

Top quark spin correlations and charged Higgs bosons

Oscar Stål

Uppsala universitet

Nordic Workshop on LHC and Beyond AlbaNova, Stockholm 2008-06-12

work done with D. Eriksson, G. Ingelman, J. Rathsman JHEP 0801:024,2008, arXiv:0710.5906 [hep-ph]

Top quark spin correlations

 At hadron colliders, pair-produced top quarks come in two spin configurations

Singlet:
$$t_{\uparrow} \overline{t}_{\perp}$$
 S=0

Triplet:
$$t_{\uparrow} \overline{t}_{\uparrow}, t_{\uparrow} \overline{t}_{\downarrow}, t_{\downarrow} \overline{t}_{\downarrow}$$
 S=1

- Unlike lighter quarks, t decays before hadronization
 Information on top spin preserved
- Measuring the spin projection of one top, the spin of the other top can be (statistically) determined if the overall spin is known.
- => Modern day EPR experiment

Spin correlations cont'd

- 1. Select spin quantization axes

 Helicity basis \rightarrow Spin quantized along momentum directions of $t(\bar{t})$ in $t\bar{t}$ CM frame
- 2. Determine parton level correlation as fcn. of inv. mass:

$$\hat{C}_{ij}(M_{t\bar{t}}^2) = \frac{\hat{\sigma}_{ij}(t_{\uparrow}\bar{t}_{\uparrow} + t_{\downarrow}\bar{t}_{\downarrow}) - \hat{\sigma}_{ij}(t_{\downarrow}\bar{t}_{\uparrow} + t_{\uparrow}\bar{t}_{\downarrow})}{\hat{\sigma}_{ij}(t_{\uparrow}\bar{t}_{\uparrow} + t_{\downarrow}\bar{t}_{\downarrow}) + \hat{\sigma}_{ij}(t_{\downarrow}\bar{t}_{\uparrow} + t_{\uparrow}\bar{t}_{\downarrow})}$$

3. Fold with pdfs and integrate to determine total correlation:

NLO calculation [Bernreuter et al, Nucl.Phys. B690 (2004) 81-137]

$$m_t = 175$$
 Tevatron (qq dominated): $\mathcal{C} = -0.352$

LHC (gg dominated): $\mathcal{C}=0.326$ (0.319 @ LO) Untested prediction of the Standard Model!

Measuring the top quark spin

 Assume a fully polarized top in its rest frame with spin along z-axis. Weak decay encodes spin in distribution of decay products.

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_i} = \frac{1 + \alpha_i \cos\theta_i}{2} \qquad i = \{b, l^+, \nu_l, W^+\}$$

Spin analyzing coefficients α_i

$$m_t = 175 \quad \frac{\text{Analyzing particle}}{\text{particle}} \quad \frac{W^+ \ (\omega = m_W^2/m_t^2)}{W^+ \ (\omega = m_W^2/m_t^2)} \quad \approx -0.4$$

$$W^+ \ \frac{1-2\omega}{1+2\omega} \quad \approx 0.4$$

$$l^+ \ (\bar{d}) \quad 1 \quad 1$$

$$\nu_l \ (u) \quad \frac{(1-\omega)(1-11\omega-2\omega^2)-12\omega^2\ln\omega}{(1-\omega)^2(1+2\omega)} \quad \approx -0.35$$

Measurement of spin correlations

Exploiting the correlation:

$$\frac{1}{N} \frac{\mathrm{d}^2 N}{\mathrm{d} \cos \theta_i \, \mathrm{d} \cos \theta_j} = \frac{1}{4} \Big(1 + \mathcal{C} \alpha_i \alpha_j \cos \theta_i \cos \theta_j \Big)$$

Doubly differential distribution with i,j from different tops. Angles determined in respective rest frames.

$$C(\hat{\mathbf{a}}, \hat{\mathbf{b}}) = 4 \left\langle (\mathbf{S_t} \cdot \hat{\mathbf{a}})(\mathbf{S_{\overline{t}}} \cdot \hat{\mathbf{b}}) \right\rangle$$

• Alternatively use "opening angle" and form the distribution in $\cos\theta_{ij} = \hat{p}_i \cdot \hat{p}_j$

$$\frac{1}{N} \frac{\mathrm{d}N}{\mathrm{d}\cos\theta_{ij}} = \frac{1}{2} \left(1 + \mathcal{D}\alpha_i \alpha_j \cos\theta_{ij} \right)$$

where $\mathcal{D}=4\left\langle \mathbf{S_t}\cdot\mathbf{S_{\overline{t}}}\right\rangle =-0.24$ @ NLO [Nucl.Phys. B690 (2004) 81-137]

Less sensitive to acceptance loss by phase-space cuts

$$D = (-0.217 @ LO)$$

Example: SM dilepton distributions

Assuming top decay kinematics according to SM
 reconstruct tt rest frame in the dilepton channel.

$$pp \to t\overline{t} \to bW^+\overline{b}W^- \to b\overline{b}l^+l^-\nu_l\overline{\nu}_l$$

• Experimentally: ATLAS study [F. Hubaut et al, hep-ex/0508061]

$$\Delta C/C \sim 6\%$$
 $\Delta D/D \sim 4\%$

Systematics limited already with 10 fb⁻¹

High sensitivity → Possible to look for new physics

Two-Higgs doublet models (2HDM)

- In the SM with one Higgs doublet, both charged dof. spent on W masses. => Only one neutral h left
- Adding another SU(2) Higgs doublet => h, H, A, H⁺, H⁻
- Light H⁺ mediates top decay
- Absolute mass constraint from LEP: $m_{H^+} > m_W$

Indirect constraints:
 See talk by David Eriksson

Charged Higgs coupling structure

• Charged Higgs-fermion part of 2HDM Lagrangian:

$$\mathcal{L}_{H} = \frac{g_{W}}{2\sqrt{2}m_{W}} \sum_{\substack{\{u,c,t\}\\\{d,s,b\}}} \left\{ V_{ud}H^{+}\bar{u} \left[\mathbf{A} (1 - \gamma_{5}) + \mathbf{B} (1 + \gamma_{5}) \right] d + \text{h.c.} \right\}$$

$$+ \frac{g_{W}}{2\sqrt{2}m_{W}} \sum_{\{e,\mu,\tau\}} \left[H^{+} \left[\mathbf{C}\bar{\nu}_{l} (1 + \gamma_{5}) l + H^{-} \mathbf{C}^{*}\bar{l} (1 - \gamma_{5}) \nu_{l} \right]$$

Coupling	2HDM (I)	2HDM (II)
A	$m_u \cot \beta$	$m_u\coteta$
B	$-m_d \cot \beta$	$m_d an eta$
C	$m_l\coteta$	$m_l an eta$

Real couplings in CP-conserving 2HDM Large BR possible for large (small) $\tan \beta$ values

Spin analyzing coefficients for $t \to b H^+ \to b \tau^+ \nu_{\tau}$

 From decay density matrix we determine spin analyzing coefficients for the decay (after phase-space int.)

Analyzing particle	$W^+ \ (\omega = m_W^2/m_t^2)$ Decay	channel $H^+ (\xi = m_{H^+}^2/m_t^2)$
b	$-rac{1-2\omega}{1+2\omega}$	$-rac{A^{2}-B^{2}}{A^{2}+B^{2}}f(\xi,A,B)$
W^+/H^+	$rac{1-2\omega}{1+2\omega}$	$rac{A^2-B^2}{A^2+B^2}f(\xi,A,B)$
l^+ (\bar{d})	1	$\frac{1 - \xi^2 + 2\xi \ln \xi}{(1 - \xi)^2} \frac{A^2 - B^2}{A^2 + B^2} f(\xi, A, B)$
$\nu_l \ (u)$	$\frac{(1-\omega)(1-11\omega-2\omega^2)-12\omega^2\ln\omega}{(1-\omega)^2(1+2\omega)}$	$-\frac{1-\xi^2+2\xi\ln\xi}{(1-\xi)^2}\frac{A^2-B^2}{A^2+B^2}f(\xi,A,B)$

 Charged Higgs coefficients depend on the universal coupling factor

$$\frac{A^2 - B^2}{A^2 + B^2}$$

• Threshold factor $f(\xi, A, B) \simeq 1$ except for $m_{H^+} \to m_t$

Spin analyzing coefficients in 2HDM (II)

• Large differences from SM for high and low $\tan \beta$

 Could give handle on charged Higgs coupling

Fake SM at one point

Higher order corrections to SUSY 2HDM

• Yukawa coupling of quarks to "wrong" Higgs doublet induced at 1-loop level $\tan \beta$ -enhanced corrections

Coupling	2HDM (I)	2HDM (II)	$2\text{HDM }(\overline{\text{II}})$
A	$m_u \cot \beta$	$m_u \cot \beta$	$m_u \cot \beta \left[1 - \epsilon_t' \tan \beta\right]$
B	$-m_d \cot \beta$	$m_d an eta$	$rac{m_d aneta}{1+\epsilon_b aneta}$
C	$m_l \cot eta$	$m_l an eta$	$m_l an eta$

Decoupling limit:

$$\epsilon_b \sim \frac{\mu}{|\mu|} \frac{\alpha_s(M_{\rm SUSY})}{3\pi} \simeq 10^{-2}$$

$$\epsilon_b = -\epsilon'_t = \pm 0.01$$

• Similar effect from standard NLO QCD corrections [hep-ph/0211098]

Parton-level correlations in 2HDM (II)

• D-type distributions $\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}\cos\theta_{ij}} = \frac{1}{2}\left(1 + \mathcal{D}\alpha_i\alpha_j\cos\theta_{ij}\right)$

$$t \to bH^+ \to b au^+
u_ au$$

 $\overline{t} \to \overline{b}W^- \to \overline{b}\overline{u}d$ + cc.

Tau assumed stable here, full truth used to reconstruct CM

=> tau-d largest corr. in SM while b-d better for 2HDM

From MC parton "truth" to hadron level

Problem: Charged Higgs decays to au

- Almost no effect on e or μ correlations
- Additional neutrinos from τ decay => Impossible to reconstruct partonic CM frame

Solution:

- Resort to hadronic decays of W and tau
- Reconstruct transverse rest frames of top quarks
- Measure azimuthal angles in these frames

In analogy with CM correlations we expect

$$\frac{1}{N} \frac{\mathrm{d}N}{\mathrm{d}\cos(\Delta\phi_i - \Delta\phi_j)} = \frac{1}{2} \left[1 + \mathcal{D}'\alpha_i\alpha_j\cos(\Delta\phi_i - \Delta\phi_j) \right]$$

Numerically, we find for the LHC at LO:

$$\mathcal{D}' = 0.9\mathcal{D}$$
 (Remember that $\mathcal{D} = -0.217$)

Parton-level results from azimuthal angles

Without identifying the d-quark:

Hadron-level MC simulation

- Full 2 → 6 ME from MadEvent, cross-check with TopReX Parton showering, hadronization, UE with PYTHIA
- Decay channels: $t \to bH^+ \to b au^+
 u_ au$ $au \to {
 m hadrons}$ with TAUOLA
- Reconstruction:

$$|\eta| < 5$$
 k $_{\perp}$ jet finding $d_{\mathrm{cut}} = 20 \; \mathrm{GeV}$

"Flavor tagging": $\Delta R(\mathrm{jet,parton}) < 0.4 \quad |\eta| < 2.5$

W and top candidates from jet combinations

$$|m_{jj} - m_W| < 10 \text{ GeV}$$
$$|m_{jjb} - m_t| < 15 \text{ GeV}$$

Analyzed events selected on basis of correct topology

No backgrounds or detector effects at this point

Hadron level results

- From SM side of the event we use b quark as spin analyzer
- On H⁺ side we can use either tau- or b-jet

- Hadron level results similar to parton level (normalized dist)
- bb distribution most sensitive to new physics Hard enough b quark required => $m_{H^+} \lesssim 130~{\rm GeV}$

Summary and Conclusions

- Top quark spin correlations are predicted by SM Testable at the LHC
- Large statistics allows for new physics searches in tt
- H⁺ in top decays can influence angular distributions of decay products
- Spin analyzing coefficients shown for 2HDM.
 SM: lepton most efficient analyzer; 2HDM: b-quark (or H⁺)
- $H^+ \rightarrow \tau^+ \nu_{\tau}$ decay prevents reconstruction of rest frames. Azimuthal distributions in transverse rest frames
- Hadron-level MC simulations indicate small H † effect. Highest sensitivity to interesting case with large $\tan \beta$

EXTRAS

Increasing degree of correlation

 Applying an upper cut on invariant mass improves the degree of correlation at the LHC

• Remember high statistics at 14 TeV: $\sigma(pp \to t\bar{t}) \simeq 900~\mathrm{pb}$