# Probing confinement in holography

NORDITA

30<sup>th</sup> Nordic Network Meeting on "Strings, Fields and Branes" 24<sup>th</sup> November 2021

Javier G. Subils

In collaboration with D. Elander, A. Faedo, N. Jokela, D. Mateos and D. Pravos

## Confinement and mass gap

**Mass gap:** every excitation of the vacuum has energy al least  $\Delta > 0$ 

**Confinement:** there are different notions of confinement:

- The physical particle states are "colourless".
- At large N, degrees of freedom scale as  $\mathcal{O}(N_c^2)$  at large temperatures and  $\mathcal{O}(N_c^0)$  at low.
- Linear quark-antiquark potential.

N D3 - branes





**Conformal Theory** 

[Maldacena, '97]

#### N D3 - branes M fractional D3 - branes



[Klebanov, Tseylin, '99] [Klebanov, Strassler, '00]

### $V_{\rm q\overline{q}}\sim\,{\rm Length}\,{\rm of}\,{\rm the}\,{\rm string}$





### Super-Yang-Mills Chern-Simons Matter theories











 $V_{
m q\overline{q}}\sim$  Area of the membrane





### Spectrum



We need to consider fluctuations of the fields

 $g_{\mu\nu} \rightarrow g_{\mu\nu} + \delta g_{\mu\nu}$  $\Phi \rightarrow \Phi + \delta \Phi$ 

**Spin-2** corresponds to finding eigenvalues and eigenstates with a simple potential



IR



[Elander, Faedo, Mateos, Pravos, JS; '17]

**Spin-o** states are more sensitive to IR physics.

#### **No light dilaton** is found in the spectrum.

- The **RG flow whose UV is the CFT** is triggered by a VEV and a source of comparable size

The spectrum nicely interpolates between the quasi-conformal and the quasi-confining regime.





## Is entanglement a probe of confinement?

## Entanglement entropy

We can think of it as the entropy for an observer who is only accessible to the subsystem A and cannot receive any signals from B

$$S_A = \frac{\text{Area of } \gamma_A}{4G_N}$$



 $S_A = -\operatorname{Tr}_A \rho_A \log \rho_A$ 



## Entanglement entropy

Entanglement entropy has been proposed as a probe of confinement.

Similar phase transitions are found in entanglement entropy measures and thermodynamical properties in confining backgrounds.



We examined if this was the case in our theories.

[Klebanov, Kutasov, Takayanagi; '09] [Nishioka, Takayanagi; '08]

### $S_A \sim$ Volume of a codimendion 2 subspace



The shrinking of the M-Theory circle has no physical consequence in this computation



[Jokela, JS; '20]

### $S_A \sim$ Volume of a codimendion 2 subspace





# Thermodynamical phase diagram

### Finite temperature

Low – temperature phases (gapped):

 $\tau \sim \tau + \beta$ 



**High – temperature phases** (degapped): *β* given by surface gravity at the

Horizon of the black brane



### Finite temperature

**Canonical ensemble**: The dominant phase will be that of the smallest free energy

$$\overline{F} = F(\underline{\Box}) - F(\underline{\Box})$$

- If it is positive, gapped phase
- If it is negative, black brane solution is preferred

The entropy is given by the are of the horizon:

$$\overline{S} = \operatorname{Area}(\mathbb{Z})$$









[Elander, Faedo, Mateos, JS; '20]

### Phase diagram



### Phase diagram



[Elander, Faedo, Mateos, JS; '20]

### Take home messages

We studied a (2+1) dimensional family of theories with **mass gap and** without confinement.

For this set of theories, **entanglement entropy** is not a good probe of confinement.

Their rich **thermodynamical phase structure**, possesses a critical point where a second order phase transition occurs and a branch of transitions at zero entropy but finite temperature.

## Thanks.

### (Back-up slides)

$$g_{\mu\nu} \rightarrow g_{\mu\nu} + \delta g_{\mu\nu}$$
 UV  $\delta \phi$   
 $\Phi \rightarrow \Phi + \delta \Phi$  IR  $\delta \phi$ 

$$\begin{split} \Phi^{a} &= \Phi^{a} + \varphi^{a}, \\ \mathrm{d}s_{4}^{2} &= (1 + 2\nu + \nu_{\sigma}\nu^{\sigma})\mathrm{d}\rho^{2} + 2\nu_{\mu}\mathrm{d}x^{\mu}\mathrm{d}\rho + e^{2A}(\eta_{\mu\nu} + h_{\mu\nu})\mathrm{d}x^{\mu}\mathrm{d}x^{\nu}, \\ h^{\mu}_{\ \nu} &= \mathfrak{e}^{\mu}_{\ \nu} + iq^{\mu}\epsilon_{\nu} + iq_{\nu}\epsilon^{\mu} + \frac{q^{\mu}q_{\nu}}{q^{2}}H + \frac{1}{2}\delta^{\mu}_{\ \nu}h, \end{split}$$

[Berg, Haack, Mueck; '05] [Elander, Piai; '10] Spin-2

Spin-0

$$\left[\partial_{\rho}^{2} + 3A'\partial_{\rho} + e^{-2A}m^{2}\right]\mathfrak{e}^{\mu}_{\ \nu} = 0$$

$$\begin{split} \mathfrak{a}^{a} &= \varphi^{a} - \frac{\bar{\Phi}'^{a}}{4A'}h, \\ \Big[\mathcal{D}_{\rho}^{2} + 3A'\mathcal{D}_{\rho} + e^{-2A}m^{2}\Big]\mathfrak{a}^{a} \\ &- \Big[\mathcal{V}_{\ |c}^{a} - \mathcal{R}_{\ bcd}^{a}\bar{\Phi}'^{b}\bar{\Phi}'^{d} + \frac{2(\bar{\Phi}'^{a}\mathcal{V}_{c} + \mathcal{V}^{a}\bar{\Phi}_{c}')}{A'} + \frac{4\mathcal{V}\bar{\Phi}'^{a}\bar{\Phi}_{c}'}{A'^{2}}\Big]\mathfrak{a}^{c} = 0 \end{split}$$

[Berg, Haack, Mueck; '05] [Elander, Piai; '10] The boundary conditions are obtained by requiring that the variational problem is well defined.

- Localised boundary actions at IR and UV cutoffs,
- Remove the cutoff and check convergence.



$$\varphi^{a}|_{\rho_{I,U}} = 0 \quad \Longrightarrow \quad -\frac{e^{2A}}{m^{2}} \frac{\bar{\Phi}'^{a}}{A'} \left[ \bar{\Phi}'_{b} \mathcal{D}_{\rho} - \frac{2\mathcal{V}\bar{\Phi}'_{b}}{A'} - \mathcal{V}_{b} \right] \mathfrak{a}^{b} \Big|_{\rho_{I,U}} = \mathfrak{a}^{a} \Big|_{\rho_{I,U}}$$

$$\partial_{
ho} \mathfrak{e}^{\mu}{}_{
u}|_{
ho_{I,U}} = 0$$

At the UV, we took advantage of knowing the UV expansion.

### **Comparison between scales**



### **Comparison between scales**



