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T Duality
relates two different string theories A and B, compactified on a large 

and small volume, respectively:

theory A theory B

R R̃ = α′ /R

T
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T Duality: Target Space

10D

9D

SUGRA A SUGRA B

SUGRA A=B

KK M̃i
KR Ñi

KK Mi
KR Ni

K2 = P > 0 K̃2 = P̃ > 0
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T Duality: Target Space

10D

9D

SUGRA A SUGRA B

SUGRA A=B

KK M̃i
KR Ñi

KK Mi
KR Ni

K2 = P > 0 K̃2 = P̃ > 0

Buscher
 P̃ = P−1 ,

M̃i = P−1Ni ,
 e−2 Φ̃ = P e−2 Φ

Ñi = P−1Mi , ⋯
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Question: Is There a Notion of T 
Duality if the Isometry is Lightlike?

i.e., for a vanishing KK scalar K̃2 = P̃ → 0
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Regularization of Buscher
 P̃ = P−1 ,

M̃i = P−1Ni ,
 e−2 Φ̃ = P e−2 Φ

Ñi = P−1Mi , ⋯
Buscher
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introduce a regularization parameter  that will eventually ϵ ϵ → 0
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Regularization of Buscher
 P̃ = P−1 ,

M̃i = P−1Ni ,
 e−2 Φ̃ = P e−2 Φ

Ñi = P−1Mi , ⋯
Buscher

introduce a regularization parameter  that will eventually ϵ ϵ → 0

   P = p/ϵ ⟶ P̃ = ϵ/p → 0

ill-defined, unless also 

   Φ = ϕ − 1/2 log ϵ , Mi = ϵ−1τi
1 + ⋯ , Ni = ϵ−1 τi

0 + ⋯
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Gomis-Ooguri
the  limit withϵ → 0

 
leads to:

                 

  

Gμν = ϵ−1 ηAB τμ
Aτν

B + eμν ,

B = − ϵ−1 τ0 ∧ τ1 + b ,
Φ = ϕ − 1/2 log ϵ

A = 0,1
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Gomis-Ooguri
the  limit withϵ → 0

 
leads to:

★ a non-Lorentzian geometric structure (τμ
A, eμν, bμν, ϕ)

                 

  

Gμν = ϵ−1 ηAB τμ
Aτν

B + eμν ,

B = − ϵ−1 τ0 ∧ τ1 + b ,
Φ = ϕ − 1/2 log ϵ

A = 0,1

[Andringa-Bergshoeff-Gomis-Roo ’12, Bergshoeff-JL-et.al. ’21, …]
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Gomis-Ooguri
the  limit withϵ → 0

 
leads to:

★ a non-Lorentzian geometric structure (τμ
A, eμν, bμν, ϕ)

★ a unitary, UV complete string theory with NR spectrum

                 

  

Gμν = ϵ−1 ηAB τμ
Aτν

B + eμν ,

B = − ϵ−1 τ0 ∧ τ1 + b ,
Φ = ϕ − 1/2 log ϵ

A = 0,1

[Gomis-Ooguri ‘00, …, Z.Yan lectures, Yan-Oling review: to appear]
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Gomis-Ooguri
the  limit withϵ → 0

 
leads to:

★ a non-Lorentzian geometric structure (τμ
A, eμν, bμν, ϕ)

★ a unitary, UV complete string theory with NR spectrum

★ an effective non-Lorentzian target space gravity theory

                 

  

Gμν = ϵ−1 ηAB τμ
Aτν

B + eμν ,

B = − ϵ−1 τ0 ∧ τ1 + b ,
Φ = ϕ − 1/2 log ϵ

A = 0,1

[Gomis-Ooguri ‘00, …, Z.Yan lectures, Yan-Oling review: to appear]

[Andringa-Bergshoeff-Gomis-Roo ’12, Bergshoeff-JL-et.al. ’21, …]

[Bergshoeff-JL-Rosseel-Romano-Simsek ’21A/B]
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Gomis-Ooguri String Theory is  
T Dual to the DLCQ of String 

Theory

Similarly for the target space theory. As shown, this can be seen 
as the regularized  limit of ordinary T duality.P̃ → 0

[Bergshoeff-Gomis-Yan ’18, WIP]
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Can This be Embedded in a 
Supersymmetric Theory?

concretely, in type  supergravity with  
minimal multiplet ? 

𝒩 = (1,0)
(Gμν, Bμν, Φ) ⊕ (Ψμ, Λ)

[Bergshoeff-JL-Romano-Rosseel-Simsek ‘21B, WIP]
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 T Duality𝒩 = (1,0)
imposing a null isometry  is at odds with supersymmetry K = ∂z

δϵK̃2 = δϵG̃zz ≠ 0

9



 T Duality𝒩 = (1,0)
imposing a null isometry  is at odds with supersymmetry K = ∂z

instead: impose a multiplet of constraints

where  . Alternatively: Z̃μ = G̃zμ − B̃zμ {P̃, Ψ̃(K), dZ̃} = 0

δϵK̃2 = δϵG̃zz ≠ 0

G̃zz = 0 , Ψ̃z = 0 ∂[i Z̃j] = 0
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 T Duality𝒩 = (1,0)
imposing a null isometry  is at odds with supersymmetry K = ∂z

instead: impose a multiplet of constraints

where  . Alternatively: Z̃μ = G̃zμ − B̃zμ {P̃, Ψ̃(K), dZ̃} = 0

  multiplet in ten dimensions is reducible!!⟹ 𝒩 = (1,0)

δϵK̃2 = δϵG̃zz ≠ 0

G̃zz = 0 , Ψ̃z = 0 ∂[i Z̃j] = 0

[?????? ‘??]
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Longitudinal T Duality w/ SUSY

10D

9D

Minimal 

Gomis-Ooguri 

SUGRA

𝒩 = (1,0)/{P̃, Ψ̃(K), dZ̃}

9D TNC SUGRA
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[WIP]

[WIP]

[Bergshoeff-JL-Romano 
 Rosseel-Simsek ‘21B]

[see also: Harmark-Hartong- 
 Obers-Oling ’18-,  
 Gursoy-Natale-Zinnato ’20-]



Minimal Gomis-Ooguri Supergravity
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Minimal Gomis-Ooguri Supergravity
A. NL minimal SUGRA multiplet (τμ

A, eμν, bμν, ϕ; ψμ+, ψμ−, λ+, λ−)
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Minimal Gomis-Ooguri Supergravity
A. NL minimal SUGRA multiplet (τμ

A, eμν, bμν, ϕ; ψμ+, ψμ−, λ+, λ−)

B. Expected plus emergent symmetries: 

a. local Galilean 

b. supersymmetry 

c. fermionic S-/T-shift symmetry  

d. bosonic anisotropic dilatations

C. Closure of the algebra  iff  [δ1, δ2] = δ3 τ− ∧ dτ− = 0
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K̃2 = P̃ = 0

Ψ̃(K) = Ψ̃z = 0
T

dZ̃ = ∂[iZ̃j] = 0



Summary
I have presented an a new supergravity multiplet in ten dimensions 
that is manifestly non-Lorentzian.  

The Gomis-Ooguri multiplet is smaller than the smallest relativistic 
multiplet and requires the constraint  for consistency.  

It is T dual to a relativistic multiplet—shortened by a multiplet of 
constraints .  

The associated equations of motion are conjectured to capture the 
universal part of the NL superstring target space constraints 
following from Weyl anomaly cancellation. 

τ− ∧ dτ− = 0

{K2 = 0, Ψ(K) = 0, dZ = 0}
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Extended SUSY? Type SIIA/B?
Extending the supersymmetry to  will introduce more 
constraints on the geometry and the structure of the multiplet.  
Work in progress. 

RR T Duality is under control and relates SIIB to DLCQ of IIA 

Still need to figure out: 

‣ Fermions and SUSY consistency 

‣  of SIIB 

‣ embedding of SIIA in 11D

8 + 8 + 8 + 8

SL(2,R)

[see Blair-Gallegos-Zinnato ’21  
 for the bosonic part]
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Coupling to SYM Vectors?
Motivated by its relevance in relativistic SUGRA — i.e. heterotic SUGRA — we 
want to consider coupling to a new NL vector multiplet 

                                                              

and construct NL heterotic SUGRA. Work in progress. 

‣Noether coupling? Through a limiting procedure? 

‣Anomalies? constraints on the gauge group?  

‣ relation to NL heterotic superstring theories? 

‣ higher order  correction?

(aμ
I, bI, χ+

I, χ−
I)

α′ 
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Outlook
★ Obtain full understanding of space of NL SUGRAs in 10D: 

- heterotic? type II theories? 11 D SUGRA?  

- web of dualities? 

★ Relation to NL superstring theories?       

★ Solutions and compactifications 

- Killing spinor equations   

- (A)dS-like solutions? Horizons? Compactifications?          

★ Towards NL Holography…                

[Bergshoeff-Chatzistavrakidis-JL-
Romano-Rosseel ’20]
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Thank You!



Action and Equations of Motion

17



Action and Equations of Motion
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Action and Equations of Motion
there is a set of differential equations

                                                       ⟨X⟩I = 0

that is closed under all the symmetries of the theory 
 

A subset  can be integrated into a (pseudo-)action   {⟨b⟩i} ⊂ {⟨X⟩I} SNR

   is not closed under supersymmetry, δQSNR ≠ 0 ⇔ {⟨b⟩i}

only                                                                         is.{⟨X⟩I} = {⟨b⟩i, ⟨m⟩α}
[Vanhecke-Van Proeyen ’17]
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NL SUGRA from a Limit
Alternatively, the NL SUGRA theory can be obtained as an  

limit of relativistic  SUGRA in ten dimensions, with 

                         

             

                   

with 

ω → ∞
𝒩 = (1,0)

τμ
A = ω−1 Eμ

A , eμ
A′ = Eμ

A′ ,

bμν = Bμν + ϵAB Eμ
AEν

B , ϕ = Φ − log ω

ψμ± = ω∓1/2Π±Ψμ , λ± = ω∓1/2Π±Λ ,

Π± = 2−1(1 ± Γ01) .
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Gomis-Ooguri SUGRA 
: 

one anisotropic dilatations 

 

 shifts 

 

 intrinsic torsion 

 

 SUGRA 
: 

one null isometry 

 

 constraints on gravitini 

 

 additional constraints  

(τA, e, b, ϕ; ψ±, λ±)

δDϕ = λD(x) , ⋯

8 + 8 S − /T−

δSλ− = η− , δTψμ− = τμ
+ρ− , ⋯

36

τ− ∧ dτ− = 0

𝒩 = (1,0)
(G, B, Φ; Ψ, Λ)

K̃2 = P̃ = 0

16

Ψ̃(K) = Ψ̃z = 0

36

dZ̃ = ∂[iZ̃j] = 0


