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1 Background

We want to stabilize convection simulations and being able to run high stratifications and low diffusivities.
Other interest include dynamo-corona models or CME ejections. The derivation followings roughtly the one
of Rempel at al. (2009) and Rempel, (2014). However it is based on the Piyali’s implementation for density
in special/solar corona.f90.

2 Derivation

First we show the general derivation for variable u. The idea is to define a diffusion, which is as large as it
need to be to resolve the slope, but as small as possible. In the momentum/velocity equation have for the
diffusion

Du

Dt
= ...−∇

2nd ·F sld, (1)

where we use the 2nd order divergence and do the derivative for each component i separately.

[∇2nd ·F sld]i = Σj∂
2nd
j Fij =

fxk+1/2 − fxk−1/2

∆x
+

fyk+1/2 − fyk−1/2

∆y
+

fzk+1/2 − fzk−1/2

∆z
, (2)

where the diffusive fluxes are given by

fk+1/2 = −1
2
csldk+1/2Qk+1/2 (u

R
k+1/2 − uLk+1/2) (3)

with csld being the characteristic speed. uRk+1/2 and uLk+1/2 are the right and left side of the surface of cell

k + 1/2. The uR and uL are defined via

uLk−1/2 = uk−1 +∆uk−1 (4)

uRk−1/2 = uk −∆uk (5)

uLk+1/2 = uk +∆uk (6)

uRk+1/2 = uk+1 −∆uk+1, (7)

with
∆uk = minmod(uk − uk−1, uk+1 − uk), (8)

where the minmod is defined as

minmod(a, b) = sgn (1/2, a)max(0.0,min(|a|, sgn (1.0, a)b)) (9)

this means:

a > 0, b > 0 : minmod(a, b) = +1
2
max(0.0,min(|a|,+|b|)) (10)

a < 0, b > 0 : minmod(a, b) = −1
2
max(0.0,min(|a|,−|b|)) (11)

a > 0, b < 0 : minmod(a, b) = +1
2
max(0.0,min(|a|,−|b|)) (12)

a < 0, b < 0 : minmod(a, b) = −1
2
max(0.0,min(|a|,+|b|)) (13)

The flux is controlled by
Qk+1/2 = (min(1.0, hsldRk+1/2))

nsld , (14)

hsld controles, what is the maximum slope still allowed. hsld=∞ represent the Lax-Friedrichs-scheme. The
lower hsld, the less diffusive the simulation is, usually we use hsld=1 to 2. nsld can be also used to further
reduce the slope. All red quantities are input parameter, which can be set in the code.

Rk+1/2 =
|uRk+1/2 − uLk+1/2|

|uRk+1 − uLk |
(15)

For region, where
|uRk+1/2 − uLk+1/2|

|uRk+1 − uLk |
≥

1

hsld
, (16)
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the diffusion maximal with a diffusivity of 1
2
csldk+1/2∆x. For region, where

|uRk+1/2 − uLk+1/2|

|uRk+1 − uLk |
<

1

hsld
, (17)

the diffusion is reduced. This scheme is implemented for u, A, ln ρ, ρ, s, T and lnT .

2.1 Characteristic speed

The characteristic speed is related to the advection speeds in the system

csld = wsld
hydro

√

u2x + u2y + u2z + wsld
energycsound + wsld

magneticvA, (18)

where csound is the sound speed and vA is the Alfven speed.

csldk−1/2 =
csldk−1 + csldk

2
(19)

Using this takes also care of the time step control as the advective speed are already taking care of.

2.2 Heating and other correction terms

2.2.1 Viscose heating

The viscose heat Eν is defined

Eν
ki = Σi,j

1
2
f i
ki−1/2(u

j)
ρkiu

j
ki − ρki−1u

j
k−1

∆xi
+ 1

2
f i
ki+1/2(u

j)
ρki+1u

j
ki+1 − ρkiu

j
k

∆xi
, (20)

where i is the component of u and j the coordinate. One can also write as

Eν/ρ = 1/ρΣi,jFij ∂
2nd
j (ρui) [p%visc heat] (21)

Eν
ki = Σi,j

1
2
ρki−1/2 f

i
ki−1/2(u

j)
ujki − ujk−1

∆xi
+ 1

2
ρki+1/2f

i
ki+1/2(u

j)
ujki+1 − ujk

∆xi
, [Rempel et al.] (22)

This is then added as the other viscosity terms to the different energy equations.

2.2.2 Ohmic heating

The ohmic heating is defined analog to the usual way:

Eη = J · (∇2nd ·F sld(A)), normally :[J · µ0ηJ ] (23)

2.2.3 Mass flux

If we use the slope-limited diffusion on the density, we have to compensate for the additional mass flux in
the momentum and energy equation. This done in the same way as for the other mass diffusion scheme.
lmassdiff fix=T is always on with SLD.

2.3 4th order

In the Cartesian case one can also use the 4th order divergence for Equations (2) and (2) and the corre-
sponding heating terms. Not implemented in spherical coordinates yet.
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2.4 Alternative way for A using SLD on B

Instead of applying the slope-limited diffusion on A, one can also apply it on B. Not implemented in
spherical coordinates yet. Instead of

DA

Dt
= ...−∇

2nd ·F sld(A), (24)

we do
DA

Dt
= ...+ ê×F sld(B), (25)

where ê is the unit vector. One can also understand this by writing Fij(A)=∂sld
j Ai and Fij(B)=∂sld

j Bi.
The equations above read

DAi

Dt
= ...− ∂j∂

sld
j Ai (26)

DAi

Dt
= ...+ ǫijk ∂

sld
k Bj (27)

The corresponding heating is:
Eη = J · (ê×F sld(B)), (28)

There might be a problem with the gauge for both ways.

2.5 Spherical coordinates

For scalar quantities Equation (2) reads:

∇
2nd ·F sld = Σj∂

2nd
j Fj (29)

=
r2xk+1/2fxk+1/2 − r2xk+1/2fxk−1/2

r2xk∆r
(30)

+
sin(θyk+1/2)fyk+1/2 − sin(θyk−1/2)fyk−1/2

r sin(θyk)∆θ
(31)

+
fzk+1/2 − fzk−1/2

r sin(θ)∆φ
, (32)

For vector quantities Equation (2) reads differently, for this we first look at the divergence of a tensor in
spherical coordinates in general:

[∇ · T ]r =
1

r2
∂

∂r
(r2Trr) +

1

r sin(θ)

∂

∂θ
(sin(θ)Tθr) +

1

r sin(θ)

∂

∂φ
(sin(θ)Tφr)−

Tθθ + Tφφ

r
(33)

[∇ · T ]θ =
1

r2
∂

∂r
(r2Trθ) +

1

r sin(θ)

∂

∂θ
(sin(θ)Tθθ) +

1

r sin(θ)

∂

∂φ
(sin(θ)Tφθ) +

Tθr

r
−

cot(θ)Tφφ

r
(34)

[∇ · T ]φ =
1

r2
∂

∂r
(r2Trφ) +

1

r sin(θ)

∂

∂θ
(sin(θ)Tθφ) +

1

r sin(θ)

∂

∂φ
(sin(θ)Tφφ) +

Tφr

r
+

cot(θ)Tφθ

r
(35)

Now applying this to our diffusion tensor:

[∇2nd ·F sld]r =
r2xk+1/2f

r
xk+1/2 − r2xk+1/2f

r
xk−1/2

r2xk∆r
(36)

+
sin(θyk+1/2)f

r
yk+1/2 − sin(θyk−1/2)f

r
yk−1/2

r sin(θyk)∆θ
(37)

+
f r
zk+1/2 − f r

zk−1/2

r sin(θ)∆φ
(38)

−
fθ
yk+1/2 + fθ

yk−1/2

2r
−

fφ
zk+1/2 + fφ

zk−1/2

2r
(39)
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[∇2nd ·F sld]θ =
r2xk+1/2f

θ
xk+1/2 − r2xk+1/2f

θ
xk−1/2

r2xk∆r
(40)

+
sin(θyk+1/2)f

θ
yk+1/2 − sin(θyk−1/2)f

θ
yk−1/2

r sin(θyk)∆θ
(41)

+
fθ
zk+1/2 − fθ

zk−1/2

r sin(θ)∆φ
(42)

+
f r
yk+1/2 + f r

yk−1/2

2r
− cot(θyk)

fφ
zk+1/2 + fφ

zk−1/2

2r
(43)

[∇2nd ·F sld]φ =
r2xk+1/2f

φ
xk+1/2 − r2xk+1/2f

φ
xk−1/2

r2xk∆r
(44)

+
sin(θyk+1/2)f

φ
yk+1/2 − sin(θyk−1/2)f

φ
yk−1/2

r sin(θyk)∆θ
(45)

+
fφ
zk+1/2 − fφ

zk−1/2

r sin(θ)∆φ
(46)

+
f r
zk+1/2 + f r

zk−1/2

2r
+ cot(θzk)

fθ
zk+1/2 + fθ

zk−1/2

2r
(47)

Correspondingly also the cylindrical coordinates are implemented.

3 How to use it

We need to set one auxiliary communicative variable, because we need the staggered values for different
variables. For this set in

cparam.local:

MAUX CONTRIBUTION 1

COMMUNICATED AUXILIARIES 1

Then for the SLD using for different variables set in

run.in:

&run pars

bcx=’cop’ for aux: copy boundary values to ghost points for characteristic speed
bcy=’cop’ for aux
bcz=’cop’ for aux

&hydro run pars

w sldchar hyd=1.0 pre-factor for characteristic speed contribution

&density run pars

idiff=’density-slope-limited’ activate SLD on density
h sld dens=2.0

nlf sld dens=1.0

div sld dens=’2nd’

&entropy run pars

iheatcond=’entropy-slope-limited’: activate SLD on entropy
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would be iheatcond=’temperature-slope-limited’ for temperature idealgas.f90

h sld ene=2.0

nlf sld ene=1.0

div sld ene=’2nd’

w sldchar ene=0.1 pre-factor for characteristic speed contribution

&viscosity run pars

ivisc=’nu-slope-limited’ activate SLD on velocity
h sld visc=2.0

nlf sld visc=1.0

div sld visc=’2nd’

&magnetic run pars

iresistivity=’eta-slope-limited’ activate SLD on magnetic field
h sld magn=2.0

nlf sld magn=1.0

div sld magn=’2nd’

lsld bb=F: for ’T’ it used the alternative way for SLD on B. Need 3 extra auxiliary communicative
variables.

w sldchar mag=1.0 pre-factor for characteristic speed contribution

4 Implementation

Done only at the last sub-time step llast. Go to viscosity.f90, magnetic.f90, density.f90, entropy.f90
or temperature idealgas.f90 and then to sub.f90. For characteristic speed check out hydro.f90, magnetic.f90,
entropy.f90 or temperature idealgas.f90 or the other energy modules.

4.1 Still missing

Because the diagnostics are written out in the first sub-time step lfirst, we cannot use any outputs for
the heating and diffusive fluxes and forces.

5 Timing

As an example, we use a Cartesian convection run with 256x256x256 grid points with SSD, around 200
density contrast.

ρ s u A Wall clock time/timestep/meshpoint [microsec]

1.446E-02
X 1.724E-02
X X 1.925E-02
X X X 2.232E-02
X X X X 2.578E-02
X X X X (smoothing of JJ) 4.458E-02
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6.2 Spherical convection with zero rotation
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