or SO(10)
GUT

As we have pointed out, mSUGRA makes a mild as-
sumption that there exists a GUT physics which encom-
passes MSSM beyond the unification scale MG

10. Here
we wish to understand how such embedding would affect
inflationary scenario, for instance, would it be possible
to single out either LLe or udd as a candidate for the
MSSM inflaton.

The lowest order non-renormalizable superpotential
terms which lift LLe and udd are (see Eq. (1)):

(LLe)2

M3
P

,
(udd)2

M3
P

. (16)

It is generically believed that gravity breaks global sym-
metries. Then all gauge invariant terms which are MP

10 We remind the readers that inflation occurs around a flat direc-
tion VEV φ0 ∼ 1014 GeV. Since φ0 " MG, heavy GUT degrees
of freedom play no role in the dynamics of MSSM inflation, and
hence they can be ignored.

New Bench Mark Points:  Inflation & Dark Matter
Allahverdi, Dutta, Mazumdar,  Phy. Rev. D. (2007)
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