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Gravitational wave evolution from 

acoustic and vortical sources

Axel Brandenburg, Tina Kahniashvili, Arthur Kosowsky,

Sayan Mandal, & Alberto Roper Pol

• Pencil Code

• Correspondence between kinetic or 
magnetic spectra with GW spectra

• Inertial and subinertial range spectra

• Scalar and vector modes in vertical 
and acoustic (irrotational) turbulence

• Onset of GW energy and vorticity
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History of gravitational waves

• Heaviside (1893): analogy with electromagnetism

• Poincare (1905): emanating from body at speed of light

• Einstein (1916, 1918), three types of waves

• Eddington (1922): two of three are artifacts

• Einstein & Rosen (1936) unphysical altogether

• referee Robertson: harmless coordinate singularities

• Pirani (1956): manifestly gauge-invariant observables

• Hulse & Taylor (1975):  indirect GW detection

• GW150914. 2017 Nobel prize to Weiss, Thorne, Barish
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Confused situation by 1936
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Confused situation by 1936



Stretching of space-time



6

Cosmological GWs
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Why interesting if random?
• Spectrum

– Peak

– Slopes

• Polarizatin

– Sign?
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Why interesting if random?

• Energy spectrum

– Peak(s)

– Slopes

– Relation to turbulence

• Polarization

– Sign?

– Relation magnetic helicity (=swirl of B field)



9

Solve for spatial part of hij

• Sourced by the stress tensor (Reynolds, Maxwell)

– Tij is symmetric tensor

– 6 components

• Assume transverse dTij/dxj = 0

– 3 constraints

– 3 components left

• Traceless

– 1 more constraint

– 2 components left
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Correspond to + and x modes

Seto

(2006)
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Circular polarization in space & time

• Both plus and cross polarization together

• Combine the two as a function of space & time

• Get circular polarization
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Alfvén wave

1. travel up

2. travel down

3. standing 

wave

magnetic

fluctuations
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Alfvén wave
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Alfvén wave
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Alfvén wave
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Alfvén wave
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Polariserad Alfvén wave

x-polarized y-polarized

Either x or y
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Circularly polarized Alfvén wave

circle
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How does it travel?
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State of the art: stochastic GW from

• MHD turbulence

– Only analytic models

– Using Lighthill approximation 

• Expanding & colliding bubbles

– Simulations by Hindmarsh et al. (2015)

– Solve scalar field dynamics
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B-field from electroweak PT

• Kolmogorov 

turbulence

• Peak at f = 1 mHz

• Lighthill approx.

• h(f) ~ 3x10-20

– dimensionless 
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B-field from electroweak PT

• Kolmogorov 

turbulence

• Peak at f = 1 mHz

• Lighthill approx.

• h(f) ~ 3e-20

• GW energy normalized by critical energy density

• Around 10-10 (nondimensional), at 0.03 mHz
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Goal: compute GWs from real 

MHD turbulence

• Most popular scenario: electroweak phase transition

– Weak and electromagnetic force decouple

• B-field from electroweak phase transition

– Vachaspati (1991)

– Cheng & Olinto (1994)

– Baym, Bodeker, McLarran (1996)

• Time 10-11 sec

– Horizon scale 0.3 cm

– Now ~ 10AU  small

– But turbulence  larger length scale (inverse cascade!)
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Relativistic equations in expanding Universe

Energy momentum tensor

Conformal time, rescaled equations

Equivalent to usual magneto-hydrodynamics

Brandenburg, Enqvist, Olesen

Phys Rev D 54, 1291 (1996)
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Small Lorentz factors, g~1      
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Magnetohydrodynamic turbulence

shell models
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3-D decay simulations

Initial slope

E~k4

Christensson et al.

(2001, PRE 64, 056405)

helical vs

nonhelical



Horizon scales for k4 spectrum

nonhelical vs helical



3-D decay simulations
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Sect. 2.2

Assessement of the turbulent 

convective dynamo view

Collapsed spectra and pq diagrams



Not sure about some more

• Wlad Lyra

– Particle methods in Pencil Code

• Alex Richert

– Octree Poisson solver

• Vincent Carpenter

– Poisson solver Logarithmic Polar Coordinates
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MHD module & forcing

• Wlad
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MHD module & forcing

• Wlad
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10.1016/j.jcp.2016.04.048

https://doi.org/10.1016/j.jcp.2016.04.048


Magnetic helicity at early times

• Wlad
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Small Lorentz factors, g~1      
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Resulting stress

• Drives GWs

• Only transverse-traceless (TT) projection matters
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Just solve like other PDEs

• Two 1st order eqns

• No artificial diff 

needed (no shocks)

• TT projection on the 

source

• Alternatively: TT 

projection only for 

diagnostics
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“Usual” 3rd order Runge-Kutta
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“Exact” between 2 time steps
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Auxiliary arrays
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Auxiliary arrays
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Projection
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Projection
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Projection
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Projection
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“Exact” between 2 time steps
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Sign switch for 

helicity 

diagnostics



49

Magnetic helicity  circular 

polarization of GWs

Beltrami field as an example

Traceless-transverse

s

s

s
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Fully helical turbulence with 

positive or negative helicity

• Magnetic energy spectrum 

• Positive helicity (red), negative (blue)

• GW energy spectra
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GW polarization vs helicity
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Correspondence of spectra

• If spectral slope of 

B is  -5/3, then

• Spectral slope of 

B2 is -5/3-2 = -11/3

• But for slope 4, we 

don’t get 4-2 = 2, 

but 0. 
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Spectra of the source
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Experiments with scalar fields s

• Spectrum of source agrees with spectrum of d2h/dt2

• Spectrum of d2h/dt2 agrees with that of  kdh/dt 

• Therefore, spectrum of h is k-2 times that of source
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Same for positive slopes

• k2 spectrum is that of while noise (shell integrated!)

• Its square is also that of white noise

• Even a bluer spectrum becomes white again



Intermediate cases

• For slopes btw -2 and 2: more complicated

• For red spectra (negative slope): same

• For blue spectra (steeper than 2): always 2 (white)



Intermediate cases



3-D and helical cases
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Non-abrupt end of driving

• Larger GW 

energy from 

graceful exit

• GW energy can 

be ~3x larger

• To understand 

slope-amplitude 

relation
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Longer runs

• Indeed: GW 

energy can be 

~3x larger

• stops growing 

when WGW

drops below 

certain value

• About 20% of 

maximum?
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GW energy & strain spectra

• confirm 

also -8/3 

and -7/3
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Irrotational  Vortical

• Irrotational: scalar & vector dominant

• Vortical: subdominant, so full~projected!



Conclusion
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• Pencil Code: GW advanced exactly 

• For E(k)~k-5/3 we get W(k)~k-8/3 and hc(k)~k-7/3

– not  -14/3 and -10/3

• but E(k)~k4 leads to W(k)~k and hc(k)~k-1/2

– not  3 and +1/2

• Vortical turbulence: vector & scalar modes weak

• Irrotational (acoustic) turbulence: they are strong, 

especially at small scales
– GW generation coincides with onset of vorticity generation


