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Introduction 

• topic of  this talk:  
perfect fluid description & example (part I)
& 1st order hydrodynamics (part II)
of  systems that are not necessarily boost-invariant

• Hydrodynamics is widely applicable effective description  for many physical systems 
at long length/time scales -> system can relax to approximate thermal equilibrium

à powerful: universal description at finite T, symmetry principles

symmetries that underlie Navier-Stokes equations:
- time and space translations

- spatial rotations
- boosts

- often: extra U(1) symmetry (e.g. particle number) 



Motivation: why fluids without boost symmetry ?  

• many systems in nature in which boost symmetry is broken
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[e.g. J. Toner, Y. Tu, and S. 
Ramaswamy 2005] 

bird flocks in air electron gas moving in lattice of  atoms 

- existence of  medium defines preferred frame:
à important when interactions between fluid particles and medium cannot 

be ignored 
• integrating out dof of  medium: can loose symmetries 

(e.g. Lorentz/Galilean boost)   of  the fluid particles 



Motivation (cont’d) 

• Lifshitz fluids  (and their dual holographic black brane description)

• in CM: IR effective theories can have non-CFT scaling exponents
typically such theories have no boost symmetries
(cf. no-go theorem larer this talk)

- near quantum critical points electrons may be strongly coupled à form a fluid

will see already at perfect fluid level: novel expression for speed of  sound 
also: new transport coefficients that signal boost breaking 
à new observable quantities 

• to describe hydro phase of  any field theory with scaling z>1 (z not 2) at finite T    
we need to understand non-boost invariant hydro ! 
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Further examples

• non-analytic dispersion relations of: 
- capillary waves 
- domain wall fluctuations in superfuid interfaces (ripplons)

requirements
- EM conservation: weak coupling of  excitations to the medium
- hydro regime: 

interaction times/length scales of  excitations with themselves << exc. with medium

• EFT pov: integrate out dofs of  the medium in state that breaks boost symmetry
(simplest possibility: type I framid (requires E+P=0))

• superfluid with spontaneously broken U(1) symmetry
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not symmetric

Nicolis,,Penco,Piazza, Rattazzi (2015) 

Watanabe,Murayama(2014) 

Lucas,Fong(2017) (electrons in graphene) 



Main results

• crucial ingredient in thermodynamics formulation:  
extra term in 1st law of thermodynamics (kinetic mass density – velocity)

• derivation of  novel expressions for speed of  sound (and attenuation) 

• new 1st order transport coefficients (as compared to Lorentz/Galilean case):

-10 dissipative, 2 hydrostatic non-dissipative, 4 nonhydrostatic non-dissipative

-for Lifshitz scaling: 7 – 1 – 2 

• powerful technical tool: 
use appropriate curved space for non-boost invariant systems 
- absolute spacetime  (aka Aristotelian geometry)
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Outline

• Perfect fluids
- extra thermodynamic quantity: kinetic mass density 
- most general stress tensor
- corrections to Euler equation
- new expressions for speed of  sound 
- brief  illustration: Ideal gas of  Lifshitz particles

• 1st order hydro 
• - curved space formulation 

- outline of  the method (entropy current, hydrostatic PF)
- main results (constitutive relations and positivity of  entropy current) 
- effects on hydrodynamic modes (new (non)-dissipative effects) 
- examples of  effect on sound, shear, diffusion 

• Outlook

. 



Thermodynamics

• consider grand canonical ensemble with partition function

temperature T, volume V, chemical potentials: mu and velocity v 

• grand canonical potential

P pressure, s entropy, momentum, N charge/# particles 

• total energy density

• 1st law

Z(T, V, µ, vi) = Tr
h
e��(Ĥ�µN̂�viP̂i)

i

⌦(T, V, µ, vi) = � 1

�
logZ

d⌦ = �SdT � PdV � Pidvi �Ndµ

à thermodynamic identities

- express in terms of  densities
momentum density

internal energy:



Kinetic mass density
There is only one vector so momentum density:  

1st law: 

is (in general) new thermodynamic quantity:
``kinetic mass density’’ 

(expresses relation between momentum and velocity)

can be computed e.g. as: 

• reduces to known quantities when system has boost symmetry:

Lorentz (relativistic)

Bargmann (non-relativistic)

(enthalpy)

(particle mass density)



Energy-Momentum tensor and charge current

underlying microscopic theory is assumed to have at least symmetries:

à there is conserved energy-momentum tensor and conserved current
with associated conserved charges (enough for the effective fluid theory !)

spacetime tensors/transform in rep of  symmetry algebra
(if  more symmetries, e.g. boosts, then larger algebra)

• perfect fluid in LAB (or rest) frame

Tµ
⌫ =

✓
�E ⇢vj

�(E + P )vi P �i j + ⇢vivj

◆
Jµ =

�
n, nvi

�
energy density

energy flux

momentum density

pressure + momentum flow

charge density

charge flux

T 0
j = mJj

T i
0 = �T 0

iLorentz (relativistic)

Bargmann (non-relativistic)



Conservation of  energy-momentum/particle current

Entropy current and (modified) Euler equation

- particle number conservation @tn+ @i
�
nvi

�
= 0

- entropy current @ts+ @i
�
svi

�
= 0

• Euler equation of  homogeneous and isotropic fluids gets an extra term

Galilei fluid:  extra term vanishes due to particle number conservation

relativistic fluid: correct extra term                             term   



Speed of sound

standard LL formula for speed of  sound does not hold anymore 

• fluctuation analysis of  conservation equations
(around background with zero velocity for simplicity): novel sound speed

generalizes
non-relativstic

when

without  U(1) current generalizes
relativistic 

à new formula for Lifshitz perfect fluid: 

- more complicated expressions around background with non-zero v
(reproducing correct transformations for boost-inv. cases)  

scale Ward identity



Ideal gas of Lifshitz particles

gas of  N identical free Lifshitz particles with single-particle 
Hamiltoniana;

• momentum as
function of  velocity

z = 1 : � = c

z = 2 : � =
1

2m

- no boost invariance for
z not equal to 1,2

• sound modes
(from scaling analysis)

-contrast with dispersion relation of   Lif particle: 

k ! ↵k , ! ! ↵z!



Boltzmann gas

partition function: 

- approximation valid when:

• grand canonical partition function:



Thermodynamics 

• ideal gas law

at zero velocity (see also Yan(2000)):

• equipartition: 

• heat capacities

• adiabatic expansion

• mass/particle

• speed of  sound 

z = 1 : c2s =
c2

d2
z = 2 : c2s =

d+ 2

d

kBT

m



1st order Hydro: prescription

derivative expansion around local thermal equilibrium
- focus on small fluctuations: 1st order in derivatives 

• hydrodynamic frame choice:  specify choice local fluid variables:     
temperature, velocity

• general constitutive relations for conserved currents and entropy current

• positivity of  entropy production (restrictions on free functions in const. 
rel.) 

à allowed transport coefficients

- subsequently examine: effect on dispersion relations of  hydrodynamic modes

highly beneficial tools: curved space
& hydrostatic partition function/Lagrangian formulation: non-dissipative transport 



Curved geometry for non-boost invariant fluids

- clock form

- spatial metric

space

time

- torsion tensor: 

- extrinsic curvature

non-boost invariant systems live on the geometry of  absolute spacetime
(aka Aristotelian spacetime)

• useful quantities: 



Geometry and hydrostatic partition function 

stationary curved background 
time-translations symmetry generated by H  

for weakly curved background à hydrostatic partition funtion
(or equilibrium partition function)

time-translation of  background 
generated by Killing vector 

à gives local temperature and local velocity:

(analytically continue time)

derivative expansion:



Geometry and equilibrium partition function

• for background with time symmetry: Killing vector 

can build two scalars
(at 0th order): 

à hydrostatic partition function: 

-gives covariant 
EM tensor: 

- on flat spacetime:

-EM conservation from
diffeomorphism invariance

(         on flat spacetime)



Entropy current

• 2nd law of  thermo: 

entropy current has canonical and non-canonical part: 

à

divergence takes form:

split corrections to perfect fluid:
• dissipative
• hydrostyatic non-dissipative
• non-hydrostatic non-dissipative



Properties of the 3 parts

- dissipative produces entropy: 

- non-hydrostatic non-dissipative does not contribute to the divergence:

- hydrostatic non-dissipative cancels divergence of  non-canonical part 



Hydrostatic non-dissipative contributions

- can solve for the non-canonical part of  entropy current

1st order terms in HPF: 2 possible terms

need to convert to Landau frame

resulting EM tensor takes form: 

à 2 hydrostatic non-dissipative transport coefficients



Non-hydrostatic non-dissipative

not necessarily Killing vector anymore: 

- more possible terms in Lagrangian:

à 4 non-hydrostatic non-dissipative transport coefficients



Non-hydrostatic part (dissipation)

contributing to divergence of  entropy current  can be written as 

constitutive relations for non-hydrostatic part of  EM tensor: 

positivity of  entropy production: is zero

fluid variables

= eta-tensor can be obtainted by decomposing into SO(d-1) invariant tensors
- symmetric part is dissipative
- antisymmetric part is (non-hydrostatic) non-dissipative



Results in flat space

10 dissipative transport coefficients. 
& certain conditions to make divergence of  S quadratic form

Hoyos,Kim,Oz(2013) )(f1 identified also in:



Hydrodynamic modes (linearized around v=0)
new 

compute (generalized) Navier-Stokes equations and consider linearized perturbations

sound attenuation

Lifshitz fluid
=



Outlook

- other aspects for non-boost hydro:

- fluid/gravity correspondence/ holographic computation of  transport
/universal behaviour

- experimental consequences/inventory of  type of  systems
• corrections to Euler/Navier-Stokes involve kinetic mass density:

determine velocity profile using measurements ? 
- applications to astrophysics and cosmology

- Kubo formulae:
relate individual transport coefficients to particular linear respons

momentum dissipation, turbulence, shock waves, surface phenomena,
non-boost inv. fluids on surfaces 

- hydrodynamic modes around non-zero velocity configurations
- stability of  hydrodynamic spectrum at 1st order in curved spacetime
- include U(1) charge current (see also Novak, Sonner, Withers(2019) )



The end


