# Defects and D-branes as integrable boundary states

Charlotte Kristjansen Niels Bohr Institute

#### Based on:

- M. de Leeuw, T. Gombor, C.K., G. Linardopoulos & B. Pozsgay ArXiv:1912.09338[hep-th], JHEP 01, (2020) 176
- C.K., D. Müller & K. Zarembo, arXiv:2106.08116[hep-th],JHEP 09 (2021) 004
- Earlier work
- Work in progress

Strings, Fields and Branes NORDITA, Stockholm November 23<sup>rd</sup>, 2021

# AdS/CFT

 $\mathcal{N} = 4 \text{ SYM in 4D} \longleftrightarrow \text{IIB strings on } AdS_5 \times S^5$ 

- Conformal symmetry
- Supersymmetry
- Planar integrability

# AdS/dCFT

 $\mathcal{N}=4$  SYM in 4D  $\longleftrightarrow$  IIB strings on  $AdS_5\times S^5$  with 3D domain wall with probe brane

- Conformal symmetry partially broken
- Supersymmetry partially or completely broken

#### Motivation

- Insights on the interplay between conformal symmetry, supersymmetry and integrability
- Novel examples of integrable boundary states, novel characterization at the discrete level
- Exact results for novel types of observables such as one-point functions and three-point functions -- via overlaps
- Novel microscopic duality relations for correlation functions
- Interesting connections to statistical physics: matrix product states and quantum quenches via overlaps
- Positive tests of AdS/CFT dictionary for set-ups with supersymmetry partially or completely broken
- Possible cross-fertilization with the boundary conformal bootstrap program.

#### Plan of the talk

- I. Quantum Quenches and overlaps
- II. Overlaps and AdS/dCFT
- III. Integrable boundary states in AdS/dCFT
- IV. Exact results for overlaps
- V. Duality relations for overlaps
- IV. Future directions

## Overlaps and Quantum Quenches

Set out quantum system in initial state  $|\Psi_0\rangle$ which is not an eigenstate of its Hamiltonian  $\mathcal{H}_0$ 

Study time development of local observable

$$\langle \mathcal{O}(t) \rangle = \langle \Psi_0 | e^{i\mathcal{H}_0 t} \mathcal{O} e^{-i\mathcal{H}_0 t} | \Psi_0 \rangle$$

$$= \sum_{\mathbf{u}, \mathbf{v}} \langle \Psi_0 | \mathbf{u} \rangle \langle \mathbf{u} | \mathcal{O} | \mathbf{v} \rangle \langle \mathbf{v} | \Psi_0 \rangle e^{-i(E_{\mathbf{v}} - E_{\mathbf{u}})t},$$

$$\mathcal{H}_0 | \mathbf{u} \rangle = E_{\mathbf{u}} | \mathbf{u} \rangle$$



Assume  $\mathcal{H}_0$  Hamiltonian of an integrable system

When and how can  $\langle \Psi_0 | \mathbf{u} \rangle$  be calculated in closed form?

- Of relevance for Time development after quantum quench
  - Correlation functions in AdS/dCFT

# AdS/CFT

 $\mathcal{N} = 4 \text{ SYM in } 4D \longleftrightarrow \text{ IIB strings on } AdS_5 \times S^5$ 

Conformal operators  $\longleftrightarrow$  String states

Eigenstates of integrable super spin chain:  $|\mathbf{u}\rangle$  Minahan. Zarembo '02

# AdS/dCFT

 $\mathcal{N} = 4 \text{ SYM in 4D} \longleftrightarrow$  with co-dimension one defect

IIB strings on  $AdS_5 \times S^5$ Karch-Randall probe brane

 $|\Psi_0\rangle$  (integrable) boundary state describing defect / probe brane

 $\langle \Psi_0 | \mathbf{u} \rangle$  is a one-point function

De Leeuw, C.K. Zarembo '15

Similar idea:  $|\Psi_0\rangle \sim \text{determinant operators/giant graviton}$ 

Jiang, Komatsu Vescovi '19

# Integrable boundary states

Eigenstates:  $H_0|\mathbf{u}\rangle = E_0|\mathbf{u}\rangle$ 

Integrable boundary state:  $\langle \Psi_0 | \mathbf{u} \rangle$  computable in closed form

Identified types of relevance for AdS/dCFT:

Matrix product states

$$|B\rangle = |\text{MPS}\rangle = \sum_{\{s_i\}} \text{Tr}(t_{s_1} \dots t_{s_L}) |s_1 \dots s_L\rangle$$

Valence Bond States

$$|VBS\rangle = |K\rangle^{\otimes \frac{L}{2}}, \qquad K = \sum_{s_1, s_2} K_{s_1, s_2} |s_1 s_2\rangle$$

# The defect set-up of $|MPS\rangle$

$$\mathcal{N} = 4$$
 SYM

$$U(N-k)$$

$$\langle \phi \rangle = 0$$

$$(x_0, x_1, x_2)$$

$$U(N)$$
 for  $x_3 \to \infty$ 

$$\langle \phi \rangle \neq 0$$

 $x_3$ 

# Classical Fields (simplest case)

Assume only  $x_3$  -dependence and  $x_3 > 0$ ,  $A_{\mu}^{cl} = 0$ ,  $\Psi_A^{cl} = 0$ 

$$\frac{d^2\phi_i^{\rm cl}}{dx_3^2} = \left[\phi_j^{\rm cl}, \left[\phi_j^{\rm cl}, \phi_i^{\rm cl}\right]\right].$$

$$\phi_i^{\text{cl}} = \frac{1}{x_3} \begin{pmatrix} (t_i)_{k \times k} & 0 \\ 0 & 0 \end{pmatrix}, i = 1, 2, 3$$

Constable, Myers & Tafjord '99

$$\phi_4^{\rm cl} = \phi_5^{\rm cl} = \phi_6^{\rm cl} = 0$$

where  $t_{i, i=1,2,3}$ , constitute a k-dimensional irreducible repr. of SU(2). (Nahm eqns. also fulfilled.)

# AdS/dCFT --- The string theory side

|    | $x^0$ | $x^1$ | $x^2$ | $x^3$ | $x^4$ | $x^5$ | $x^6$ | $x^7$ | $x^8$ | $x^9$ |
|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| D3 | ×     | ×     | ×     | ×     |       |       |       |       |       |       |
| D5 | ×     | ×     | ×     |       | ×     | ×     | ×     |       |       |       |



Geometry of D5 brane:  $AdS_4 \times S^2$ 

Karch & Randall '01,

Background gauge field: k units of magnetic flux on  $S^2$ 

#### String embedding



D3-D5 probe brane system suggests a new double scaling limit Nagasaki & Yamaguchi '12,

$$\lambda \to \infty, \ k \to \infty, \ \frac{\lambda}{k^2} \text{ finite} \qquad (N \to \infty)$$

One can compare perturbative gauge theory to semi-classical string theory (or sugra).

Similar idea works for the two D3-D7 set-ups

C.K., Semenoff & Young '12,

#### One-point functions and MPS

$$\langle \mathcal{O}_{\Delta}^{\text{bulk}}(x) \rangle = \frac{C}{|x_3|^{\Delta}}$$

Cardy '84

McAvity & Osborn '95

Due to vevs scalar operators can have non-zero 1-pt fcts at tree-level

$$\langle \mathcal{O}_{\Delta}(x) \rangle = (\operatorname{Tr}(\phi_{i_1} \dots \phi_{i_{\Delta}}) + \dots) |_{\phi_i \to \phi_i^{\text{cl}} = \frac{t_i}{x_3}}$$

Minahan &  $\mathcal{O}_{\Delta}(x) \sim \text{eigenstate of integrable } SO(6) \text{ spin chain}$ Zarembo'02

$$\operatorname{Tr}(\phi_{i_1}\phi_{i_2}\dots\phi_{i_L})\sim|s_{i_1}s_{i_2}\dots s_{i_L}\rangle$$

Matrix Product State associated with the defect:

deLeeuw, C.K. & Zarembo '15,

Bethe eigenstate

$$|\mathrm{MPS_k}\rangle = \sum_{\vec{i}} \mathrm{tr}[t_{i_i} \dots t_{i_L}] |\phi_{i_1} \dots \phi_{i_L}\rangle,$$

Object to calculate:

 $C_k\left(\mathbf{u}\right) = \frac{\langle \text{MPS}_k | \mathbf{u} \rangle}{\langle \mathbf{u} | \mathbf{u} \rangle^{\frac{1}{2}}}$ 

$$C_{k}\left(\mathbf{u}
ight)=rac{\sqrt{\mathbf{u}\left|\mathbf{u}
ight>^{rac{1}{2}}}}{\left\langle\mathbf{u}\left|\mathbf{u}
ight
angle^{rac{1}{2}}}$$

#### One-point functions and VBS

For k = 1: No vevs

Gaiotto & Witten, '08

Quantum fields 
$$A_{\mu}, \Phi_{i}, \Psi_{lpha} = egin{bmatrix} x & y & y & y \ \hline y & z & z & z \ y & z & z & z \ y & z & z & z \end{bmatrix}$$

Boundary conditions (supersymmetric) 
$$\begin{array}{c|cccc} & \Phi_{4,5,6} & \Phi_{1,2,3} \\ \hline x,y & \text{Dirichlet} & \text{Neumann} \\ z & \text{no BCs} & \text{no BCs} \end{array}$$

Propagators 
$$D_{\kappa}(x,y) = \frac{1}{4\pi^2} \left( \frac{1}{|x-y|^2} + \frac{\kappa}{|\bar{x}-y|^2} \right), \qquad \kappa = \begin{cases} 1 & \text{Neumann} \\ -1 & \text{Dirichlet} \\ 0 & \text{no BCs.} \end{cases}$$
 
$$\bar{x} = (x_0, x_1, x_2, -x_3)$$

For complex scalars  $(X = \Phi_1 + i\Phi_4, \text{ etc.})$ 

$$\langle X^{1a}(x)X^{b1}(y)\rangle = \frac{g_{YM}^2\delta^{ab}}{2} \left(D_1(x,y) - D_{-1}(x,y)\right) = \frac{g_{YM}^2\delta^{ab}}{4\pi^2|\bar{x} - y|^2}$$

#### Feynman diagrams



Leading for large-N  $\sim (g_{\rm YM}^2 N)^6$ 



Sub-leading for large-N  $\sim \frac{1}{N^2} (g_{\rm YM}^2 N)^6$ 

Object to calculate 
$$C_{k=1} = \frac{\langle VBS | \mathbf{u} \rangle}{\langle \mathbf{u} | \mathbf{u} \rangle^{1/2}}$$

$$\langle VBS| = (\langle XX| + \langle YY|)^{\otimes L/2}, \quad SU(2) \text{ sector}$$

$$\langle VBS | = (\langle XX | + \langle YY | + \langle ZZ | + \langle \Psi_1 \Psi_2 | - \langle \Psi_2 \Psi_1 |)^{\otimes L/2}, \quad SU(2|3) \text{ sector}$$

|VBS\'s also of importance as initial steps in proofs of overlap formulas for |MPS\'s

de Leeuw, Gombor, C.K., Linardopoulos, Pozsgay '19 Gombor & Bajnok '20

#### Integrable boundaries in integrable QFTs

- No particle production or annihilation
- Pure reflection, possibly change of internal quantum numbers
- Yang-Baxter relations fulfilled (order of reflection does not matter)



Pure reflection +BYB for reflection matrix

Entangled (p,-p) pairs +BYB for initial state

Heisenberg spin chain encodes conformal single trace operators built from two complex fields X (vacuum,  $\uparrow$ ) and Y (excitation,  $\downarrow$ )

$$H = \sum_{n=1}^{L} (1 - P_{n,n+1})$$

Eigenstates:  $|\{u_i\}_{i=1}^K\rangle \equiv |\mathbf{u}\rangle$ , K excitations

$$u_i = \frac{1}{2} \cot \left( \frac{p_i}{2} \right)$$



L conserved charges,  $\hat{Q}_n$ , with eigenvalues  $Q_n$ 

$$Q_n(\{p_i\}) = (-1)^n Q_n(\{-p_i\})$$

Integrable initial state

$$Q_{2m+1}|\Psi_0\rangle = 0$$

(BYB observed to be fulfilled for all cases considered)

# Integrability of $|MPS\rangle$

|                    | D3-D5                             | D3-D7                         | D3-D7                                |  |
|--------------------|-----------------------------------|-------------------------------|--------------------------------------|--|
| Supersymmetry      | $1/2~\mathrm{BPS}$                | None                          | None                                 |  |
| Brane geometry     | $\mathrm{AdS}_4	imes\mathrm{S}^2$ | $AdS_4 \times S^2 \times S^2$ | $\mathrm{AdS_4} \times \mathrm{S}^4$ |  |
| Symmetry of vev's  | SU(2)                             | $SU(2) \times SU(2)$          | SO(5)                                |  |
| Dim. of rep./ Flux | k                                 | $k_1, k_2$                    | $d = \frac{(n+1)(n+2)(n+3)}{6}$      |  |
| $ { m MPS} angle$  | Integrable                        | Non-integrable                | Integrable                           |  |
| Overlaps           | Exact formula derived             |                               | Exact formula derived                |  |

# Overlap Formulas

#### Selection rule

$$\langle \Psi_0 | \mathbf{u} \rangle \neq \mathbf{0} \iff \{\mathbf{u_j}\} = \{-\mathbf{u_i}, \mathbf{u_i}\}$$
 Parity invariance

Ingredients:

de Leeuw, C.K.

& Zarembo '15

de Leeuw, C.K.

& Mori '16

de Leeuw, C.K. & de Leeuw, C.K. & de Leeuw, Gombor, C.K.,

Linardopoulos '18

Linardopoulos, Pozsgay '19

#### For $|MPS_k\rangle$ :

- Superdeterminant of Gaudin matrix:  $\frac{\det(G_+)}{\det(G_-)}$
- Ratios of Baxter polynomiums (reduced):  $Q(u) = \prod_i (u^2 u_i^2)$
- "Transfer matrices": Sums of ratios of Baxter polynomials:  $\sum_{a=-\frac{k}{2}}^{a=\frac{\kappa}{2}}$

#### For $|VBS\rangle$ :

• No sums involved Poszgay '18 Gombor '21

# Gaudin matrix

Eigenstates: 
$$|\mathbf{u}\rangle = |\{u_i\}_{i=1}^K\rangle$$

$$1 = \left(\frac{u_k - \frac{i}{2}}{u_k + \frac{i}{2}}\right)^L \prod_{j \neq k}^K \frac{u_k - u_j + \frac{i}{2}}{u_k - u_j - \frac{i}{2}} = e^{i\chi_k}, \qquad k = 1, \dots, K$$

$$\langle \mathbf{u} | \mathbf{u} \rangle \propto \det G, \qquad G_{kj} = \frac{\partial \chi_k}{\partial u_j}$$

For parity invariant states: block structure

$$\det G = \begin{vmatrix} A & B \\ B & A \end{vmatrix} = \begin{vmatrix} A+B & B \\ B+A & A \end{vmatrix} = \begin{vmatrix} A+B & B \\ 0 & A-B \end{vmatrix} = \det(A+B) \cdot \det(A-B)$$
$$= \det G_{+} \cdot \det G_{-}$$

Quantity entering overlap formulas

$$SDet G = \frac{\det G_+}{\det G_-} \equiv \mathbb{D}$$

## One-point functions of D3-D5 set-up

Operators built from two scalar fields, X and Y

$$C_{k}\left(\mathbf{u}\right) = \frac{\left\langle \mathrm{MPS}_{k} \left| \mathbf{u} \right\rangle \right.}{\left\langle \mathbf{u} \left| \mathbf{u} \right\rangle^{\frac{1}{2}}} = \mathbb{T}_{k} \cdot Q\left(\frac{ik}{2}\right) \sqrt{Q\left(0\right)Q\left(\frac{i}{2}\right) \frac{\det G_{+}}{\det G_{-}}}$$

$$\mathbb{T}_{k} = \sum_{a=-\frac{k-1}{2}}^{\frac{k-1}{2}} \frac{a^{L}}{Q\left(\frac{2a+1}{2}i\right)Q\left(\frac{2a-1}{2}i\right)}, \quad k \ge 2$$

Buhl-Mortensen, de Leeuw, C.K. & Zarembo '16

# The full scalar sector of the D3-D5 set-up

$$SO(6)$$
 spin chain

$$C_k\left(\mathbf{u}\right) = \frac{\langle \mathrm{MPS}_k | \mathbf{u} \rangle}{\langle \mathbf{u} | \mathbf{u} \rangle^{\frac{1}{2}}} = \mathbb{T}_k \cdot Q_2\left(\frac{ik}{2}\right) \sqrt{\frac{Q_2(0)Q_2(\frac{i}{2})}{Q_1(0)Q_1(\frac{i}{2})Q_3(0)Q_3(\frac{i}{2})}} \cdot \sqrt{\frac{\det G_+}{\det G_-}}$$

$$\mathbb{T}_k = \sum_{a=-\frac{k-1}{2}}^{\frac{k-1}{2}} a^L \frac{Q_1(ia)Q_3(ia)}{Q_2(\frac{2a+1}{2}i)Q_2(\frac{2a-1}{2}i)}, \quad k \ge 2$$

This is the complete answer at tree level

# Higher loops & other sectors: Start with |VBS|

Poszgay '18

$$SU(2): |VBS\rangle = (|XX\rangle + |YY\rangle)^{\otimes L/2}, \quad C = \frac{Q(0)}{Q(\frac{i}{2})}S \det G$$

$$SO(6)$$
:  $|VBS\rangle = (|XX\rangle + |YY\rangle + |ZZ\rangle + |\bar{X}\bar{X}\rangle + |\bar{Y}\bar{Y}\rangle + |\bar{Z}\bar{Z}\rangle)^{\otimes L/2}$ 

$$C = \frac{Q_1(0)Q_2(0)Q_3(0)}{Q_1(\frac{i}{2})Q_2(\frac{i}{2})Q_3(\frac{i}{2})}S\det G$$



de Leeuw, Gombor, C.K., Linardopoulos, Pozsgay '19

Gombor '21

$$SU(2|1): |VBS\rangle = (|XX\rangle + |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)^{\otimes L/2}$$



$$C = \frac{Q_1(0)}{Q_1\left(\frac{i}{2}\right)Q_2(0)}S\det G$$

C.K., Müller, Zarembo '20

# All loops & all sectors by bootstrap

Making use of:

- Symmetries: PSU(2,2|4)
- Knowledge of the S-matrix from the spectral problem
- Consistency requirements (BYB, unitarity, crossing)

From the string theory perspective Komatsu & Wang, '20

- Assume integrability (factorization into two-particle overlaps)
- Input from one-loop perturbative calculation Buhl-Mortensen, de Leeuw, Ipsen,
- Obtain the result in the SU(2) sub-sector

From the gauge theory (spin chain) perspective

- Assume factorized from of overlaps for |VBS>
- Obtain the result for the entire theory

Proof at the classical level:
Linardopoulos,
Zarembo '21

Gombor & Bajnok '20 I & II

Wilhelm '17

# The leading order result for |VBS|

$$C = \frac{Q_1(0)Q_3(0)Q_4(0)Q_5(0)Q_7(0)}{Q_2(0)Q_2(\frac{i}{2})Q_4(\frac{i}{2})Q_6(0)Q_6(\frac{i}{2})}S \det G$$

• How to compare to previous results?

- What does the expression look like for other gradings?
  - The Beauty

Beisert & Staudacher '04

- The Beast

#### QQ-system

Many equivalent ways of writing the Bethe equations

For  $\mathcal{N}=4$  SYM, # different choices of Q-functions =  $2^8$ 

#### Connected via dualities

- Fermionic (Change of Dynkin diagram)
- Bosonic



|VBS| of relevance for AdS/dCFT singled out by transforming covariantly under fermionic duality

# Integrable Super Spin Chains (of type SU(M|N))

Cartan matrix  $M_{ab}$ , Dynkin labels  $q_a$ 

$$a, b = 1, \dots, M + N - 1 = n = \# \text{ nodes in Dynkin diagram}$$

Q-functions: 
$$Q_a(u) = \prod_{j=1}^{K_a} (u - u_{a,j})$$

Bethe equations:

$$(-1)^{M_{aa}+1} = \left(\frac{u_{a,j} - \frac{iq_a}{2}}{u_{a,j} + \frac{iq_a}{2}}\right)^L \prod_{b,k} \frac{u_{a,j} - u_{b,k} + \frac{iM_{ab}}{2}}{u_{a,j} - u_{b,k} - \frac{iM_{ab}}{2}} \equiv e^{i\chi_{a,j}}$$

Can also be expressed in terms of Q-functions

Gaudin matrix: 
$$G_{aj,bk} = \frac{\partial \chi_{aj}}{\partial u_{bk}}$$
, of size  $\sum_a K_a \times \sum_a K_a$ 

# Example: SU(2|1) super spin chain

Encodes conformal single trace operators built from fields X (bosonic),  $\Psi_1, \Psi_2$  (fermionic) in  $\mathcal{N} = 4$  SYM

$$M = \begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix}, \quad q = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{array}{ccc}
1 \\
\bigcirc & \otimes \\
Q_1, u_i, K_1 & Q_2, v_i, K_2
\end{array}$$

$$H = \sum_{n=1}^{L} (1 - \prod_{n,n+1})$$
 graded permutation

Baxter polynomials

$$Q_1(u) = \prod_{i=1}^{K_1} (u - u_i), \qquad Q_2(u) = \prod_{j=1}^{K_2} (v - v_j)$$
 (plus two trivial ones)

Vacuum:  $|\Psi_1\Psi_1...\rangle$ , Excitations at level 1 and 2:  $\Psi_2$ , X

Fermionic Duality: Ex: 
$$SU(2|1)$$

Beisert, Kazakov, , Sakai, Zarembo '05

$$\bigcirc \longrightarrow \bigotimes M = \begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix}, q = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \bigotimes - - - \bigotimes \widetilde{M} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \widetilde{q} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$Q_1, u_i, K_1 \ Q_2, v_j, K_2$$

Change of variables (from  $v_j$  to  $\tilde{v}_j$ )

$$K_2 \text{ roots } v_j$$

$$\downarrow$$

$$Q_1^-(v) - Q_1^+(v) = Q_2(v) \cdot \widetilde{Q}_2(v)$$

$$\widetilde{K}_2 = K_1 - K_2 - 1 \text{ roots } \widetilde{v}_j$$

$$1 = \frac{Q_1^-(v_k)}{Q_1^+(v_k)} \longrightarrow \frac{Q_1^+(\tilde{v}_k)}{Q_1^-(\tilde{v}_k)} = 1$$

$$-1 = \frac{Q_1^{++}(u_k)}{Q_1^{--}(u_k)} \cdot \frac{Q_2^{-}(u_k)}{Q_2^{+}(u_k)} \left(\frac{Q_{\theta}^{-}(u_k)}{Q_{\theta}^{+}(u_k)}\right)^L \longrightarrow \frac{\widetilde{Q}_2^{+}(u_k)}{\widetilde{Q}_2^{-}(u_k)} \left(\frac{Q_{\theta}^{-}(u_k)}{Q_{\theta}^{+}(u_k)}\right)^L = 1$$



Tsuboi '98



 $2^3$  Q-functions, 2 fixed

$$Q_{\emptyset|\emptyset} = u^L, \ Q_{12|1} = 1$$

 $6 = 3 \times 2$  versions of the BE's ( $\sim$  paths)

Standard choice: Blue path  $\bigcirc$ — $\bigotimes$ 

Bosonic duality

$$\bigcirc$$
  $\longrightarrow$   $\otimes$   $\otimes$ 

$$Q_{12|\emptyset}Q_{1|1} = Q_{1|\emptyset}^{-} - Q_{1|\emptyset}^{+}$$

$$\bigcirc --- \otimes \longrightarrow \bigcirc --- \otimes$$

$$Q_{1|\emptyset}^+ Q_{2|\emptyset}^- - Q_{1|\emptyset}^- Q_{2|\emptyset}^+ = Q_{\emptyset|\emptyset} Q_{12|\emptyset}$$

# Transformation formula: Ex: SU(2|1)

$$\bigcirc --- \otimes \\ K_1 \quad K_2 \qquad \qquad \otimes --- \otimes \\ K_1 \quad \widetilde{K}_2$$

 $K_1, K_2$  even  $\Longrightarrow \widetilde{K_2} = K_1 - K_2 - 1$  odd, i.e.  $\widetilde{v}$ 's contain a single zero Det  $\widetilde{G}$  still factorizes

$$Q_1^+(u) - Q_1^-(u) = iK_1 u Q_2(u) \widetilde{Q}_2(u)$$
, with reduced Baxter polynomials

$$\widetilde{\mathbb{D}} = K_1 \frac{\widetilde{Q}_2(0)Q_2(0)}{Q_1(\frac{i}{2})} \, \mathbb{D}$$
 Foundaries

Found numerically Zarembo '20

Analytical proof in progress

#### Notice:

- Holds semi-on-shell (the  $\{u_i, -u_i\}$ 's can be chosen at random)
- Covariance of overlap formula which involves  $Q_2(0)\mathbb{D}$
- Factor  $K_1$  signals that a hws is mapped to a descendent

# Fermionic dualities in general

- Allow one to move between any two Dynkin diagrams of a super Lie algebra (of type GL(N|M))
- Involve a fermionic node and its neighbours only



• Changes the nature of neighbouring nodes  $\bigotimes \longleftrightarrow \bigcirc$  and the connections  $\longrightarrow \longleftarrow ---$ 

- Dualized node non-momentum carrying  $\implies$  Dynkin labels unchanged
- ullet Dualized node momentum carrying  $\Longrightarrow$  Dynkin labels change

$$\begin{bmatrix} 0 \\ V \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} V \pm 1 \\ -V \\ V \mp 1 \end{bmatrix} \quad \text{for} \quad \boxed{---} \otimes \boxed{---}$$

# Most general case

$$\mathbb{D} \propto \frac{Q_{a-1}\left(\frac{i}{2}\right)Q_{a+1}\left(\frac{i}{2}\right)}{\widetilde{Q}_a(0)Q_a(0)}\,\widetilde{\mathbb{D}}$$



Covariance of overlap formulas very constraining

# Dualizing the overlap formula

PSU(2,2|4) overlap formula, alternating grading Bajnok '20



Agrees with field theory result in SO(6) sector

Covariance requirement fixes the overlap formula from SO(6) result

C.K., Müller, Zarembo '20

# Bosonic dualities in general

• Involve a bosonic node and its neighbours only



• Do not change the Dynkin diagram or the Dynkin labels

• Only involves Q-functions of the dualized node

$$\widetilde{\mathbb{D}} \sim \frac{Q_m(0)\widetilde{Q}_m(i/2)}{Q_m(\frac{i}{2})\widetilde{Q}_m(0)} \mathbb{D}$$

• Overlaps in the scalar SO(6) sector invariant (up to pre-factor)

# Integrability of $|MPS\rangle$

|                    | D3-D5                     | D3-D7                         | D3-D7                             |  |
|--------------------|---------------------------|-------------------------------|-----------------------------------|--|
| Supersymmetry      | 1/2 BPS                   | None                          | None                              |  |
| Brane geometry     | $AdS_4 \times S^2$        | $AdS_4 \times S^2 \times S^2$ | $\mathrm{AdS}_4	imes\mathrm{S}^4$ |  |
| Symmetry of vev's  | SU(2)                     | $SU(2) \times SU(2)$          | SO(5)                             |  |
| Dim. of rep./ Flux | k                         | $k_1, k_2$                    | $d = \frac{(n+1)(n+2)(n+3)}{6}$   |  |
| $ { m MPS} angle$  | Integrable asymptotically | Non-integrable                | Integrable<br>at tree level       |  |
| Overlaps           | Exact formula derived     |                               | Exact formula derived             |  |

#### Solution SO(5) symmetric D3-D7 brane case. Tree level

$$\frac{\langle \mathbf{u} | \mathrm{MPS}_n \rangle}{\langle \mathbf{u} | \mathbf{u} \rangle^{1/2}} = \Lambda_n \cdot \sqrt{\frac{Q_0(0) Q_0(\frac{1}{2})}{\bar{Q}_+(0) \bar{Q}_+(\frac{1}{2}) \bar{Q}_-(0) \bar{Q}_-(\frac{1}{2})}} \cdot \sqrt{\frac{\det G_+}{\det G_-}}$$

$$\Lambda_n = 2^L \sum_{q=-\frac{n}{2}}^{\frac{n}{2}} q^L \left[ \sum_{p=-\frac{n}{2}}^{\frac{q}{2}} \frac{Q_0(p-\frac{1}{2})}{Q_0(q-\frac{1}{2})} \frac{Q_-(q)Q_-(\frac{n}{2}+1)}{Q_-(p)Q_-(p-1)} \right] \left[ \sum_{r=q}^{\frac{n}{2}} \frac{Q_0(r+\frac{1}{2})}{Q_0(q+\frac{1}{2})} \frac{Q_+(q)Q_+(\frac{n}{2}+1)}{Q_+(r)Q_+(r+1)} \right].$$

de Leeuw, C.K & de Leeuw, Gombor C.K & Linardopoulos, Pozsgay '19. Linardopoulos,'18.

Argument against higher loop integrability in

Gombor & Bajnok, '20.

Perturbative program set up in: C.K, Volk &

Gimenez-Grau. Wilhelm '19

Match to next to leading order in d.s.l. for chiral primary of length L

D3-D7 set-up with SO(5) symmetry (non-supersymmetric and integrable)

$$\frac{\langle {\rm Tr}\, Z^L \rangle}{\langle {\rm Tr}\, Z^L \rangle|_{\rm tree}} = 1 + \frac{\lambda}{4\pi^2 n^2} \frac{L(L+3)}{(L-1)} + \mathcal{O}\left(\left(\frac{\lambda}{4\pi^2 n^2}\right)^2\right) \qquad \qquad \begin{array}{c} \text{Gimenez-Grau,} \\ \text{C.K, Volk \& Wilhelm, '19} \end{array}$$

D3-D7 set-up with  $SO(3) \times SO(3)$  symmetry (non-susy and non-integrable)

$$\begin{split} \frac{\langle \operatorname{Tr} Z^L \rangle}{\langle \operatorname{Tr} Z^L \rangle|_{\operatorname{tree}}} &= 1 + \frac{\lambda}{4\pi^2 (k_1^2 + k_2^2)} \frac{1}{(L-1) \sin(L+2) \phi \left[k_1^2 + k_2^2\right]^3} \Big[ \\ &\quad + 4L k_1 k_2 \left[ (k_1)^4 + (k_2)^4 + (k_1 k_2)^2 (L+1) \right] \cos L \phi \\ &\quad + \left[ (k_2)^2 - (k_1)^2 \right] \left[ 4(k_1 k_2)^2 (L^2 + L - 1) + ((k_1)^4 + (k_2)^4) (L^2 + 3L - 2) \right] \sin L \phi \Big] \\ &\quad + \mathcal{O} \left( \left( \frac{\lambda}{4\pi^2 (k_1^2 + k_2^2)} \right)^2 \right), \qquad \phi = \arctan \left( \frac{k_1}{k_2} \right) \end{split}$$
 Gimenez-Grau, C.K, Volk & Wilhelm, '18

# Other integrable boundary states in AdS/CFT

Giant gravitons



Overlaps:  $\sim$  3-point fcts

Bissi, C.K, Young Zoubos '11

Two determinant operators and one single trace

Jiang, Komatsu Vescovi, '19

 $\mathcal{N}=4$  SYM: Full non-perturbative expression by TBA (in principle)

ABJM: Leading order result Yang, Jiang, Hirano, C.K, Komatsu, Wu '21 Young '12

#### **Future directions**

- Other integrable defect set-ups (ABJM, Coulomb branch, co-dimension-2 defects....)
- Constraining overlap formulas by fermionic duality
- Classification of integrable boundary states in N=4 SYM (VBS, MPS,...)
- Proof of duality transformation formulas
- Proof of factorized overlap formulas for super spin chains
- Higher loop integrability for D3-D7?
- Derive the TBA for overlaps (Finite size effects).

# Thank you