

The price of curiosity: information recovery in de Sitter space

based on 2104.00006 with Lars Aalsma

Watse SybesmaUniversity of Iceland

30th Nordic Network Meeting on "Strings, Fields, and Branes" Stockholm, 23rd of November 2021

The cosmological horizon of de Sitter

de Sitter space can describe stages of the universe where positive vacuum energy dominates

Can we peek beyond the cosmological horizon?

Main question:

Can a static observer use Gibbons-Hawking radiation to recover info from beyond the cosmological horizon?

Method to answer question:

We'll apply QES or island prescription to 2d semi-classical gravity, which has been successful in answering similar questions for BH's

Due to no access to a scri+ type heat bath, back-reaction is expected to play a crucial role. The static patch will shrink as radiation piles up.

Outline

★ 2d backreaction

★ Black holes and the Page curve

★ island in de Sitter

Main question:

Can a static observer use Gibbons-Hawking radiation to recover info from beyond their cosmological horizon?

Jackiw-Teitelboim action

2d gravity allows one to have analytic control over semi-classical corrections and backreaction.

Consistent truncation of near Nariai 4d BH is governed by

$$I = \frac{\Phi_0}{2\pi} \int d^2x \sqrt{-g}R + \frac{1}{2\pi} \int d^2x \sqrt{-g} \Phi \left(R - \frac{2}{\ell^2} \right) + I_{\text{CFT}}$$
propto Nariai entropy deviation from Nariai matter sector with central charge c $\phi_0 \gg \Phi|_{\text{Horizon}} \gg c \gg 1$

 $\Phi_0 + \Phi$ mediates the size of inverse Newton's constant/size transverse space

The equations of motion read:

$$R - 2/\ell^2 = 0$$

$$\Phi g_{\mu\nu} - \ell^2 \nabla_\mu \nabla_\nu + \ell^2 g_{\mu\nu} \Phi = \pi \ell^2 \langle T_{\mu\nu}^{\rm CFT} \rangle$$

[Teitelboim'83][Jackiw'85] [Callan, Giddings, Harvey, Strominger'92]

Classical solutions

Classical solutions in conformal gauge:

$$e^{2\rho(x^+,x^-)} = \frac{4\ell^2}{(\ell^2 - x^+x^-)^2} \qquad \Phi(x^+,x^-) = \frac{\Phi_s}{24} \frac{\ell^2 + x^+x^-}{\ell^2 - x^+x^-}$$
relation between static and Kruskal coords
$$ds^2 = -e^{2\rho(x^+,x^-)} dx^+ dx^-$$

$$x^{\pm} = \pm \ell e^{\pm \sigma^{\pm}/\ell} = \pm \ell e^{\pm t/\ell} \sqrt{\frac{\ell - r}{\ell + r}}$$

$$\sigma^{\pm} = t \pm r_* \qquad \frac{r}{\ell} = \frac{\ell^2 + x^+x^-}{\ell^2 - x^+x^-}$$
(Wald) entropy:
$$S = 2\Phi_{\rm H} = 2\Phi_0 \pm 2\Phi|_{\rm Horizon}$$

see e.g. [Maldacena, Turiaci, Yang '19]

Backreaction on the dilaton

interpolate between Bunch-Davies (t_{+}=0, equilibrium) and Unruh-de Sitter (t_{+}=1, out-of-equilibrium)

$$\langle : T_{++}(x^+) : \rangle = -\frac{c}{48\pi(x^+)^2}(1-t_+^2) \qquad \langle : T_{--}(x^-) : \rangle = 0$$

Which yields the **back-reacted** dilaton

$$\Phi(x^+, x^-) = \frac{c}{48} \left[1 + \frac{2\Phi_s}{c} \frac{r}{\ell} + t_+^2 - (1 - t_+^2) \frac{r}{\ell} \log\left(\frac{x^+}{\ell}\right) \right] \qquad \qquad \frac{r}{\ell} = \frac{\ell^2 + x^+ x^-}{\ell^2 - x^+ x^-}$$

No change in BD. Diagram of Unruh-de Sitter in full model:

Outline

★ Black holes and the Page curve

★ island in de Sitter

Main question:

Can a static observer use Gibbons-Hawking radiation to recover info from beyond their cosmological horizon?

Page curve: unitarity and information recovery

Hawking radiation being thermal leads to a paradox when assuming evaporation to be unitarity

The island of an evaporating black hole

[Gautason, Schneiderbauer, WS, Thorlacius '20]

The island (or QES) prescription can give you Page curve [Ryu, Takayanagi'06][Hubeny, Rangamani, Takayanagi'07][Faulkner, Lewkowycz, Maldacena'09] [Engelhardt, Wall'15][Penington '19][Almheiri, Engelhardt, Marolf, Maxfield '19]

prescription instructs to extremize and take the minimum of the generalized entropy

Recovery through the island: Page and Scrambling time

Island formula: wait until Page time for decoding

Scrambling time needed to evade paradoxes is also reproduced:

$$t_s = \log(S)$$

See e.g. [Susskind, Thorlacius'93][hayden, preskill'07][Sekino, Susskind'08]

Outline

Main question:

Can a static observer use Gibbons-Hawking radiation to recover info from beyond their cosmological horizon?

Islands in de Sitter: Thermodynamical guess

islands in de Sitter

The island formula for in the Unruh-de Sitter vacuum

Extremize and take minimal saddle

$$S_{\rm gen} = \frac{\operatorname{Area}(I)}{4G_N} + S_{\rm vN}[IA]$$

[Ryu, Takayanagi'06] [Hubeny, Rangamani, Takayanagi'07] [Faulkner, Lewkowycz, Maldacena'09] [Engelhardt, Wall'15][Penington '19] [Almheiri, Engelhardt, Marolf, Maxfield '19]

Quantum singularity theorem

Thus, after trapped time scale a singularity is unavoidable

Conclusion: Fate of the observer

Can a static observer use Gibbons-Hawking radiation to recover info from beyond their cosmological horizon?

> 2d Unruh-de Sitter vacuum yields a Page curve using island prescription

After the trapped time, long time before Page time, a singularity forms.

After trapped time all timelike curves end in a singularity. Curiosity comes at a price

Some follow up directions

