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Where all this comes from?

● Many proposals along the years

– Convection zone, mean-field αΩ dynamo (Parker, 1955, Steinbeck, Krause 
& Radler, 1969, …), potential problems at high Rm.

– Interface dynamo,  α (convection zone)+ Ω (tachocline)   (Parker 1993, 
Charbonneau & MacGregor 1996-1997, Tobias 1996-1997)

– Convection zone + tachocline, flux-transport αΩ dynamo  (Dikpati & 
Charbonneau 99, Nandy & Choudhuri 2002, Guerrero & Dal Pino 2008)

– Near surface layer, distributed αΩ  + negative ∂rΩ (Brandenburg 2005), 

catastrophic quenching alleviated because magnetic helicity fluxes.
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Is the dynamo operating at the 
tachocline?

● Arguments against:

– Fully convective stars and partially convective stars exhibit the same behavior

– Global dynamo simulations with only a convective layer reproduce cyclic activity (e.g., 
Auguston et al. 2015, Strugarek et al., 2017, Warnecke et al. 2017)

Wright & Drake (2016)
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Is the dynamo operating at the 
tachocline?

● Arguments in favor:

– Tachocline is there with strong radial shear (helioseismology)

– ZDI observations of 

● Magnetic topology of young Suns and M-dwarfs (Donati et al. 2007, 2008, Jardine et al. 2008)

● Magnetic helicity (Lund et al. 2020)

Gregory et al. (2012)
Confusogram: Morin et al. (2010)Bp-tau

V2129 Oph
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Dynamo simulations with EULAG-MHD

● ILES: implicit large eddie simulations, maximize 
Re and Rm (see Strugarek et al. 2016)

● Energy equation solves for Θ’  about an ambient 
state, Θ

e 
(forcing and dissipation)

● Global in φ and θ, in r the simulations span from 
0.6R to 0.96R

● 128x64x64 grid points resolution
● Impermeable, stress free boundary conditions for 

the velocity field
● Radial field/Perfect conductor boundary 

conditions for the magnetic field
● Rotation rates from 7 to 63 days
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● The simulations develop 
tachoclines

● develop near-surface shear 
layers

● in some models the contours 
of iso-rotation are tilted

● in others they are vertical 
(Taylor-Proudman balance)

● unlike HD cases (Guerrero et 
al. 2013), even for the largest 
Ro, the differential rotation in 
the MHD models is solar-like

Remarks on differential rotation
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Shear profiles

Benomar et al. (2018)Kovari et al. (2018)

Guerrero (2020)
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Eddy size and turnover times 
(ref: Lehtinen’s talk)
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Mean magnetic fields, butterfly diagrams
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P
rot

 vs P
cyc

Lorenzo Oliveira et al. 
2020 (in preparation)

Magnetic cycles in 
solar twins: solar 
mass, metalicity, 
surface temperature. 
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Who sets the cycle period? 
A mean-field analysis (with the FOSA approximation) 
give us some hints

Moffatt (1968)
Pouquet et al. (1976)
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Dynamo sources below the convection zone
 α2Ω-dynamo driven by magnetic α-effect
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g0=1 m / s2

g0=50m / s2

Guerrero et al. 2019b
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Dynamo driven by shear and 
tachocline instabilities

(G. Monteiro, preliminary results)
● Inspired by Miesch et al. (ApJS, 2007), Miesch (ApJL, 2007)
● In collaboration with F. del Sordo,  A. Bonanno and P. Smolarkiewicz

● The EULAG-MHD simulations consider of a stable layer with forced shear

Shear profile forced 
on a time-scale, τ

s
 

Resulting <B
φ
>, P

cyc
 = 190 yr Resulting <H

c
>
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● Brunt-Väisäla frequency 
fundamental defining the growth 
rate of the instabilities
 

● In the convection zone the 
amplitude of the convective 
motions define the differential 
rotation

New solar dynamo model
(R. Barbosa, preliminary results)
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New solar dynamo model
(preliminary results)

● Differential Rotation ● Meridional Circulation
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New solar dynamo model
(preliminary results)

● Mean magnetic field  (averaged in φ)

● Antisymmetric fields
● P

cyc
 = 12 yr

● Magnetic buoyancy at 
middle to lower latitudes, 
stops before reaching the 
surface

● Field transported at r=0.85 
R

0
 towards equator and 

poles
● <B

r
> ~ 0.004 T mostly 

dipolar configuration  
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● <B
φ
> (r=0.85R

0
)
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New solar dynamo model
(preliminary results)

● Magnetic field lines
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Dynamo loop

Rotating 
turbulent 
convection 

∇ Ω(m=0)

Shear-current 
instability

Bϕ (m=0)

b '(m≠0)

αm=
τc

3ρ
⟨ j '⋅b ' ⟩

(m=0)

Bϕ (m=0) Bp(m=0)

Ω−effect

α2−effectTorsional oscillations
(Guerrero et al., 2016 
Kosovichev & Pipin, 2019)
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Conclusions

● We present global simulations where the dynamo operates in the radiative 
zone due to magneto-shear instabilities which result in non-zero magnetic 
and kinetic helicities

● The dynamos are of α2Ω type

● The toroidal field at the bottom gets unstable and buoyantly rises to the top

● New models are closer to the observations

● Upper 0.05% of the solar radius is missing.  A compressible solver is needed 
to resolve this region.

● Convergence of the results with numerical resolution. This requires 
improving parallelism and lots of computing time. 

● Fiduciary determination of the dynamo coefficients (test-field method)

Things to be done
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