Small scale dynamo in ISM - surprising hot dynamo

July 29, 2020 - Pencil Code, Glasgow

DQC

Experimental setup

- 3D periodic ISM 1 ppcc 200 pc on each side
- SN rate comparable to solar neighbourhood 0.1 10 σ_{\odot}
- Energy: radiative cooling and UV-heating, hyperdiffusion and shock diffusion

(ロ) (同) (三) (三) (三) (○) (○)

- ▶ Induction: hyperdiffusion and $\eta \in [0, 0.05]$ kpc km s⁻¹
- Momentum: hyperdiffusion and shock diffusion $\nu = 0$
- Continuity: shock diffusion
- Resolution 0.5, 1, 2 and 4 pc

Magnetic energy growth rates

Figure: The volume averaged magnetic energy density for models with resolution between 0.5 pc and 4 pc are plotted over time. Resolution dependant hyper-resistivity, hyper-viscosity and shock-capturing viscosity apply for numerical stability. Resistivity, $\eta = 10^{-4}$ kpc km s⁻¹ in panel (a) and 10^{-3} (b), is also included.

Magnetic energy growth rates

Figure: For each resolution the effect of η is compared, (a) 0.5 pc, (b) 1 pc, (c) and (d) 2 pc, and (e) and (f) 4 pc. All models have supernova rate $0.2\sigma_{\rm SN}$, except (d) and (f), which have $\sigma_{\rm SN}$. $\sigma_{\rm SN} \simeq 50 \,\rm kpc^{-3} \,\rm Myr^{-1}$ is the solar neighbourhood equivalent random SN frequency.

Growth in warm/hot gas

Figure: Slices for resolution of 0.5 pc and 1 pc sampled from the kinematic dynamo state.

・ロット (雪) ・ (日) ・ (日)

ъ

No correlation

900