Non-Lorentzian Supergravity in 10 Dimensions

- Johannes Lahnsteiner
 - rijksuniversiteit groningen
- **30th Nordic Meeting on Strings, Field, and Branes** @ Nordita November 2021
- Based on 2102.06974, 2107.14636, and WIP with E. Bergshoeff, L. Romano, J. Rosseel, and C. Simsek

relates two different string theories A and B, compactified on a large and small volume, respectively:

T

theory A

 $\tilde{R} = \alpha'/R$

2

T Duality: Target Space

Buscher

SUGRA A SUGRA B 10D $\tilde{K}^2 = \tilde{P} > 0$ $K^2 = P > 0$ KK \tilde{M}_i $\mathbf{KK} M_i$ KR N $\mathbf{KR} N_i$

T Duality: Target Space

 $\tilde{P} = P^{-1},$ $e^{-2\tilde{\Phi}} = P e^{-2\Phi}$ $\tilde{M}_i = P^{-1}N_i,$ $\tilde{N}_i = P^{-1}M_i, \cdots$

Question: Is There a Notion of T Duality if the Isometry is Lightlike?

i.e., for a vanishing KK scalar $\tilde{K}^2 = \tilde{P} \rightarrow 0$

Regularization of Buscher

Buscher

 $\tilde{P} = P^{-1},$ $\tilde{M}_i = P^{-1} N_i,$

$$e^{-2\tilde{\Phi}} = P e^{-2\Phi}$$
$$\tilde{N}_i = P^{-1}M_i, \cdots$$

Regularization of Buscher

Buscher

$$\tilde{P} = P^{-1},$$
 $e^{-2\tilde{\Phi}} = P e^{-2\Phi}$
 $\tilde{M}_i = P^{-1}N_i,$ $\tilde{N}_i = P^{-1}M_i, \cdots$

introduce a regularization parameter ϵ that will eventually $\epsilon \to 0$

$$P = p/\epsilon$$

$$\rightarrow \qquad \tilde{P} = \epsilon/p \rightarrow 0$$

Regularization of Buscher

Buscher

$$\tilde{P} = P^{-1},$$
 $e^{-2\tilde{\Phi}} = P e^{-2\Phi}$
 $\tilde{M}_i = P^{-1}N_i,$ $\tilde{N}_i = P^{-1}M_i, \cdots$

introduce a regularization parameter ϵ that will eventually $\epsilon \to 0$

$$P = p/\epsilon$$

ill-defined, unless also

$$\Phi = \phi - 1/2 \log \epsilon, \qquad M_i = \epsilon$$

$$\rightarrow \qquad \tilde{P} = \epsilon/p \rightarrow 0$$

$$T_i^1 + \cdots, \qquad N_i = \epsilon^{-1} \tau_i^0 + \cdots$$

the $\epsilon \rightarrow 0$ limit with

leads to:

Gomis-Ooguri

 $G_{\mu\nu} = \epsilon^{-1} \eta_{AB} \tau_{\mu}^{\ A} \tau_{\nu}^{\ B} + e_{\mu\nu},$ $B = -\epsilon^{-1}\tau^0 \wedge \tau^1 + b,$ $\Phi = \phi - 1/2 \log \epsilon$

A = 0,1

the $\epsilon \to 0$ limit with

 $G_{\mu\nu} = \epsilon^{-1} \eta_{AB} \tau_{\mu}^{A} \tau_{\nu}^{B} + e_{\mu\nu},$ $B = -\epsilon^{-1}\tau^0 \wedge \tau^1 + b.$ $\Phi = \phi - 1/2 \log \epsilon$

leads to:

* a non-Lorentzian geometric structure $(\tau_{\mu}^{A}, e_{\mu\nu}, b_{\mu\nu}, \phi)$

Gomis-Ooguri

A = 0.1

[Andringa-Bergshoeff-Gomis-Roo '12, Bergshoeff-JL-et.al. '21, ...]

the $\epsilon \to 0$ limit with

 $G_{\mu\nu} = \epsilon^{-1} \eta_{AB} \tau_{\mu}^{A} \tau_{\nu}^{B} + e_{\mu\nu},$ $B = -\epsilon^{-1}\tau^0 \wedge \tau^1 + b.$ $\Phi = \phi - 1/2 \log \epsilon$

leads to:

\star a non-Lorentzian geometric structure $(\tau_{\mu}^{A}, e_{\mu\nu}, b_{\mu\nu}, \phi)$

***** a unitary, UV complete string theory with NR spectrum

Gomis-Ooguri

A = 0.1

[Andringa-Bergshoeff-Gomis-Roo '12, Bergshoeff-JL-et.al. '21, ...]

[Gomis-Ooguri '00, ..., Z.Yan lectures, Yan-Oling review: to appear]

the $\epsilon \to 0$ limit with

 $G_{\mu\nu} = \epsilon^{-1} \eta_{AB} \tau_{\mu}^{A} \tau_{\nu}^{B} + e_{\mu\nu},$ $B = -\epsilon^{-1}\tau^0 \wedge \tau^1 + b.$ $\Phi = \phi - 1/2 \log \epsilon$

leads to:

\star a non-Lorentzian geometric structure $(\tau_{\mu}^{A}, e_{\mu\nu}, b_{\mu\nu}, \phi)$

Gomis-Ooguri

A = 0.1

[Andringa-Bergshoeff-Gomis-Roo '12, Bergshoeff-JL-et.al. '21, ...]

***** a unitary, UV complete string theory with NR spectrum

[Gomis-Ooguri '00, ..., Z.Yan lectures, Yan-Oling review: to appear]

***** an effective non-Lorentzian target space gravity theory

[Bergshoeff-JL-Rosseel-Romano-Simsek '21A/B]

Gomis-Ooguri String Theory is T Dual to the DLCQ of String Theory

Similarly for the target space theory. As shown, this can be seen as the regularized $\tilde{P} \rightarrow 0$ limit of ordinary T duality.

[Bergshoeff-Gomis-Yan '18, WIP]

Can This be Embedded in a **Supersymmetric Theory?**

concretely, in type $\mathcal{N} = (1,0)$ supergravity with minimal multiplet $(G_{\mu\nu}, B_{\mu\nu}, \Phi) \oplus (\Psi_{\mu}, \Lambda)$?

[Bergshoeff-JL-Romano-Rosseel-Simsek '21B, WIP]

imposing a null isometry $K = \partial_z$ is at odds with supersymmetry

 $\delta_{\epsilon}\tilde{K}^2 = \delta_{\epsilon}\tilde{G}_{77} \neq 0$

$\mathcal{N} = (1,0)$ T Duality

- imposing a null isometry $K = \partial_z$ is at odds with supersymmetry
 - $\delta_{\epsilon} \tilde{K}^2 =$
- instead: impose a multiplet of constraints

$$\tilde{G}_{zz} = 0, \qquad \tilde{\Psi}_z = 0 \qquad \partial_{[i} \tilde{Z}_{j]} = 0$$

where $\tilde{Z}_{\mu} = \tilde{G}_{z\mu} - \tilde{B}_{z\mu}$. Alternatively: $\{\tilde{P}, \tilde{\Psi}(K), d\tilde{Z}\} = 0$

$$= \delta_{\epsilon} \tilde{G}_{zz} \neq 0$$

$\mathcal{N} = (1,0)$ T Duality

- imposing a null isometry $K = \partial_{\gamma}$ is at odds with supersymmetry
 - $\delta_{c}\tilde{K}^{2} =$
- instead: impose a multiplet of constraints

$$\tilde{G}_{zz} = 0, \qquad \tilde{\Psi}$$

where $\tilde{Z}_{\mu} = \tilde{G}_{z\mu} - \tilde{B}_{z\mu}$. Alternatively: $\{\tilde{P}, \tilde{\Psi}(K), d\tilde{Z}\} = 0$

 $\implies \mathcal{N} = (1,0)$ multiplet in ten dimensions is reducible!!

$$= \delta_{\epsilon} \tilde{G}_{zz} \neq 0$$

- $\tilde{\mathbf{P}}_{_{7}} = \mathbf{0} \qquad \partial_{[i}\tilde{Z}_{i]} = \mathbf{0}$

[?????? '??]

Longitudinal T Duality w/ SUSY

Minimal

10D

Gomis-Ooguri

SUGRA

[Bergshoeff-JL-Romano **Rosseel-Simsek '21B]**

9D

$\mathcal{N} = (1,0)/\{\tilde{P}, \tilde{\Psi}(K), \mathrm{d}\tilde{Z}\}$

[WIP]

[see also: Harmark-Hartong-Obers-Oling '18-, **Gursoy-Natale-Zinnato '20-]**

A. NL minimal SUGRA multiplet $(\tau_{\mu}^{A}, e_{\mu\nu}, b_{\mu\nu}, \phi; \psi_{\mu+}, \psi_{\mu-}, \lambda_{+}, \lambda_{-})$

- A. NL minimal SUGRA multiplet $(\tau_{\mu}^{A}, e_{\mu\nu}, b_{\mu\nu}, \phi; \psi_{\mu+}, \psi_{\mu-}, \lambda_{+}, \lambda_{-})$
- **B.** Expected plus emergent symmetries:
 - a. local Galilean
 - b. supersymmetry
 - c. fermionic S-/T-shift symmetry
 - d. bosonic anisotropic dilatations

- A. NL minimal SUGRA multiplet $(\tau_{\mu}^{A}, e_{\mu\nu}, b_{\mu\nu}, \phi; \psi_{\mu+}, \psi_{\mu-}, \lambda_{+}, \lambda_{-})$
- **B.** Expected plus emergent symmetries:
 - a. local Galilean
 - b. supersymmetry
 - c. fermionic S-/T-shift symmetry
 - d. bosonic anisotropic dilatations
- C. Closure of the algebra $\delta_1, \delta_2 = \delta_3$ iff $\tau^- \wedge d\tau^- = 0$

- A. NL minimal SUGRA multiplet $(\tau_{\mu}^{A}, e_{\mu\nu}, b_{\mu\nu}, \phi; \psi_{\mu+}, \psi_{\mu-}, \lambda_{+}, \lambda_{-})$
- **B.** Expected plus emergent symmetries:
 - a. local Galilean
 - b. supersymmetry
 - c. fermionic S-/T-shift symmetry
 - d. bosonic anisotropic dilatations
- C. Closure of the algebra $\delta_1, \delta_2 = \delta_3$ iff $\tau^- \wedge d\tau^- = 0$

Τ

 $\tilde{\Psi}(K) = \tilde{\Psi}_{7} = 0$ $\tilde{K}^2 = \tilde{P} = 0$

 $\mathrm{d}\tilde{Z} = \partial_{[i}\tilde{Z}_{i]} = 0$

Summary

that is manifestly non-Lorentzian.

constraints { $K^2 = 0, \Psi(K) = 0, dZ = 0$ }.

universal part of the NL superstring target space constraints following from Weyl anomaly cancellation.

- I have presented an a new supergravity multiplet in ten dimensions
- The Gomis-Ooguri multiplet is smaller than the smallest relativistic multiplet and requires the constraint $\tau^- \wedge d\tau^- = 0$ for consistency.
- It is T dual to a relativistic multiplet—shortened by a multiplet of
- The associated equations of motion are conjectured to capture the

Extended SUSY? Type SIIA/B?

Extending the supersymmetry to 8 + 8 + 8 + 8 will introduce more constraints on the geometry and the structure of the multiplet. Work in progress.

RR T Duality is under control and relates SIIB to DLCO of IIA

Still need to figure out:

- Fermions and SUSY consistency
- \blacktriangleright *SL*(2,**R**) of SIIB
- embedding of SIIA in 11D

[see Blair-Gallegos-Zinnato '21] for the bosonic part]

Coupling to SYM Vectors?

Motivated by its relevance in relativistic SUGRA — i.e. heterotic SUGRA — we want to consider coupling to a new NL vector multiplet

and construct NL heterotic SUGRA. Work in progress.

- Noether coupling? Through a limiting procedure?
- Anomalies? constraints on the gauge group?
- relation to NL heterotic superstring theories?
- higher order α' correction?

- $(a_{\mu}^{I}, b^{I}, \chi_{+}^{I}, \chi_{-}^{I})$

- **★** Obtain full understanding of space of NL SUGRAs in 10D:
 - heterotic? type II theories? 11 D SUGRA?
 - web of dualities?
- **★** Relation to NL superstring theories?
- **★** Solutions and compactifications
 - Killing spinor equations
 - (A)dS-like solutions? Horizons? Compactifications?
- **★** Towards NL Holography...

[Bergshoeff-Chatzistavrakidis-JL-**Romano-Rosseel '20]**

Thank You!

there is a set of differential equations

that is closed under all the symmetries of the theory

- $\langle X \rangle^I = 0$

there is a set of differential equations

that is closed under all the symmetries of the theory

- $\langle X \rangle^I = 0$

A subset $\{\langle b \rangle^i\} \subset \{\langle X \rangle^I\}$ can be integrated into a (pseudo-)action S_{NR}

there is a set of differential equations

that is closed under all the symmetries of the theory

 $\delta_O S_{NR} \neq 0 \Leftrightarrow \{\langle b \rangle^i\}$ is not closed under supersymmetry, only

- $\langle X \rangle^I = 0$

- A subset $\{\langle b \rangle^i\} \subset \{\langle X \rangle^I\}$ can be integrated into a (pseudo-)action S_{NR}

 - $\left\{ \langle X \rangle^I \right\} = \left\{ \langle b \rangle^i, \langle m \rangle^\alpha \right\}$ is.

[Vanhecke-Van Proeyen '17]

NL SUGRA from a Limit

limit of relativistic $\mathcal{N} = (1,0)$ SUGRA in ten dimensions, with

$$\tau_{\mu}^{A} = \omega^{-1} E_{\mu}^{A}, \qquad e_{\mu}^{A'} = E_{\mu}^{A'},$$
$$b_{\mu\nu} = B_{\mu\nu} + \epsilon_{AB} E_{\mu}^{A} E_{\nu}^{B}, \qquad \phi = \Phi - \log \omega$$

$$\psi_{\mu\pm} = \omega^{\mp 1/2} \Pi_{\pm} \Psi_{\mu},$$

with $\Pi_{\pm} = 2^{-1} (\mathbf{1} \pm \Gamma_{01})$.

Alternatively, the NL SUGRA theory can be obtained as an $\omega \to \infty$

$$\lambda_{\pm} = \omega^{\mp 1/2} \Pi_{\pm} \Lambda \,,$$

Gomis-Ooguri SUGRA $(\tau^{A}, e, b, \phi; \psi_{\pm}, \lambda_{\pm})$:

one anisotropic dilatations

 $\delta_D \phi = \lambda_D(x) , \qquad \cdots$

$$8 + 8 S - /T - \text{shifts}$$

 $\delta_S \lambda_- = \eta_-, \quad \delta_T \psi_{\mu-} = \tau_{\mu}^+ \rho_-, \cdots$

36 intrinsic torsion

 $\tau^- \wedge \mathrm{d}\tau^- = 0$

 $\mathcal{N} = (1,0)$ SUGRA $(G, B, \Phi; \Psi, \Lambda)$:

one null isometry $\tilde{K}^2 = \tilde{P} = 0$

16 constraints on gravitini $\tilde{\Psi}(K) = \tilde{\Psi}_z = 0$

36 additional constraints

$$\mathrm{d}\tilde{Z} = \partial_{[i}\tilde{Z}_{j]} = 0$$