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Take-home message 2/ 23

In turbulent non-magnetized weakly collisional plasmas, governed by kinetic
physics, the smallest scale that supports magnetic fluctuations is not the resistive
scale, as in MHD, but a larger scale, where magnetic perturbations are Landau
damped on electrons.

This has a relevance in the early stages of the magnetic field generation in the
universe, and it makes the fully kinetic simulation of non-magnetized dynamo
difficult.



Outline 3/ 23

� Background
I Turbulent dynamo in galaxy clusters
I Previous kinetic dynamo studies

� Modeling
I The collisionless, non-magnetized setup
I Gkeyll

� Landau damping effects
I No dynamo in simulations
I Landau damping of magnetic fluctuations
I Consequences on asymptotically scale-separated systems

� Conclusions



Galaxy clusters are collisionless and well magnetized 4/ 23

� Mass 1014−15M�
∼ 10% visible matter,
∼ 10% of which is galaxies.

� Intra-cluster medium:
T ∼ 1− 10 keV
n ∼ 102−5 m−3

L ∼ Mpc (= 3 · 1022 m)
velocity disp. 102−3 km/s

� B ∼ µG (= 10−10 T)

� Taking 10 keV and 103 m−3

λmfp ∼ 1021 m
ρe ∼ 3 · 106 m

Composite image of cluster IDCS J1426, blue: X-ray



Dynamo to explain magnetization of galaxy clusters 5/ 23

� Now: B ∼ 10−10 T (ρe ∼ 3 · 106 m)
� Biermann battery at ionization fronts

in the early universe (induction due
to misaligned n and T gradients)
Seed field: ∼ 10−23T

� Energy content in turbulent flows
(∼ observed velocity dispersion)
comparable magnetic field energy.

� Turbulent dynamo

Folded structure of magnetic field in
turbulent dynamo; hybrid simulation

[F. Rincon 2019 JPP]



High magnetic Prandtl number turbulent dynamo 6/ 23

Magnetic Prandtl number Pm = ν/η � 1, ν viscosity, η magnetic diffusivity
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High magnetic Prandtl number turbulent dynamo 7/ 23

� Assume non-magnetized
collisional viscosity,
Spitzer resistivity, and
u0 ∼ 100 km/s, l0 ∼ 1 Mpc,
T ∼ 10 keV, n ∼ 103/m3

� Re = u0l0
ν & 1

Pm = ν/η ∼ 1028

kν ∼ Re3/4/l0 ∼ k0

l0/λmfp ∼ 10
kη/k0 ∼ Re3/4Pm1/2 ∼ 1014

� Not much fluid cascade
� kν and kη well separated
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High magnetic Prandtl number turbulent dynamo 8/ 23

� Most of the scales of
interest are collisionless,
kinetic

� Smallest flow structures are
at kν ,
for k � kν flow is smooth

� Could mock up effect of
"fluid cascade" by smooth,
large scale forcing

� Caveat: Today B ∼ µG,
⇒ kηρe ∼ 1
Non-magnetized fluid
viscosity does not apply
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Kinetic dynamo studies in the literature 9/ 23

� Focus on high Prandtl numbers,
random forcing on box-size scale

� F. Rincon et al 2016:
Ions: Continuum kinetic.
Electrons: simple Ohm’s law.
Demonstrates magnetic field growth
in this hybrid system, and shows
that temperature anisotropy-driven
instabilities are active.

� D.A. St-Onge et al 2018:
Ions: Particle-in-cell.
Electrons: isothermal massless
fluid.
Clarifies essential role of
instabilities. Simulations proceed to
the saturated state.



The weakly collisional non-magnetized case 10/ 23

� At typical Biermann seed fields,
kinetic scales are non-magnetized.

� No problem resolving ρ scale
� How do electrons affect dynamo?
→ Fully kinetic kkν kηk0

Energy in flows

Magnetic energy
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for B~10-19G



The weakly collisional non-magnetized case 11/ 23

� Consider sub-viscous scales,
L0 ∼ l0 ∼ lν ∼ λmfp.

� Physics constants not modified
� To get Pm ≈ 20

(Rm ≈ 13 and Re ≈ 0.64)
Use T = 1 keV, n = 2.3 · 1028 m−3,
u0 = 0.35

√
T/mi, L0 = 9.73µm,

ln Λ = 10, λmfp = 1.25µm

� Galloway-Proctor model flow
u0{sin(kz+ sinωt) + cos(ky+ cosωt),
cos(kz + sinωt), sin(ky + cosωt),
with k = 2π/L0.
Chaotic flow, produces fast dynamo
Low critical Rm = u0l0

η

� Do it fully kinetically!

Lyapunov exp.
of G-P flow.
z = 0 plane

Dynamo growth rate
of G-P flow, vs. Rm

[figures from
S. M. Tobias (2020)
subm. J. Fluid Mech.]



The Gkeyll plasma physics framework 12/ 23

� The Gkeyll framework: Freely available plasma physics solver package,
using a discontinuous Galerkin scheme. https://gkyl.readthedocs.io

� Fully kinetic, gyrokinetic and advanced multi-fluid solvers.
� Kinetic-Maxwell solver: High order accurate. Discretization conserves

particles and energy exactly. Scales well on distributed memory clusters.
Permits noise free calculations of the distribution function. Serendipity basis
set provides efficiency at high dimensionality.

∂tfa + v · ∇fa + (ea/ma)(E + v ×B) · ∇vfa = C[fa]

� Inter- and intra-species Coulomb collisions, C[fa], modeled by a
conservative Dougherty operator (drag and diffusion in velocity space;
reproduces Spitzer resistivity).

� Has full Maxwell equations, but kinetics is non-relativistic.
� We need 3X3V, time dependent forcing.

https://gkyl.readthedocs.io


Simulation setup 13/ 23

� Exerting force on ions (added to eE)

f(x, t) = Cfmiu(t)/ti

u is G-P flow, ti = L0/
√

2T/mi; we set Cf = 1.
� Initial (seed) magnetic field

Bi = B0

∑
j 6=i,n

bij,n cos[nk(xi + ϕij,n)]

bij,n and ϕij,n random on [0, 1], n = 1, 2, ..., N , (N = 4)
B0 = 40 T (ρe ∼ 3µm).

� Both species initialized with Maxwellian with flow u(t = 0),
current density corresponding to B(t = 0), deposited into electron flows.



Magnetic field amplification using MHD induction equation 14/ 23

� Solve the MHD induction equation
using the PENCIL CODE

∂tB = ∇× (u×B) + η∇2B

� Use same initial condition
� After ≈ 1 turnover time

(tt = l0/u0 = 8.9 · 10−11 s)
exponential growth begins

� Changing spatial resolution from
123 to 323, leads to no appreciable
difference in results
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No magnetic field amplification in kinetic simulation 15/ 23

� Magnetic energy in kinetic
simulations strongly decays

Integrated magnetic field energy
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Red/blue/green: Contribution from x/y/z
field components. Black: total

Thermal energy: (3/2)niTiL
3
0 = 5.1 · 10−3 J.



Landau damping of magnetic fluctuations 16/ 23

� In a collisionless plasma Bz(x, t = 0) = B0 cos(kx) decays with damping rate

γ =
|k|3c2ve√
πω2

pe

=
|k|3veme√
πµ0nee2

ωpe =
√

nee2

ε0me
, ve =

√
2Te
me

[A. B. Mikhailovskii 1980 Plasma Phys. 22 133]

� Without effect of fields, current would decay on time scale (ve|k|)−1, due to
free streaming of electrons. E is induced to keep current running. |E| ∝ |j|

� Compare to damping due to resistive diffusion

γ =
k2

σµ0
≈ k2meνei

2µ0nee2

� Landau damping similar to the effect of scale dependent resistivity

1

σeff
=
|k|veme√
πnee2

� Effective magnetic diffusivity ηeff ∼ ηλmfp|k|



Landau damping of magnetic fluctuations 17/ 23

� Bz(x, t = 0) = B0 cos(kx) decays as

Bz ∝ exp(−γt) = exp(−k2ηt)

when ∂tB = η∇2B, η = (σµ0)−1

� in 1X2V simulations exponential
decay consistent with instantaneous
σeff = jy/Ey

� When λmfpk � 1
Spitzer result reproduced

� For low collisionality Cν � 1
⇒ λmfpk � 1, Landau damping of
magnetic field on electrons

� A stronger, wave number dependent
"diffusion"

Effective resistivity
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Dashed: Collisionless Landau damping



Landau damping of magnetic fluctuations 18/ 23

∂(mnVe)

∂t
+∇ ·Πe = −ne(E+Ve ×B) + Rei

� In a collisional plasma, electric force
is balanced by friction on ions
(resistivity)

� In collisionless plasma it is balanced
by viscous stress ∇ ·Πe,
involving off-diagonal terms in Πe

Importance of electron viscous stress
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Effect of magnetization 19/ 23

� Increase B(t = 0),
and so L0/ρe

� Perpendicular free
streaming of electrons
inhibited

� Distribution function
becomes gyrotropic

� Landau damping of
magnetic perturbations is
not relevant in magnetized
plasmas

Scaling with magnetization
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Driving current in kinetic simulations 20/ 23

� Consider Roberts flow

u0{cos(ky)−cos(kz), sin(kz), sin(ky)}

L0 = 1.22µm, B0 = 10 T, Cf = 3,
Cν = 0 (solid), Cν = 0.3 (dashed)

� Forcing introduces a current.
Unavoidable in a fully kinetic
setup, due to different transport
properties of electrons and ions.

� B(t→∞) ∼ eu0niµ0L0

force free field
� Perturbations decayed away

Integrated magnetic energy
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Long ago, in a galaxy cluster, far, far away... 21/ 23

� In resistive MHD, balance rate of stretching of magnetic fluctuations at
viscous scale uν/lν with dissipation rate at resistive scale η/l2η:

lη ∼ l0Re−3/4Pm−1/2 ∼ lνPm−1/2

� In collisionless non-magnetized system balance uν/lν and ηλ/l3L, and use
λmfp ∼ l0M0/Re

lL ∼ l0
M

1/3
0

Re5/6Pm1/3
∼ lν

M
1/3
0

Re1/12Pm1/3

When Re1/2/M2
0 � Pm, as for instance in galaxy clusters, lη � lL.



Long ago, in a galaxy cluster, far, far away... 22/ 23

kkν kηk0

Energy in flows

Magnetic energy
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� The magnetic spectrum cutoff is initially at inverse scale kL.
� As the magnetic field grows, at some point ρ−1

e passes kL,
then cutoff is at ρ−1

e .



Conclusions 23/ 23

� Using the kinetic-Maxwell solver Gkeyll, we have performed fully kinetic
simulations of forced model flows known to produce dynamo, focusing on the
weakly collisional, non-magnetized limit, and Pm� 1, with relevance to
earlier stages of dynamo in galaxy clusters.

� Landau damping of magnetic perturbations on electrons leads to a decaying
magnetic field energy.
We have not yet found dynamo growth in these kinetic simulations.

� Landau damping acts like a scale-dependent magnetic diffusion.
� In astrophysical systems with asymptotically large Pm, the cutoff of the

magnetic spectrum is at the "Landau damping scale", lL, or at ρe, whichever is
smallest (as long as ρe > lη).

� Beware of current drive due to forcing of flows in fully kinetic simulations.





Gkeyll info 2/ 2

� GITHUB
https://github.com/ammarhakim/gkyl

� The kinetic-Maxwell solver
J. Juno et al 2018, Discontinuous Galerkin algorithms for fully kinetic plasmas,
Journal of Computational Physics 353 110.

� The fluid solvers: L. Wang et al 2015, Comparison of multi-fluid moment
models with particle-in-cell simulations of collisionless magnetic reconnection,
Physics of Plasmas 22 012108.

https://github.com/ammarhakim/gkyl
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