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Astaroth

● Speaker: Johannes Pekkilä
● Doctoral Student at Aalto University, Finland
● Field: Computer Science (Big Data and Large-Scale Computing)
● Worked on accelerating physical simulations on GPUs since 2014

Accelerated stencil computations on GPUs
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Astaroth

● Astaroth is a multi-GPU library for high-performance stencil 
computations

● The API consists of an host-level interface (C, C++, Fortran) 
and a domain-specific language (DSL)

● Specialized in high-order stencils and computations with 
coupled fields → very high cache-efficiency in comparison 
to competitors

Accelerated stencil computations on GPUs
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Astaroth

● Usable for production now

● Full MHD (hydro, magnetic, entropy) + forcing + upwinding

● All physics are implemented in the DSL

● Efficient multi-GPU MPI implementation (GPUDirect RDMA)

Recap
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This talk

1) Performance

2) Astaroth DSL

3) Astaroth API
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Single-node performance
 Full MHD, double precision

Pencil Code on 2x Intel  Xeon  
Gold  6230 CPUs, 40 cores:
● 23 ns / grid point / step

Astaroth on 4x Tesla V100 GPUs
● 0.65 ns / grid point / step

35x speedup
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Strong scaling
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This talk

1) Performance

2) Astaroth DSL

3) Astaroth API
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Astaroth DSL

Astaroth DSL (AKA Astaroth Code, AC) is a procedural stream 
programming language

Why?
1) Industry standard
2) Easy to translate to CUDA (less bugs)
3) Stream programming maps well to GPU hardware

Astaroth DSL is NOT
1) a functional programming language.
2) the simplest possible representation for physical equations.

All major design decisions are based on obtaining maximum 
performance with the simplest possible language, but no simpler.

 Disclaimer
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Domain-specific languages
 

● DSL below, optimized CUDA to the right
● CUDA code presented here is overly complex for 

just the heat equation, but demonstrates the 
optimizations required for more complex tasks
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Astaroth Code

● Syntax of AC is C-like and similar to shading languages

● We provide a standard DSL library for computing derivatives 
and commonly-used math operations (curl, laplacian, etc.)

● The standard library can be extended to support non-
equidistant grids, and spherical and cylindrical coordinate 
systems in the future
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Astaroth Code

Function type qualifiers

● Kernel. The main function, analogous to __global__

● Device. Analogous to __device__

● Preprocessed. Evaluated at the preprocessing stage and 
cached for use in Kernel and Device functions

● <Empty>. Helper functions for Preprocessed functions.
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Astaroth Code

● Function type qualifiers: Preprocessed, Kernel, and Device 
functions

● Data types: Scalar, Vector, Complex, Matrix, ScalarField, 
VectorField. Precision of real numbers is determined at compile-
time. Device constants are declared with uniform type qualifier

● Input and output arrays are declared with in and out 
qualifiers

● Built-in variables: 
- vertexIdx           – local index of the current vertex
- globalVertexIdx – global index of the current vertex, offset based          
                               on the multi-GPU decomposition
- globalGridN       – dimensions of the computational domain
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Astaroth Code
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This talk

1) Performance

2) Astaroth DSL

3) Astaroth API
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Astaroth API

● Astaroth library handles host-side functionality

    - Memory operations (initialization, transfers)

    - Queuing kernels
● Essentially all API functions are asynchronous by default

    - Required for efficient multi-GPU communication
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Astaroth API

The API is divided into two layers: Device and Node
● Device layer

- For controlling a single GPU
- Functions start with acDevice

● Node layer
- Abstracts the GPUs available on a node behind a single         

       interface
- Functions start with acNode
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Astaroth API
 

● The library is configured by 
passing a config struct 
when initializing devices 
and nodes

● Devices and nodes are 
managed with handles
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Astaroth API
 Core library

Single-device layer

User-defined
kernels

Built-in
kernels

Distribution
of work

Multi-device layer

Inter-device
communication

Concurrency and
synchronization

Configuration Memory
management

Application programming interface



Astaroth
J. Pekkila

20

Astaroth

Code
http://bitbucket.org/jpekkila/astaroth

Documentation
http://libastaroth.bitbucket.io/

Thesis
http://urn.fi/URN:NBN:fi:aalto-201906233993

Accelerated stencil computations on GPUs

http://bitbucket.org/jpekkila/astaroth
http://libastaroth.bitbucket.io/
http://urn.fi/URN:NBN:fi:aalto-201906233993
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Backup slides
 



Astaroth
J. Pekkila

23

Single-GPU performance
 

Test case:
● Full MHD
● 6th order finite-differences
● 3rd order Runge-Kutta
CPU solver:
● Pencil Code
● 2x Intel Xeon E5-2690 v3
● Benchmarked on a total of 24 

cores
● 47 ns / grid point / step (dbl)
GPU solver:
● Astaroth
● Tesla P100 PCIe
● 4.6 ns / grid point / step (dbl)
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Domain-specific languages

Takeaways:

● Future is parallel

● All problems will be eventually bound by memory bandwidth 
(for the foreseeable future)

● The only way forward is to increase arithmetic intensity 
(primarily by caching)

● Domain-specific languages can offer high productivity and 
performance

 Performance and productivity
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