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Introduction

*  Hydrodynamics is widely applicable effective description for many physical systems
at long length/time scales -> system can relax to approximate thermal equilibrium

o
—> powerful: universal description at finite T, symmetry principles
symmetries that underlie Navier-Stokes equations:
- time and space translations
- spatial rotations
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- often: extra U(1) symmetry (e.g particle number)

* topic of this talk:

perfect fluid description & example (part I)

& 1°t order hydrodynamics (part II)

of systems that are not necessarily boost-invariant



Motivation: why fluids without boost symmetry ?

* many systems in nature in which boost symmetry is broken

bird flocks in air electron gas moving 1n lattice of atoms
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[e.g.]). Toner Y. Tu, and S.
Ramaswamy 2005]

- existence of medium defines preferred frame:
—> important when interactions between fluid particles and medium cannot
be ignored
* Integrating out dof of medium: can loose symmetries
(e.g. Lorentz/Galilean boost) of the fluid particles



Motivation (cont’d)

¢ Lifshitz fluids (and their dual holographic black brane description)

* 1n CM: IR effective theories can have non-CFT scaling exponents
typically such theories have no boost symmetries
(ct. no-go theorem larer this talk) ;

Quantum
critical region

t— XNt , T — AT

Phase 1 Phase 2

. . quantity such as e.g
quantum critical point pressure

- near quantum critical points electrons may be strongly coupled =2 form a fluid

will see already at perfect fluid level: novel expression for speed of sound
also: new transport coetficients that signal boost breaking
—> new observable quantities

* to describe hydro phase of any field theory with scaling z>1 (z not 2) at finite T

we need to understand non-boost invariant hydro !



Further examples

* non-analytic dispersion relations of:
- capillary waves
- domain wall fluctuations in superfuid interfaces (ripplons)

requirements
- EM conservation: weak coupling of excitations to the medium

hydro regime:
interaction times/length scales of excitations with themselves << exc. with medium
(electrons in graphene)

o)

EFT pov: integrate out dofs of the medium in state that breaks boost symmetry
(simplest possibility: type I framid (requires E+P=0))

fddHa:AuJ“
A, = A8,

superfluid with spontaneously broken U(1) symmetry

TESW ~ Tﬁ,ljd + J, A, not symmettic



Main results

crucial ingredient in thermodynamics formulation:
extra term in 15 law of thermodynamics (kinetic mass density — velocity)

derivation of novel expressions for speed of sound (and attenuation)
new 1% order transport coefficients (as compared to Lorentz/Galilean case):
-10 dissipative, 2 hydrostatic non-dissipative, 4 nonhydrostatic non-dissipative
-for Lifshitz scaling: 7—1 -2
powerful technical tool:

use appropriate curved space for non-boost invariant systems
- absolute spacetime (aka Aristotelian geometry)



Outline

* Perfect fluids
- extra thermodynamic quantity: kinetic mass density
- most general stress tensor
- corrections to Euler equation
- new expressions for speed of sound
- brief illustration: Ideal gas of Lifshitz particles

* 1% order hydro
* - curved space formulation
- outline of the method (entropy current, hydrostatic PF)
- main results (constitutive relations and positivity of entropy current)
- effects on hydrodynamic modes (new (non)-dissipative effects)
- examples of effect on sound, shear, diffusion

e  QOutlook



Thermodynamics

* consider grand canonical ensemble with partition function

Z(T,V, i, v;) = Tr | e PH-nN—viPi)

temperature T, volume V, chemical potentials: mu and velocity v

1
* grand canonical potential Q(T,V, p,v;) = _Blogz

QO =-—-PV, dQ:—SdT—PCZV—PZd’UZ—Nd,LL
P pressure, s entropy, P momentum, N charge/# particles

- express in terms of densities
momentum density

= thermodynamic identities /
* total energy density E=Ts— P+ virpi + pn
.« 1ot law d€ = Tds + v'dP; + pdn.

internal energy: € = € — pv?



Kinetic mass density

There is only one vector " so momentum density:

; p s (in general) new thermodynamic quantity:
Pi = pv ““kinetic mass density”
(expresses relation between momentum and velocity)

15t law:

1
dP = sdT + ndp + §pdv2 P(T, p,v?).

oP
f can be computed e.g. as: p(T,p,v*) =2 (W)
2 )T,

* reduces to known quantities when system has boost symmetry:

Lorentz (relativistic) p=E+P (enthalpy)

Bargmann (non-relativistic) p = mn (particle mass density)



Energy-Momentum tensor and charge current

underlying microscopic theory is assumed to have at least symmetries:

Hw})u‘]l]Q

—> there is conserved energy-momentum tensor and conserved current
with associated conserved charges (enough for the effective fluid theory !)

spacetime tensors/transform in rep of symmetry algebra

{ b Vs ¥ Ly (if more symmetries, e.g. boosts, then larger algebra)

* perfect fluid in LAB (or rest) frame

-

\_

energy density

momentum density

TH — —& . - PY
v —(E+ P)v* P& + pv'u;

energy flux

pressure + momentum flow

charge density
JH = (n, mﬂ)

charge flux

~

/

Lorentz (relativistic)

C 0
Bargmann (non-relativistic) T =md,;



Entropy current and (modified) Euler equation
Conservation of energy-momentum/particle current

- particle number conservation 8tn -+ az (nvz) — (0

- entropy current 0¢s + 0; (S”Ui) =0

* FEuler equation of homogeneous and isotropic fluids gets an extra term

.G

3 1. % 1
7+ (5 V)5 = —- VP — = [dop + Bi(p)|

Galilet fluid: extra term vanishes due to particle number conservation

1—1__,'2
E+P

relativistic fluid: correct extra term (VP + 7O, P )



Speed of sound

standard LL formula for speed of sound does not hold anymore

* fluctuation analysis of conservation equations
(around background with zero velocity for simplicity): novel sound speed

eneralizes 5 AP
2 o 8 p 0 2) . ) Vg = (d_Q) .
Ve = non-relativstic po ) 20
po \Ono/ = when p=mn

no

without U(1) current 3

s &+ P <0P0) generalizes (%)

Po & relativistic  \ &g
> new formula for Lifshitz perfect fluid: 2_ bt h
2 =3
PO

scale Ward identity ¢t — A*t and T* — Az?

- more complicated expressions around background with non-zero v
(reproducing correct transformations for boost-inv. cases)



|deal gas of Lifshitz particles

gas of N identical free Lifshitz particles with single-particle

Hamiltoniana; o\ Z
_ 2\ 2
H, = X (p?)

z=1": A= - no boost invariance for
1 7z not equal to 1.2
z=2: = — : ’
2m
* momentum as - 1 \=71° 1 B
funce £ veloci k= X —— U .
unction ot ve OClty Z (,{;’2) 3z—1)

* sound modes z—1 1
1 ve = # (kpT) = A=  (from scaling analysis)
w = vk .

-contrast with dispersion relation of Lif particle: W = C; k r

k— ak, w— o w



Boltzmann gas

partition function:

Z(N,T,V,7) = % Zy(T,V, 7))V

ZI(TVv)—Vfd"“ e~ P3P f=mr.
(%) :
& n
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* grand canonical partition function:

Z(u,T,V,7) = f: PN Z(N. T, V,5) = i L (65“21(T, V,a))N

|
N=0 N=0 N

SN

8 =9



Thermodynamics

at zero velocity (see also Yan(2000)):

* 1deal gas law PV = NLBT

* equipartition: Uy = (]_3]0) = _621;132 = éN kT
z
. Cv d ~ _ Cp d
* heat capacities C — = p=———=—+1
V=TNkg 2 kg 2
_ Cp z
* adiabatic expansion PV = constant 7= _V =1+ d

* mass/particle pP=po (1 + 2(d+2) v [d+2]2 V2

N
* speed of sound Cz = (d+ Z)I, [c[li]2] (kBT)2(T))\% 2 = ’Tp—
0




Ist order Hydro: prescription

derivative expansion around local thermal equilibrium
- focus on small fluctuations: 15t order in derivatives

* hydrodynamic frame choice: specify choice local fluid variables:
temperature, velocity
* general constitutive relations for conserved currents and entropy current

* positivity of entropy production (restrictions on free functions in const.

rel.)

—> allowed transport coefficients

- subsequently examine: effect on dispersion relations of hydrodynamic modes

highly beneficial tools: curved space
& hydrostatic partition function/Lagrangian formulation: non-dissipative transport



Curved geometry for non-boost invariant fluids

non-boost invariant systems live on the geometry of absolute spacetime
(aka Aristotelian spacetime)

time
T
- clock form Tu
. . L a b
- spatial mettic ;= Ogpe 1€
V1, =0, Vuhy,=0. .
ep Space
* useful quantities:
- torsion tensor: Tuy =— a;ﬂ'u — 81/7-[1,

1

- extrinsic curvature K, =—=Lyhu



Geometry and hydrostatic partition function

stationary curved background Mg
. . _ —H/T
time-translations symmetry generated by H Z="TIr [e ]

for weakly curved background = hydrostatic partition funtion
(or equilibrium partition function)

time-translation of background LpT, =0,
generated by Killing vector  3# Lgh,, = 0.
—> gives local temperature and local velocity: T =1/(1up")
ul‘l’ f— T/B/“L , UHTM — 1
(analytically continue time)
Supr = —tlog Z . detivative expansion: SHPF = Z SghP)F :

n

0gSHS = / d*lz e (_TM‘S&TM + %T#V‘Sﬁhuv + FM‘SEBM)
M



Geometry and equilibrium partition function

* for background with time symmetry: Killing vector 3 T = 1/(mup")
ut =Tp",
- on flat spacetime: u# = (1,v%),
can build two scalars ) _
(at 0% order): T u? = hy pu”uf. ( = v* on flat spacetime)

—> hydrostatic partition function: S(O) = /M d™ 1z eP (T, U2)a

- 1
05 = / dd+1.’178 (—T#()Tp + §T# 5}1#!/) T#u — _T#Ty + T#phpu ’

-gives covariant

EM tensor: T, = —(f,' + p)'u'#TV + P(Sl’/‘ + pu.#'uph-py

-EM conservation from 1 " " B l » B
diffeomorphism invariance € 6"’ (eT P) +T aPTu 2 r aphuu =0.



Entropy current

* 2nd law of thermo: 6_13” (eS*) > 0.

entropy current has canonical and non-canonical part: S k=80 +SE.,
15 1 > K K RV K
Szfg—'_fp Sca.n:_T Vﬂ +P,8

divergence takes form:

) 1 , )
[ 10 (e5%) = (T4 =Ty ) Lo — 5 (T =Ty ) Ly + 7', (esn‘m)}

split corrections to perfect fluid:
" — (o) - T# + TII:ILS + TltILHS 3 * dissipative
T T(’(‘)')’ = TE" + Tl + Tns - * hydrostyatic non-dissipative
* non-hydrostatic non-dissipative



Properties of the 3 parts

- dissipative produces entropy:

1

e 10, (eS*) = TELsT, — ;

TISLULIBhMV Z O .

- non-hydrostatic non-dissipative does not contribute to the divergence:

| QY
TltILHsﬁﬁTN - §T§Hsﬁﬁhuv =0.

- hydrostatic non-dissipative cancels divergence of non-canonical part

_ | —
e 0, (eSt ) = —ThsLsT, + 5 Ths L gl



Hydrostatic non-dissipative contributions

Ist order terms in HPT: 2 possible terms

Sa) = /dd+1xe (Fu(T, u?)v0,T + Fy(T, u2)v“8pu2)

need to convert to Landau frame T u” = —E&ut,

resulting EM tensor takes form:

1 1

T(ﬁil)/HS 2"Hs (Lﬂhaﬁ — uaLlpTp — UﬁLﬁTa) + 277&'; . af
1 1
+2nfc>t ﬂwaﬂ + 277ext ﬁKaﬂ ;

wpp = Opuy — Opup

—> 2 hydrostatic non-dissipative transport coefficients

- can solve for the non-canonical part of entropy current



Non-hydrostatic non-dissipative

BY not necessarily Killing vector anymore:

- more possible terms in Lagrangian:

SNHS = /dd+1xe (Fgu“BMT + F4u“6#u2 — TFsv" LT, — 2TF6u“v”£5hW)

- 4 non-hydrostatic non-dissipative transport coefficients



Non-hydrostatic part (dissipation)
contributing to divergence of entropy current can be written as

1
e19, (eSH) = —— (Tg’)’ - Tg’)’HS) (Lahy — byt Loy — hypuP LouTy) |

2T
'\\ fluid variables

constitutive relations for non-hydrostatic part of EM tensor:

vV 1 K 174
[ T(’{')’ — TG)HS — 577“””" (Luhpe — hgotLyTy — hpt"Loy75) + CHPLyT, }

positivity of entropy production: CHYP s zero

= eta-tensor can be obtainted by decomposing into SO(d-1) invariant tensors
- symmetric part is dissipative
- antisymmetric part is (non-hydrostatic) non-dissipative



Results in flat space

1
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10 dissipative transport coefficients.
& certain conditions to make divergence of S quadratic form

(f1 identified also in:



Hydrodynamic modes (linearized around v=0)

/ new

. 2 .
Ty = —C0ii0k" —n(Biv; + djv; — Ea;akvk) ...,

compute (generalized) Navier-Stokes equations and consider linearized perturbations

J

7 : .
g —iﬂkQ : with multiplicity d — 1,
P0
Weound = Tk — iLk2, with multiplicity 2,
: 1 - 2 :
sound attenuation | " = =id | 2 4 moad
P [Co + d( )7)0] vs + Mo,
Lifshitz fluid 5 gO + P,

1 Mo
= —(d—-1)—
2T% +T% =0. d( )p0+2d pg
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Outlook

- Kubo formulae:
relate individual transport coefficients to particular linear respons

n~ lim,,_,o %(<TT> - <TT>leading)'

- hydrodynamic modes around non-zero velocity configurations
- stability of hydrodynamic spectrum at 1st order in curved spacetime
- include U(1) charge current (see also

- fluid/gravity correspondence/ holographic computation of transport
/universal behaviour

other aspects for non-boost hydro:
momentum dissipation, turbulence, shock waves, surface phenomena,
non-boost inv. fluids on surfaces

- experimental consequences/inventory of type of systems
* corrections to Euler/Navier-Stokes involve kinetic mass density:
determine velocity profile using measurements ?

- applications to astrophysics and cosmology



The end



