Generation of the mean flows by anisotropic forced turbulence

Atefeh

Study NSSL

It has 2 major properties

$$\bullet \ \rho = \rho' + \overline{\rho}$$

•
$$U = u + \overline{U}$$

$$Q_{ij} = \overline{u_i u_j}$$

$$\partial_t (\overline{\rho' u_i} + \overline{\rho} \overline{U}_i) + \partial_j (\overline{\rho' u_i u_j} + \overline{\rho' u_j} \overline{U}_i + \overline{\rho} \overline{u_i u_j} + \overline{\rho' u_i} \overline{U}_j) = \dots$$

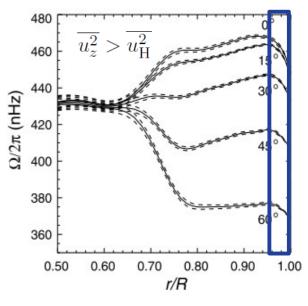
$$Q_{ij} = Q_{ij}^{(\nu)} + Q_{ij}^{(\Lambda)}$$

$$Q_{yz} = -\nu_{\parallel} \frac{\partial \overline{U}_{y}}{\partial z} + \nu_{\parallel} V \sin \theta \Omega,$$

$$Q_{xy} = \nu_{\perp} \Omega^2 \sin \theta \cos \theta \frac{\partial \overline{U}_y}{\partial z} + \nu_{\parallel} H \cos \theta \Omega$$

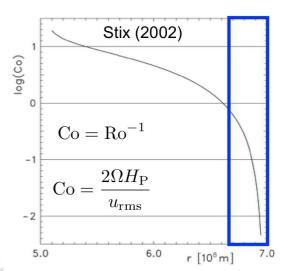
How does the NSSL form?

NSSL



Howe et al. (2000). Science. 287. 2456-2460

NSSL



Simulation setup

$$\frac{D \ln \rho}{Dt} = -\nabla \cdot \boldsymbol{U} \qquad p = c_s^2 \rho$$

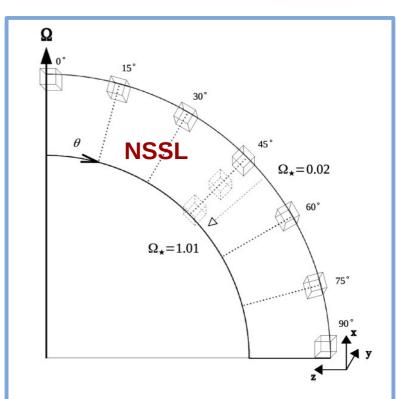
$$\frac{D\boldsymbol{U}}{Dt} = -c_s^2 \nabla \ln \rho + \boldsymbol{F}^{\text{visc}} + \boldsymbol{F}^{\text{Coriolis}} + \boldsymbol{F}$$

Brandenburg, A., & Rekowski, B. V. 2001, A&A, 379, 1153

$$F(\boldsymbol{x},t) = \Re(\mathbf{N} \cdot \boldsymbol{f_{k}}_{(t)} \exp[i\boldsymbol{k}(t) \cdot \boldsymbol{x} - i\phi(t)])$$

$$\mathbf{N} = (f_0 \delta_{ij} + \delta_{iz} \cos^2 \Theta_k f_1 / f_0) (k c_s^3 / \delta t)^{1/2}$$

$$f_{m{k}} = rac{m{k} imes \hat{m{e}}}{\sqrt{m{k}^2 - (m{k} \cdot \hat{m{e}})^2}}$$



par	value
L	2π
n	144
ν	10^{-3}
c_s	3
k_f	10
f_0	10^{-6}
f_1	0.04

Measure Lambda-effect

par	value
$\overline{k_f}$	10
$u_{ m rms}$	0.13
Re	13
Ma	0.04

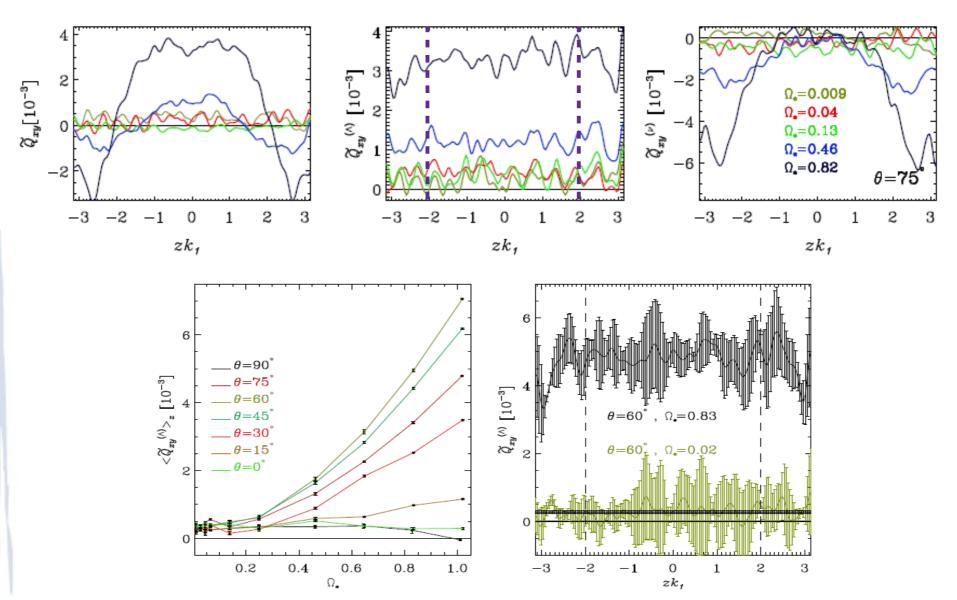
Suppress the mean flow

```
&hydro_run_pars
Omega=0.007
  theta=45.
  lupw_uu=T
  lcalc_uumeanz=T
  lremove_uumeanz_horizontal=T
```

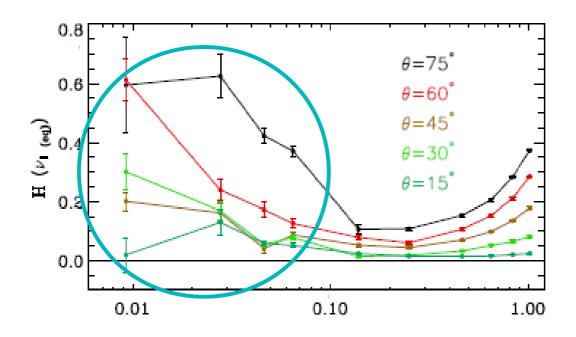
$$Q_{yz} = -\nu_{\parallel} \frac{\partial \overline{U}_{y}}{\partial z} + \nu_{\parallel} V \sin \theta \Omega,$$

$$Q_{xy} = \nu_{\perp} \Omega^2 \sin \theta \cos \theta \frac{\partial \overline{U}_y}{\partial z} + \nu_{\parallel} H \cos \theta \Omega$$

$$Q_{xy} = \nu_{\perp} \Omega^2 \sin \theta \cos \theta \frac{\partial \overline{U}_y}{\partial z} + \nu_{\parallel} H \cos \theta \Omega.$$



Measuring H

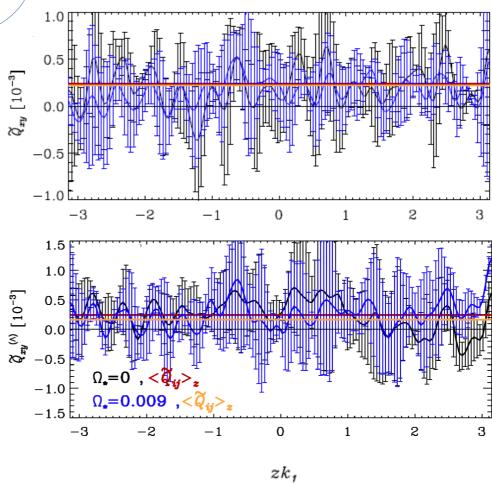


H is larger at low Co numbers!!!!!

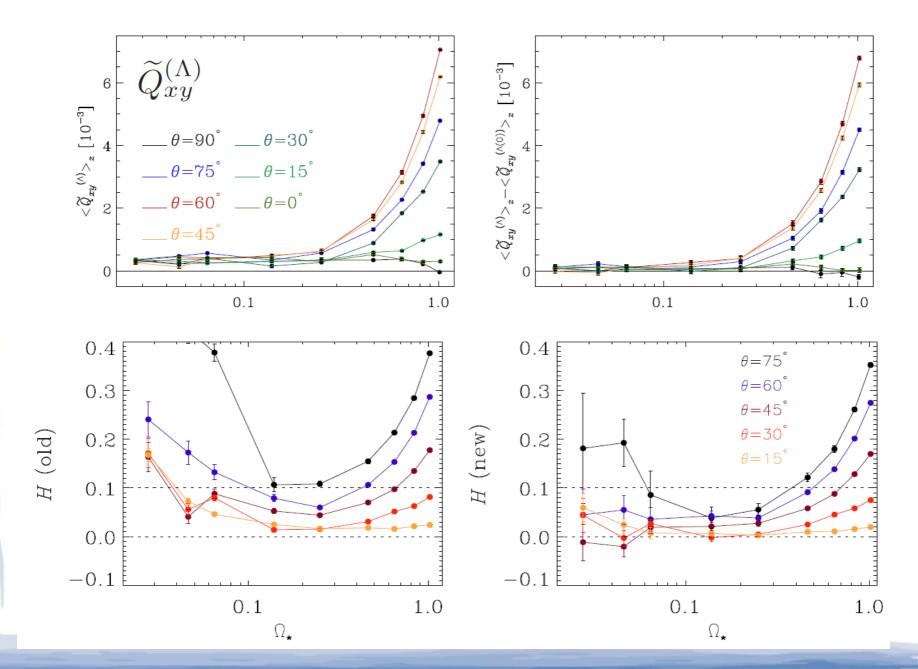
$$\widetilde{Q}_{xy}^{(\Lambda)}$$

$$Q_{xy} = \nu_{\perp} \Omega^2 \sin \theta \cos \theta \frac{\partial \overline{U}_y}{\partial z} + \nu_{\parallel} H \cos \theta \Omega$$

Ω_0	Ω_{\star}	\widetilde{Q}_{xy}	$\widetilde{Q}_{xy}^{(\Lambda)}$
0	0	0.238104	0.244643
0.001	0.009	0.338522	0.164727
0.003	0.02	0.261769	0.356681
0.005	0.04	0.289093	0.472252
0.007	0.06	0.082576	0.562727
0.015	0.13	-0.13879	0.338895
0.027	0.24	-0.08081	0.567694
0.05	0.46	0.480126	1.31954
0.07	0.64	1.53806	2.26650
0.09	0.83	2.88850	3.41278
0.11	1.01	4.47025	4.78796



Correction



What can be checked?

- 1. isotropic forcing with $\Omega = 0$?
- 2. higher kf?
- 3. higher Reynolds number?

Isotropic forcing

Change the amplitude of forcing to get the same Re and kf=10

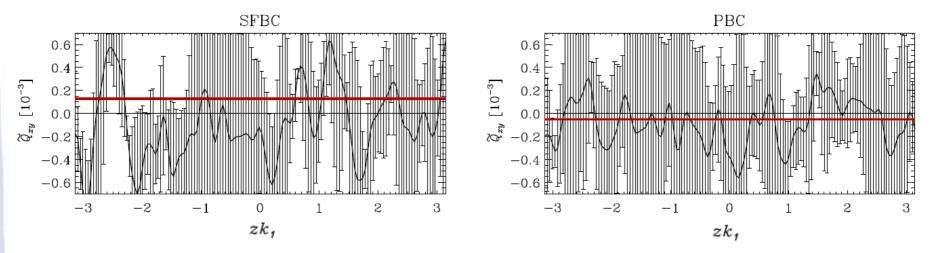


Figure 27: comparison of the Reynolds stress at $\Omega_0 = 0$ both stress-free BC (left panels) and periodic BC (right panels) runs using isotropic forcing. The red line shows the error-weighted mean of stresses.

isotropic			anisotropic (SFBC)		
Stresses	SFBC	PBC	\widetilde{Q}_{xy}	$\widetilde{Q}_{xy}^{(\Lambda)}$	
$<\widetilde{Q}_{xy}>$	0.129018	-0.0515038	0.238104	0.244643	
$\sigma(<\widetilde{Q}_{xy}>)$	0.0327374	0.0496711			

Higher kf & Re

k_f	nu	$u_{ m rms}$	Re	Re(mesh)	τ
10	$1 \cdot 10^{-3}$	0.13	13	0.9	> 10000
10	$2 \cdot 10^{-4}$	0.17	85	5.9	11000 △
20	$5 \cdot 10^{-4}$	0.13	13	0.9	> 20000
30	$3 \cdot 10^{-4}$	0.13	15	0.8	> 10000
30	$1 \cdot 10^{-4}$	0.16	54	2.8	> 20000 💥
30	$8 \cdot 10^{-5}$	0.17	69	3.6	> 20000

