
Image credit: NASA/SDO

Astaroth

Johannes Pekkila, PC user meeting 2020

Astaroth
J. Pekkila

2

Astaroth

● Speaker: Johannes Pekkilä
● Doctoral Student at Aalto University, Finland
● Field: Computer Science (Big Data and Large-Scale Computing)
● Worked on accelerating physical simulations on GPUs since 2014

Accelerated stencil computations on GPUs

Astaroth
J. Pekkila

3

Astaroth

● Astaroth is a multi-GPU library for high-performance stencil
computations

● The API consists of an host-level interface (C, C++, Fortran)
and a domain-specific language (DSL)

● Specialized in high-order stencils and computations with
coupled fields → very high cache-efficiency in comparison
to competitors

Accelerated stencil computations on GPUs

Astaroth
J. Pekkila

4

Astaroth

● Usable for production now

● Full MHD (hydro, magnetic, entropy) + forcing + upwinding

● All physics are implemented in the DSL

● Efficient multi-GPU MPI implementation (GPUDirect RDMA)

Recap

Astaroth
J. Pekkila

5

This talk

1) Performance

2) Astaroth DSL

3) Astaroth API

Astaroth
J. Pekkila

6

Single-node performance
 Full MHD, double precision

Pencil Code on 2x Intel Xeon
Gold 6230 CPUs, 40 cores:
● 23 ns / grid point / step

Astaroth on 4x Tesla V100 GPUs
● 0.65 ns / grid point / step

35x speedup

Astaroth
J. Pekkila

7

Strong scaling

Astaroth
J. Pekkila

8

This talk

1) Performance

2) Astaroth DSL

3) Astaroth API

Astaroth
J. Pekkila

9

Astaroth DSL

Astaroth DSL (AKA Astaroth Code, AC) is a procedural stream
programming language

Why?
1) Industry standard
2) Easy to translate to CUDA (less bugs)
3) Stream programming maps well to GPU hardware

Astaroth DSL is NOT
1) a functional programming language.
2) the simplest possible representation for physical equations.

All major design decisions are based on obtaining maximum
performance with the simplest possible language, but no simpler.

 Disclaimer

Astaroth
J. Pekkila

10

Domain-specific languages

● DSL below, optimized CUDA to the right
● CUDA code presented here is overly complex for

just the heat equation, but demonstrates the
optimizations required for more complex tasks

Astaroth
J. Pekkila

11

Astaroth Code

● Syntax of AC is C-like and similar to shading languages

● We provide a standard DSL library for computing derivatives
and commonly-used math operations (curl, laplacian, etc.)

● The standard library can be extended to support non-
equidistant grids, and spherical and cylindrical coordinate
systems in the future

Astaroth
J. Pekkila

12

Astaroth Code

Function type qualifiers

● Kernel. The main function, analogous to __global__

● Device. Analogous to __device__

● Preprocessed. Evaluated at the preprocessing stage and
cached for use in Kernel and Device functions

● <Empty>. Helper functions for Preprocessed functions.

Astaroth
J. Pekkila

13

Astaroth Code

● Function type qualifiers: Preprocessed, Kernel, and Device
functions

● Data types: Scalar, Vector, Complex, Matrix, ScalarField,
VectorField. Precision of real numbers is determined at compile-
time. Device constants are declared with uniform type qualifier

● Input and output arrays are declared with in and out
qualifiers

● Built-in variables:
- vertexIdx – local index of the current vertex
- globalVertexIdx – global index of the current vertex, offset based
 on the multi-GPU decomposition
- globalGridN – dimensions of the computational domain

Astaroth
J. Pekkila

14

Astaroth Code

Astaroth
J. Pekkila

15

This talk

1) Performance

2) Astaroth DSL

3) Astaroth API

Astaroth
J. Pekkila

16

Astaroth API

● Astaroth library handles host-side functionality

 - Memory operations (initialization, transfers)

 - Queuing kernels
● Essentially all API functions are asynchronous by default

 - Required for efficient multi-GPU communication

Astaroth
J. Pekkila

17

Astaroth API

The API is divided into two layers: Device and Node
● Device layer

- For controlling a single GPU
- Functions start with acDevice

● Node layer
- Abstracts the GPUs available on a node behind a single

 interface
- Functions start with acNode

Astaroth
J. Pekkila

18

Astaroth API

● The library is configured by
passing a config struct
when initializing devices
and nodes

● Devices and nodes are
managed with handles

Astaroth
J. Pekkila

19

Astaroth API
 Core library

Single-device layer

User-defined
kernels

Built-in
kernels

Distribution
of work

Multi-device layer

Inter-device
communication

Concurrency and
synchronization

Configuration Memory
management

Application programming interface

Astaroth
J. Pekkila

20

Astaroth

Code
http://bitbucket.org/jpekkila/astaroth

Documentation
http://libastaroth.bitbucket.io/

Thesis
http://urn.fi/URN:NBN:fi:aalto-201906233993

Accelerated stencil computations on GPUs

http://bitbucket.org/jpekkila/astaroth
http://libastaroth.bitbucket.io/
http://urn.fi/URN:NBN:fi:aalto-201906233993

Image credit: NASA/SDOJohannes Pekkila, PC User Meeting 2020

Astaroth
J. Pekkila

22

Backup slides

Astaroth
J. Pekkila

23

Single-GPU performance

Test case:
● Full MHD
● 6th order finite-differences
● 3rd order Runge-Kutta
CPU solver:
● Pencil Code
● 2x Intel Xeon E5-2690 v3
● Benchmarked on a total of 24

cores
● 47 ns / grid point / step (dbl)
GPU solver:
● Astaroth
● Tesla P100 PCIe
● 4.6 ns / grid point / step (dbl)

Astaroth
J. Pekkila

24

Domain-specific languages

Takeaways:

● Future is parallel

● All problems will be eventually bound by memory bandwidth
(for the foreseeable future)

● The only way forward is to increase arithmetic intensity
(primarily by caching)

● Domain-specific languages can offer high productivity and
performance

 Performance and productivity

Image credit: NASA/SDOJohannes Pekkila, PC User Meeting 2020

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

