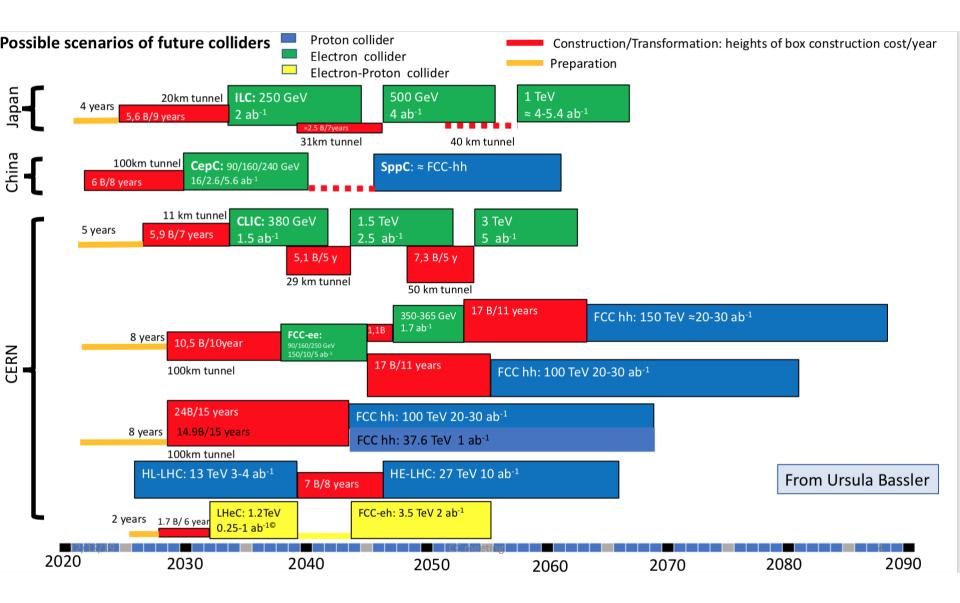

Status of the update of the European Strategy for Particle Physics

Kerstin Jon-And, Stockholm University Swedish discussion meeting 2020-01-14

Physics Briefing Book available https://arxiv.org/abs/1910.11775 2

2


To be considered

- Projects assessment of technological readiness, time scales, financial profile, operational costs, innovation, reach, ...
- > National Inputs

Post-Grenada clarifications on National Inputs

ESG members asked to provide preferences and comments on a list of possible scenarios based on input from Granada to be reported in a dedicated meeting on November 6th, 2019.

Halina Abramowicz, Open Council, 20191213

ropean Strategy

Halina Abramowicz, Open Council, 20191213

EPPSU2020

Main challenge for the European Strategy Group

Post-Granada scenarios

	2020-2040	2040-2060	2060-2080	
		1st gen technology	2nd gen technology	
CLIC-all	HL-LHC	CLIC380-1500	CLIC3000 / other tech	
CLIC-FCC	HL-LHC	CLIC380	FCC-h/e/A (Adv HF magnets) / other tech	
FCC-all	HL-LHC	FCC-ee (90-365)	FCC-h/e/A (Adv HF magnets) / other tech	
LE-to-HE-FCC-h/e/A	HL-LHC	LE-FCC-h/e/A (low-field magnets)	FCC-h/e/A (Adv HF magnets) / other tech	ee collider
LHeC-FCC-h/e/A	HL-LHC <mark>+ LHeC</mark>	LHeC	FCC-h/e/A (Adv HF magnets) / other tech	outside El

From Halina Abramowicz

"Diversity" programme – smaller scale Europe based projects

			2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
		SPS	Ľ	S2					LS3						LS4				
		LHC	Ľ	S2		Ru	ın 3			LS3			Run 4		LS4				
rth Area	NA64-electron	Operational	Ľ	S2		Data	Taking								LS4				
	NA64-mu	< 1 MCHF	Stu	ıdies	Test	Pilot	Phase 1												
	NA61/Shine	< 2 MCHF	Detector	r upgrade		Data	Taking					Data Taking							
	MUonE	< 2 MCHF	Prepa	ration	Pilot	Run 1	Data '	Taking											
	NA62-beamdump	< 1 MCHF	Studies			1e18 Po	T in Run 3												
	KLEVER	~40 MCHF	Eol/proposal			R&D/Co	nstruction		Installation			Data Taking							1
	COMPASS++	~10 MCHF	Studies/	proposal	Pha	se1 Data Tal	king/Studies/F	₹&D	Installation			Data Taking							
C	ALICE fixed target	<5 MCHF			Design/t		n/tests		Prepa	ration/Constr	uction		Data Taking						
	LHCb fixed target	<5 MCHF		Design	Const	ruction and t		Data		LS3			Data Taking						
	LHC Spin	~5 MCHF	St	udy			&D		Prod	uction/Install	ation		Data Taking						1
	FASER	~5 MCHF		llation	Data Ta					ograde - phas			Data Taking						<u> </u>
	MATHUSLA	<100 MCHF			ding to test de	ing to test design			Construction		Data Taking							1	
	CODEX-b	<5 MCHF	Eol				Beta dat			ation	Data Taking						1		
	MilliQan	<5 MCHF		nstrator	Funding/Construction					Upgrade	Data Taking							<u> </u>	
					0,														1
s	LDMX/eSPS	<10 MCHF			Stu	dies	Prod	uction/Install	ation		Data Taking								1
	SHip	~70 MCHF	CDR		Т	DR/Prototype			Production/construction Installa		llation	Data	Taking					1	
	TauFV	tbc	De	sign							Insta	tallation Data Taking						1	
	BabyIAXO (DE)	<5 MCHF		Prod	uction/constru	iction	Commission		Data Taking										
	IAXO	~60 MCHF					Design, proto	otyping, const	ruction, integr	ation and cor	nmissioning (start tbc)							
																			1
	AWAKE	~15 MCHF	Prep/cor	struction		AWAK	E Run 2	1	LS3	AWAKE++?									1
	eSPS	~80 MCHF		DR	TC	DR		ration/Constr			Data Taking								1
	Beam Dump Facility	~160 MCHF	CDR		TDR		,	Construction/Installation			Oper	ration					1		
	Gamma Factory	~2 MCHF		CDR		SPS Proof of	Principle/TDR			Preparation		LHC	.						-
	nuSTORM	>160 MCHF	Study		DR				ototyping			Approval							
	CPEDM prototype (DE)	~20 MCHF	Study		:DR	т	DR				Data Taking								-
			otauj					Const						1	1	<u> </u>			
																		1	
	Muon collider				Baseline design			Design optimization						Project Preparation Ap			Appro		
	ANA scientific roadmap		Ac	celerator sta			x10 beam quality at higher en		er energies				d acceleration, 10 GeV module		ule			Collider CDR 8	
	ESSvSB (SE)			sign	CDR	Prepar		tory phase and TDR		truction					ruction				Dat
	PERLE (FR)			TDR			Phase 1 OP												
	HIBEAM/NNBAR (SE)		CDR	(HB)		/prototpying			B), CDR (NNBAR)) TDR (NNRAR)	Construction	and commission	ning (NNRAR)	Data	a Taking (NNI	BAR)		<u> </u>

Swedish input to the update process

Swedish process organised with help of: Arnaud Ferrari, Bengt Lund-Jensen, Caterina Doglioni, Christian Ohm, Dave Milstead, Kerstin Jon-And, Richard Brenner, Rikard Enberg and Roman Paseschnik

 Written input submitted in December 2018 https://indico.cern.ch/event/765096/contributions/3295801/

In total around 160 inputs received: experiments, national inputs etc

Oral input to the ESG-meeting 6 November 2019.
 Summarized after local discussions on scenarios for future accelerators

Oral presentation ESG 20191106

View of the Swedish community

	2020-2040	2040-2060	2060-2080			
		1st gen technology	2nd gen technology			
CLIC-all	HL-LHC	CLIC380-1500	CLIC3000 / other tech			
CLIC-FCC	HL-LHC	CLIC380	FCC-h/e/A (Adv HF magnets) / other tech			
FCC-all	HL-LHC	FCC-ee (90-365)	FCC-h/e/A (Adv HF magnets) / other tech			
LE-to-HE-FCC-h/e/A	HL-LHC	LE-FCC-h/e/A (low-field magnets)	FCC-h/e/A (Adv HF magnets) / other tech			
LHeC-FCC-h/e/A	HL-LHC + LHe	C LHeC	FCC-h/e/A (Adv HF magnets) / other tech			

- Mid-term e+e- and long-term energy frontier hh is a goal
- Particle physics is a large worldwide community and future projects must sustain this in terms of number of running experiments worldwide
- Swedish community favours FCC-hh/energy frontier as a final destination
- CLIC-all scenario not favoured

- Most community support for
 - FCC-all scenario: precision EW/Higgs measurements and high energy frontier
 - LE-to-HE-FCC-h/e/A should e+e- be constructed elsewhere
- Support also expressed for a CLIC-FCC scenario:
 - Start with a minimal upgradable Higgs factory
 - Could possibly be integrated as a segment in a future FCC
 - Potential to serve as eSPS linac and potential to be used for ep-collisions at LHC/FCC
 - Options for the next stage after CLIC380 could be either further measurements of the Higgs potential (requiring at least 500 GeV) or going directly to FCC-hh. It should be guided by physics results, in particular Higgs precision measurements.
- DIS regarded as interesting (LHeC and LE-to-HE-FCC-h/e/A) should e+e- be constructed elsewhere
 - We do not think the LHeC should go ahead if there is no clear path/commitment to a later FCC.

Some comments to the aux questions

- Important to state that LHC/HL-LHC has highest priority for the near-term future
- Strongly in favour of a scientific diversity program proposals for PBC should not be ranked in the strategy process
- Important to express support for an e+e- machine, upgradeable to at least 500 GeV, regardless of location in the world
- In favour of strengthening the statement on collaboration with neighbouring fields like astroparticle physics, in particular in the area of DM search
- Strong statement that theory support is absolutely critical for the experimental efforts
- In favour of strengthening the statement on instrumentation and computing R&D, e.g. through working with EU; state importance of blue-sky R&D

EPPSU2020

Present European perspective on next priorities

- Should not commit to a detailed roadmap beyond 2060
- Next facility after LHC should be an e⁺e⁻ collider (Higgs factory precision frontier)

 * about 50% would prefer FCC ee; 5 out of 18 would opt for FCC all;
- Europe should lead the energy frontier (pretty much unanimous)
 - Japan and US voiced support
 - ☆ If e⁺e⁻ collider in Asia, next facility for Europe FCC hh
 - Some (very few) would even like to see LE-FCC followed by HE-FCC (if magnets not ready); ep and heavy ions programme included
 - ✤ HE-LHC has no traction
- Strong support for broad R&D in accelerator technologies (magnets including HTS, plasma wakefield, ERL) and projects (muon collider) by CERN in cooperation with National Labs and Institutes
- High priority for "diversity" programme with no explicit ranking

- Important to approach Bad Honnef in a spirit of compromise.
- * "We must, indeed, all hang together or, most assuredly, we shall all hang separately."

SPARES

ESG Working Groups

- WG1 Social and career aspects for the next generation
- WG2 Organizational aspects in the implementation of the European Strategy
- WG3 Relations with external bodies and fields of physics
- WG4 Knowledge and technology transfer
- WG5 Outreach, education and communication
- WG6 Sustainability and environmental impact

[Collider	Туре	\sqrt{s}	P [%]	N _{Det}	$\mathscr{L}_{inst}/Det.$	L	Time	Ref.
				$[e^{-}/e^{+}]$		$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	$[ab^{-1}]$	[years]	
BOOK	HL-LHC	pp	14 TeV	_	2	5	6.0	12	[23]
ם [HE-LHC	pp	27 TeV	_	2	16	15.0	20	[23]
20	FCC-hh	pp	100 TeV	_	2	30	30.0	25	[631]
brieting	FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[631]
Ĕ			$2M_W$	0/0	2	25	10	1-2	
			240 GeV	0/0	2	7	5	3	
			$2m_{top}$	0/0	2	0.8/1.4	1.5	5	
		(1y SD befor	re $2m_{top}$ run)			(+1)	
1	ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[335]
e			350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1	[339]
			500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5	
colliders,		(1	y SD after 2	250 GeV rur	n)			(+1)	
	CEPC	ee	M_Z	0/0	2	17/32	16	2	[502]
n			$2M_W$	0/0	2	10	2.6	1	
Tuture			240 GeV	0/0	2	3	5.6	7	
	CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[632]
			1.5 TeV	$\pm 80/0$	1	3.7	2.5	7	
ers			3.0 TeV	$\pm 80/0$	1	6.0	5.0	8	
er er		(2y	SDs betwee	n energy stag	ges)			(+4)	
met	LHeC	ep	1.3 TeV	_	1	0.8	1.0	15	[630]
гага	HE-LHeC	еp	1.8 TeV	_	1	1.5	2.0	20	[631]
ם [FCC-eh	ep	3.5 TeV	—	1	1.5	2.0	25	[631] maybild

Parameters of future colliders. from Briefing Book

. -

Oliver Bruning, ESG, 20191213

Introduction / Scope

Is it feasible to combine the CLIC and FCC civil engineering [staging]? BUT: This case is neither natural nor obvious: combing a straight tunnel with a circular one! Both CLIC and FCC civil engineering have been optimized for their individual requirements • 'Enforcing' the above synergy implies compromises that lead to non-ideal layouts that imply in turn performance loss and / or additional costs [e.g. different tunnel depth]

CLIC380 features two 3.5km long linacs and two 2.2km long Beam Delivery Sections, → two 5.7km long straight tunnels that connect at an angle of ca. 20mrad.

FCC features 8 straight sections of 1.4km and 2.8km length. Without modifying severely the FCC layout, FCC can 're-use' at most 2.8km of the CLIC tunnel. Perhaps a bit more if including the beam dump lines but that requires significant layout modifications for the FCC [e.g. much longer injection transfer lines]

Bigger synergies require a race-track configuration for the FCC Significant performance loss, additional CE [e.g. longer transfer lines] and challenges [e.g. combining several experiments and services in one straight section European Strategy Meeting at CERN, December 13th 2019 16

Oliver Bruning, ESG, 20191213

Summary and Conclusion:

- Solutions could exist but with a tunnel overlap of only 1.4km and at the price of a deeper CLIC tunnel
- Solutions could exist with a tunnel overlap of 2.8km but without CLIC extendibility to 48km and 3TeV

•	FCC with CLIC ² [11km] less a		7km] and 23%
•	 20% lower e while still re 	The proposed combination of the projects complicates the layouts of both machines and implies performance loss and	
•	The combine and implies r	additional civil engineering cost for both machines!	LHC tunnel
		Better to decide early on about the physics strategy entirely	
•	The FCC rac and cleaning	based on the scientific goals and to pursue either the CLIC or	from injection
•	Integrating the	the FCC study – but not a mix of both of them!	ions
	→ re-us	e or up-to 2751VICHF [1751VICHF for 7 km] CE investment [ca. 25kCHF per me	ter]
	→ but w	ith 2 kinks in the CLIC tunnel when being extended to full size [impact o	on
ре	rformance?]!!	°	

• This 'amortization' is small compared to the total FCC-hh project cost (1% of full FCC-hh cost estimate)

Physics Preparatory Group

PPG MEMBERS					
Strategy Secretariat					
Scientific Secretary (Chair)	Prof. Halina Abramowicz				
	(IL)				
SPC Chair	Prof. Keith Ellis (UK)				
ECFA Chair	Prof. Jorgen D'Hondt (BE)				
Chair EU Lab. Directors' Mtg	Prof. Leonid Rivkin (CH)				
SPC					
Prof. Caterina Biscari (ES)					
Prof. Belen Gavela (ES)					
Prof. Beate Heinemann (DE)					
Prof. Krzysztof Redlich (PL)					
ECFA					
Prof. Stanislaus Bentvelsen (NL)	ASIA/AMERICAS				
Prof. Paraskevas Sphicas (GR)					
Dr Marco Zito (FR)	Prof. Marcela Carena (USA)				
Prof. Antonio Zoccoli (IT)	Prof. Brigitte Vachon (Canada)				
CERN	Prof. Xinchou Lou (China)				
Dr Gian Giudice (CERN)	Prof. Shoji Asai (Japan)				

European Strategy Group (ESG)

Members

- The Strategy Secretary (chair)
- One representative appointed by each CERN MS (23)
- One representative appointed by each of the Labs participating in the European Laboratory Directors Group including its Chairperson (9)
- CERN DG
- SPC chair
- ECFA chair
- Chair EU Lab.Director's Meeting Invitees
- President of CERN Council
- One representative from each AMS and OS (6+3)
- One representative from the European Commission
- One representative from JINR
- Chairs of ApPEC, NuPECC, FALC, ESFRI
- Members of the PPG (17 Secretariat)

CERN's Future, Fabiola Gianotti, SPC, 23 Sep 2019

I think it would be good for CERN if the 2020 Strategy update recommended:

- □ the direction for a future collider at CERN: linear or circular
 → so that its technical and financial feasibility can be assessed by next Strategy update in ~2026 → pre-requisite for project approval by the Council
- a compelling scientific diversity programme at the injectors, complementary to high-E colliders for physics reach and size/type of projects (→ attract a diverse community).
 Based on input from Physics Beyond Colliders (PBC) study group.
- a vigorous and transformational accelerator R&D programme at CERN and other European laboratories and institutions: high-field magnets (including High-Temperature Superconductors), high-efficiency klystrons, high-gradient accelerating structures, plasma wakefield, feasibility of muon colliders, etc.

Timeline

Several years will be needed to assess the technical and financial feasibility of a future collider before the project can be approved by the Council, in particular to work through the administrative, political, legal and environmental procedures related to the tunnel excavation
 → a clear direction (linear or circular) in 2020 would allow much of this work to be accomplished by the ~ 2026 update of the ESPP

CERN's financial constraints over 2021-2025

do not allow CLIC and FCC to be both supported at the level needed for the next significant step: Technical Design Report by Strategy update in ~2026