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AdS/CFT
N =4 SYM in 4D <— IIB strings on AdSs x S°

e Conformal symmetry
e Supersymmetry

e Planar integrability
AdS/dCFT

N =4 SYM in 4D — IIB strings on AdSs x S°
with 3D domain wall with probe brane

e Conformal symmetry partially broken

e Supersymmetry partially or completely broken



Motivation

Insights on the interplay between conformal symmetry;,
supersymmetry and integrability

Novel examples of integrable boundary states,
novel characterization at the discrete level

Exact results for novel types of observables such as one-point
functions and three-point functions -- via overlaps

Novel microscopic duality relations for correlation functions

Interesting connections to statistical physics: matrix product
states and quantum quenches — via overlaps

Positive tests of AdS/CFT dictionary for set-ups with supersymmetry
partially or completely broken

Possible cross-fertilization with the boundary conformal bootstrap program.
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Plan of the talk

Quantum Quenches and overlaps

Overlaps and AdS/dCFT

Integrable boundary states in AdS/dCFT
Exact results for overlaps

Duality relations for overlaps

Future directions



Overlaps and Quantum Quenches

Set out quantum system in initial state |¥)
which is not an eigenstate of its Hamiltonian Hy

Study time development of local observable

(O)) = <\IjoyeiH0tOe_i%0t’\Po>
— §:<\Ifo|ll><11|(9‘V><V‘\I}O>€—'IZ(EV_Eu)t7

u,v

Holu) = Eylu)

Assume Hy Hamiltonian of an integrable system

When and how can (¥g|u) be calculated in closed form?

Of relevance for e Time development after quantum quench
e Correlation functions in AdS/dCFT



AdS/CFT

N =4 SYM in 4D +— IIB strings on AdS5 x S°

Conformal operators <— String states

| |

Eigenstates of integrable super spin chain: |u)

AdS/dCFT

N =4 SYM in 4D > IIB strings on AdSs x S°
with co-dimension one defect Karch-Randall probe brane

W) (integrable) boundary state describing defect / probe brane

(Uy|u) is a one-point function

Similar idea: |WVg) ~ determinant operators/giant graviton



Integrable boundary states
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Eigenstates: Hylu) = Eg|u)
Integrable boundary state: (¥ylu) computable in closed form

Identified types of relevance for AdS/dCFT:

Matrix product states

|B) = |[MPS) = ZTT te, - ts)|S1...5L)

Valence Bond States

IVBS) = |K)®7, K=Y K, sls152)

51,582



The defect set-up of [MPS)

N =4 SYM

1 (:E()a Xy, 332)

U(N) for x3 — o

(@) # 0




Classical Fields (simplest case)

Assume only x, -dependence and x,>0, A% =0, U=

d2 cl
i = 05 [o5h 8],

Classical e.o.m.:

(x, is distance to defect)

Constable, Myers
& Tafjord ‘99

Solution: ¢ = kS <(ti)k><k O) , 1=1,2,3

cl el el
4 — 5_¢6_O

where t; i=1,2,3, constitute a k-dimensional irreducible repr.

of SU(2). (Nahm eqns. also fulfilled.)

Set—up 5 BPS (for appropriate choice b.c. for zero-modes, Gaiotto & Witten ‘08)



AdS/dCFT --- The string theory side

D3 | X X X X

D5 X X X X X X

N -k D3 N D3

Karch & Randall '01,

Geometry of D5 brane: AdS, x S?

Background gauge field: k units of magnetic flux on 52



String embedding

AdS, D5-brane

Tk
cotax = —

\ VA

AdSs-boundary

Nagasaki &
Yamaguchi ‘12,

D3-D5 probe brane system suggests a new double scaling limit

A
A%oo,k%oo,ﬁﬁnite (N — 00)

One can compare perturbative gauge theory to semi-classical string theory ( or sugra).

. . C.K,, Semenoff &
Similar idea works for the two D3-D7 set-ups Young ‘12,



One-point functions and MPS

. Cardy "84
(OR(z)) = P McAvity & Osborn ’95

Due to vevs scalar operators can have non-zero 1-pt fcts at tree-level

(Oa@)) = (Te(diy - din) +- ) |y spaots

Ona(z) ~ eigenstate of integrable SO(6) spin chain Mnahan&

Zarembo ‘02
TI‘(¢7;1 ¢i2 - ¢@L) ~ ‘Si18i2 s SiL>

Matrix Product State associated with the defect: deLeeuw, C.K.
& Zarembo ‘15,
IMPSy) = Ztr i i by i),
. Bethe eigenstate
Object to calculate: °
<MPSk |u>
Ck (u) =

(ulu)?



One-point functions and VBS

FOI' k’ — ]_: NO Vevs Gaiotto & Witten, ‘08
1 N —1
1y y 'y
. _ Y|z 2 =z
Quantum fields Au @i, Va g0z 2 o»
Y|z z z |
Boundary conditions 456 L1238
(Su TSI tric) x,y | Dirichlet | Neumann
PELSY z no BCs no BCs
1 1 i 1 Neumann
Propagators Dn(x,y) = 12 <‘x — y‘z + \53 — y\Q) , Kk = < —1 Dirichlet

B 0  no BCs.
r = (CEOamlawZa —513'3)

For complex scalars (X = &1 + 1Py, etc.)

2 ab 2 ab
. g0 gymO
(X1 (2) X" (y)) = leg (D1($>y) - D—l(axw) = 47T2\@;4_ y[?



Feynman diagrams

DRAST S
IV ey

Leading for large-N Subl-leading for large-N
~ (g¥mNV)° ~ W(Q%MN)G
C.K., Mdller,
<VBS ‘ 11> Zarembo 20

. Ch_q =
Object to calculate k=1 (uu)1/?

(VBS| = ((XX| 4+ (YY)®E/2 SU(2) sector

(VBS| = ((XX| + (YY |+ (ZZ]| + (U, Ty| — (U, )®L/2 SU(2|3) sector

. . . e . de Leeuw, Gombor, C.K.,
IVBS)’s also of importance as initial steps in proofs of Linardopoulos, Pozsgay 19

overlap formulas for [MPS)’s Gombor & Bajnok ‘20



. . . Ghoshal,
Integrable boundaries in integrable QFTs  zoiodchikov 03

e No particle production or annihilation
e Pure reflection, possibly change of internal quantum numbers

e Yang-Baxter relations fulfilled (order of reflection does not matter)

Boundary

< p

Wick rotation

\/

Pure reflection Entangled (p,-p) pairs
+BYB for reflection matrix +BYB for initial state

Initial state




Integrable spin chain boundary states prol Porseay
ernier

Heisenberg spin chain encodes conformal single trace operators built from
two complex fields X (vacuum, 1) and Y (excitation, |)

Eigenstates: [{u;} ) = |u), K excitations <I l I .,I/

1 pi
U; = —cot( )
2 2

L conserved charges, Qn, with eigenvalues (),

Qn ({pi}) = (=1)" Qn ({—pi})

Integrable initial state

Q2m+1|¥o) =0
(BYB observed to be fulfilled for all cases considered)



Integrability of [IMPS)

D3-D5 D3-D7 D3-D7
Supersymmetry 1/2 BPS None None
Brane geometry AdS,x S? AdS,x S? x S? AdS,x S*
Symmetry of vev’s SU(2) SU(2) x SU(2) SO(5)
Dim. of rep./ Flux k ki, ko d= (n+1)(ng—2)<n+3)
IMPS ) Integrable Non-integrable Integrable
Overlaps Exact formula derived — Exact formula derived




Overlap Formulas
Selection rule

(Vplu) #0 <= {u;} = {—w;,u;}  Parity invariance

de Leeuw, C.K.  de Leeuw, CK. de Leeuw, CK. & de Leeuw, Gombor, CK,,

Ingredlentsz & Zarembo ‘15 & Mori ‘16 Linardopoulos 18 Linardopoulos, Pozsgay ‘19
For |MPSk>:

' ' .. det(Gy)
e Superdeterminant of Gaudin matrix: 5 )

e Ratios of Baxter polynomiums (reduced):  Q(u) = [, (u* — u?)

k
. ° ° a:_
e “Transfer matrices”: Sums of ratios of Baxter polynomials: Za_i

E ‘
2

For |VBS):

e No sums involved Poszgay ‘18  Gombor ‘21



Gaudin matrix

Eigenstates: |u) = [{u; }5,)

7

i L g 4
Uk — 5 U — u; + = .
1= F 2 [] T ik p=1,.. . K
uk+% -

j#k kT T

(ulu) cdet G, Gg; = g—ij

For parity invariant states: block structure

|4 B| |A+B B| |A+B B | _
detG—|B A'_‘B—i—A A‘_| 0 A_B'—det(A+B)-det(A—B)

=det Gy -det G_

(Quantity entering overlap formulas

SDet G = det Gy _ D

detG_




One-point functions of D3-D5 set-up

Operators built from two scalar fields, X and Y

=L g () oo (1)

(uju)?
k-1
2 aL
T = Z 2 k> 2
+1 - 209—1 -\’ i _
i @) Q(B) i orersenc

Zarembo ‘16



The full scalar sector of the D3-D5 set-up

SO(6) spin chain O———0O——O)

(1 Q)2 @3
~ (MPSg |u) ik Q2(0)Q2(1) detG
C (u) = Yo oo, (* N@als) +
() (ulu)? el (2)\/Q1(0)Q1(§)Q3(0)Q3(§) detG

This is the complete answer at tree level



Higher loops & other sectors: Start with |VBS)

Poszgay ‘18

Q(0)
Q(3)

SO(6): |VBS) = (| XX)+ YY)+ |ZZ)+ | XX)+ |YY) +|ZZ))®L/2

SU(2): |VBS) = (|XX)+|YY))®E2 (O = Sdet G

C = <§> <(0>) ) _sdetc  O—O—0O

5(0
Q3 (2)

DN,

de Leeuw, Gombor, C.K.,
Linardopoulos, Pozsgay ‘19

Gombor 21

SU@I): [VBS) = (XX) + 1) - ~ @

Q1(0) C.K., Miiller,

C = . SdetG arembo 20
Q1 (1) Qa(0) e




All loops & all sectors by bootstrap
Making use of:

e Symmetries: PSU(2,2|4)
e Knowledge of the S-matrix from the spectral problem
e Consistency requirements (BYB, unitarity, crossing)

From the string theory perspective — fomatsu&
Wang, 20
Proof at the

e Assume integrability (factorization into two-particle overlaps) Cclassicallevel

Linardopoulos,

. . Buhl-Mortensen, Zarembo ‘21
e Input from one-loop perturbative calculation dereeuw, Ipsen,
Wilhelm ‘17
e Obtain the result in the SU(2) sub-sector
From the gauge theory (spin chain) perspective Gombor &

Bajnok 20 I & II
e Assume factorized from of overlaps for |[VBS)

e ODbtain the result for the entire theory



The leading order result for |VBS)

Bajnok &

PSU(Q, 2|4> : Q=== O-====- ® é R--=-=-=-- O-====-- ® Gombor ‘20

. Q1(0)Q3(0)Q4(0)Q5(0)Q7(0) S dot (O

¢ = Q2(0)Q2(2)Q4(%)Q6(0)Qs(%)

e How to compare to previous results 7

1
O O O

e What does the expression look like for other gradings 7

Beisert &

— The BeaUty Staudacher ‘04
1
Q-====- & O O O R-e==- @)
— The Beast

C:)
;
O
O
O



— 28

1011S

QQ-system
Many equivalent ways of writing the Bethe equations
# different choices of ()-funct

4 SYM,

For N =

T
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;
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Kazakov ‘18

|[VBS) of relevance for AdS/dCFT singled out

ic duality

tly under fermion

Ing covarian

by transform



Integrable Super Spin Chains (of type SU(M|N))

Cartan matrix M,p, Dynkin labels ¢,
a,b=1,....M + N —1=n = # nodes in Dynkin diagram

Q-functions: Q,(u) = Hj(:al(u — Ua,j)

Bethe equations:

zqa 1M b
Ug,j Ugq,5 — Up,k + ; :
b,k

ubk_ 9

Can also be expressed in terms of ()-functions

. . O u: .
Gaudin matrix: Ggjpr = (ﬁb;, of size ) | K, x> K,



Example: SU(2|1) super spin chain

Encodes conformal single trace operators built from fields
X (bosonic), ¥y,¥, (fermionic) in NV =4 SYM

Cartan matrix Dynkin label 1
O—

e ek
-1 0] 0 Qi,u;, K1 Q2,vj, Ko

— { graded

permutation

Baxter polynomials

Kl K2
Ql(u) — H(u _ ui), QQ (U) — H(U — Uj) (plus two trivial ones)
1=1 j=1

Vacuum: |¥1¥,...),  Excitations at level 1 and 2: Wy, X



Fermionic Duality: Ex: SU(2|1) ot Zaremmba 05
B — o 11 . [
S
Q

1, Ui, K1 Q2,05, Ky
Ql,Ui,Kl Q27Uj7K2 T T

Change of variables (from v; to v;)

K> roots v

b
Q () = QF (v) = Q2(v) - Qa(v)

kg :Kl —K2 — 1 roots @j

| _ Oy () N A

Q7 (vg) Q71 (Uk)
QT () Qy () (Qg(w) 3 QF (w) (Qp(w)\" _,
e Q7 (ur) Q¥ (u) (Qg(uk ) Qy (uk) <Qe+(wc )



A Web of Dualities: Ex: SU(1|2)
12]1 25 @Q-functions, 2 fixed

N\

Tsuboi ‘98

Qup = u”, Qa1 =1

21

6 = 3 x 2 versions of the BE’s (~ paths)

2|@

Standard choice: Blue path O—

o|@

Fermionic Duality O)——&) — X ——-

(Change of variables

in the Bethe equations) Q12|Q)Q1|1 o Q_ Nt
2L 1|0

Bosonic duality O—& — (O

Qﬁ@@;l@ - Qﬂ@@éﬁq) — Q(Dl(Z)QlQW)



Transformation formula: Ex: SU(2|1)

O— - - -&
Kl Kz Kl [?2

K, Ky even — I/(VQ = K1 — K5 — 1 odd, i.e. ©’s contain a single zero
Det GG still factorizes

Qf (u) — Q7 (u) = iK1 uQs(u) Qvg(u), with reduced Baxter polynomials

. C.K., Mdller,
Found numerically zarembo 20

N Q2(0)Q2(0)
D= K, Q1(%) - Analytical proof in progress

Notice:
e Holds semi-on-shell (the {u;, —u;}’s can be chosen at random)
e Covariance of overlap formula which involves Q2(0)D

e Factor K signals that a hws is mapped to a descendent

de Leeuw, Ipsen, C.K.,
Vardinghus, Wilhelm 17



Fermionic dualities in general

Allow one to move between any two Dynkin diagrams of a super Lie alge-
bra (of type GL(N|M))

®

Involve a fermionic node and its neighbours only O

Changes the nature of neighbouring nodes X) +— (O
and the connections VAR S

Dualized node non-momentum carrying —> Dynkin labels unchanged

Dualized node momentum carrying — Dynkin labels change

0 V+1 ¢ ---Q—
Vi — | =V or
0 VFl —®---




Most general case

Qi (5) Qe ()

D — D
Qa(0)Q4(0)

O & O O & O

° _

O

s o
O—8&—0 O——8&—0
S — ES — o —

(o) 1 1

Covariance of overlap formulas very constraining



Dualizing the overlap formula

Gombor &

PSU(2,2|4) overlap formula, alternating grading sajnok 20

1
®--===- O=====- & O Q-=-===- O=====- ®
o) . 0 (o) o L o
- 1 - 1 o)
1
R ----- &® O Q-=-===- R—R
_ _ 2} 0 o _
[2) [5) — 1 0 )
1
Q-====- ® O O O D= O
o o o (23 2
o1 1 1 1 o1

Agrees with field theory result in SO(6) sector —Ck. Ml

Zarembo 20

Covariance requirement fixes the overlap formula from SO(6) result



Bosonic dualities in general

e Involve a bosonic node and its neighbours only

—0—=~0

[ m r

e Do not change the Dynkin diagram or the Dynkin labels

e Only involves ()-functions of the dualized node

P ()Q (/2)
Qm (3) Qm

e Overlaps in the scalar SO(6) sector invariant (up to pre-factor)




Integrability of |MPS)

D3-D5 D3-D7 D3-D7
Supersymmetry 1/2 BPS None None
Brane geometry AdS,x S? AdS,x S? x S2 AdS,x S*
Symmetry of vev’s SU(2) SU(2) x SU(2) SO(5)
Dim. of rep./ Flux k kv, ko d = And2)(nt3)
IMPS) Integrable Non-integrable Integrable
asymptotically at tree level
Overlaps Exact formula derived — Exact formula derived




Solution SO(5) symmetric D3-D7 brane case. Tree level

de Leeuw, C.K & de Leeuw, Gombor C.K &
Linardopoulos,’18. Linardopoulos, Pozsgay '19.

Argument against higher loop integrability in g;r::f r,f‘o'

Gimenez-Grau,

Perturbative program set up in:  ck volke
Wilhelm 19



Match to next to leading order in d.s.l. for chiral primary of length L

D3-D7 set-up with SO(5) symmetry (non-supersymmetric and integrable)

Tr Z~ A L(L A’ .

< r > — 1_|_ ( +3) ‘|‘O Gimenez-Grau,

(Tr Z5) |4 oo 4m2n? (L —1) 4m2n? i
Wilhelm, ‘19

D3-D7 set-up with SO(3)x SO(3) symmetry (non-susy and non-integrable)

<TrZL> 1 A 1 [

(Tr Z5)[¢pee A2 (ki + k3) (L — 1) sin(L + 2)¢ [k2 + k2]
+ 4Lkiks [(k1)* + (k2)* + (k1k2)?(L + 1)] cos L¢
+ [(k2)? = (k1)?] [4(k1k2)* (L2 4+ L — 1) + ((k1)* + (k2)*)(L* + 3L — 2)] sin ch]

A ’ ky |
+ O ’ — L Gimenez-Grau, C.K,
((4772(/1@% + k%)) ) ¢ = arctan (k2 ) Volk & Wilhelm, ‘18




Other integrable boundary states in AdS/CFT

Giant gravitons

Overlaps: ~ 3-point fcts Bissi, C.K,
Young Zoubos ‘11

Two determinant operators and one single trace

Jiang, Komatsu
Vescovi, ‘19

N =4 SYM: Full non-perturbative expression by TBA (in principle)

] Yang, Ji Hirano, C.K,
ABJM: Leading order result "= " rano

Komatsu, Wu 21  Young ‘12



Future directions

Other integrable defect set-ups (ABJM, Coulomb branch, co-
dimension-2 defects....)

Constraining overlap formulas by fermionic duality

Classification of integrable boundary states in N=4 SYM (VBS,
MPS,...)

Proof of duality transformation formulas
Proof of factorized overlap formulas for super spin chains
Higher loop integrability for D3-D77?

Derive the TBA for overlaps (Finite size effects).



Thank you



