Cosmic Particles at Extreme Energies

Michael Unger

Karlsruhe Institute for Technology

EXTREESSEN DACE

Energy Spectrum of Ultrahigh-Energy Cosmic Rays (UHECRs)

Energy Spectrum of Ultrahigh-Energy Cosmic Rays (UHECRs)

Energy Spectrum of Ultrahigh-Energy Cosmic Rays (UHECRs)

Detection of UHECRs: Air Showers

fluorescence telescope

particle detector

Telescope Array Minchie 35 40 kiv

UHECR Observatories

Pierre Auger Observatory

Telescope Array

UHECR Observatories

Pierre Auger Observatory

Astrophysics at Extreme Energies
Particle Physics at Extreme Energies

Astrophysics at Extreme Energies

• Particle Physics at Extreme Energies

EXTERIOSSIEN DAG

Source Candidates

magnetic confinement during acceleration

using LHC magnets at 10²⁰ eV:

MIAPP review, Front.Astron.Space Sci. 6 (2019) 23

Propagation of UHECRs in Photon Fields

Greisen, Zatsepin & Kuzmin (GZK) 1966

 $A + \gamma_{\mathsf{CMB}} \rightarrow (A-1) + p/n$

Propagation of UHECRs in Photon Fields

Energy Spectrum

Energy Spectrum

Energy Spectrum

UHECR2018 Paris

Difference in Northern and Southern hemisphere? ightarrow UHECR Spectrum Working Group (TA+Auger)

Telescope Array Coll. ApJ 858 (2018) 2 Pierre Auger Coll. PRD90 (2014) 12 and 1708.06592 A. Yushkov for the Auger and TA Coll. EPJ210 (2019) 01009 MIAPP review, Front.Astron.5pace Sci. 6 (2019) 23

Telescope Array Coll. ApJ 858 (2018) 2 Pierre Auger Coll. PRD90 (2014) 12 and 1708.06592 A. Yushkov for the Auger and TA Coll. EPJ210 (2019) 01009 MIAPP review, Front.Astron.Space Sci. 6 (2019) 23

Telescope Array Coll. ApJ 858 (2018) 2 Pierre Auger Coll. PRD90 (2014) 12 and 1708.06592 A. Yushkov for the Auger and TA Coll. EPJ210 (2019) 01009 MIAPP review, Front.Astron.Space Sci. 6 (2019) 23

GZK Flux Suppression?

Maximum Rigidity Model, Peters Cycle?

energy spectrum at source $\propto (E/Z)^{-\gamma}$

Maximum Rigidity Model, Peters Cycle?

energy spectrum at source $\propto (E/Z)^{-\gamma}$

Photonuclear Interactions in Source Environment?

Photonuclear Interactions in Source Environment?

analytic example: full spallation of nucleus A, diffusion $\tau_{\rm esc} \propto E^{\alpha}$, $\tau_{\rm int} \propto E^{\beta}$

Single Mass + Photonuclear Interactions in Source Environment

MU, G. Farrar, L. Anchordoqui, PRD 92 (2015) 123001

Peters Cycle (Galactic Composition) + Photonuc. Int. in Source

Arrival Directions – Blind Search

Telescope Array (equatorial coordinates)

- energy threshold 5.7 imes 10¹⁹ eV
- search radius 25°
- $n_{\rm obs} = 38$, $n_{\rm exp} = 14.2$
- 5.1 σ local significance
- 0.21% post-trial chance probability

Pierre Auger Observatory (Galactic coordinates)

- energy threshold 3.8 imes 10¹⁹ eV

-90

- search radius 27 $^\circ$
- $n_{\rm obs}=188$, $n_{\rm exp}=125$
- 5.6 σ local significance
- 2.5% post-trial chance probability

-5 6

Arrival Directions – Catalogue-based Analysis

L. Caccianiga for the Pierre Auger Coll. ICRC19, ApJ853 (2018) 2

(using flux-weights attenuated for cosmic-ray energy loss during propagation)

Caveat: Deflections in Galactic Magnetic Field

D. Harari

MPIFR (left: M51, right: NGC891)

Planck PI@30 GHz

backtracking through magnetic field model variations at different rigidities R = E/Z

Astrophysics at Extreme Energies
 Particle Physics at Extreme Energies

Beam Luminosity

Particle Detector

- $\sqrt{s_{\sf pp}}$ up to 400 TeV
- 20 kt water-Cherenkov
- 25 Gt air calorimeter

UHE Proton+Proton Cross Section

Pierre Auger Coll., PRL109 (2012) 062002 and Telescope Array Coll. PRD 92 (2015) 032007

Pierre Auger Coll., PRD **D91** (2015) 3, 032003

Muon Production in Air Showers

Summary: Cosmic Particles at Extreme Energies

previously

today

Las Meninas by Diego Velazquez 1656

Las Meninas by Pablo Picasso 1957

Summary: Cosmic Particles at Extreme Energies previously

Las Meninas by Diego Velazquez 1656

Las Meninas by Pablo Picasso 1957

today

Summary: Cosmic Particles at Extreme Energies previously

Las Meninas by Diego Velazquez 1656

Las Meninas by Pablo Picasso 1957

today

Las Meninas by Diego Velazquez 1656

Las Meninas by Pablo Picasso 1957

Summary: Cosmic Particles at Extreme Energies previously today mixed! proton! dipole! hot spot? multiplets cutoff cutoff? 37 ٠ e^+e^- dip! 14 14 $A + \gamma$ ankle? GZK or E_{\max} ? GZK!

Las Meninas by Diego Velazquez 1656

Las Meninas by Pablo Picasso 1957

Stay Tuned!

Under Construction: AugerPrime

arXiv:1604.03637

Under Construction: TAx4

EPJ210 (2019) 06001

Launch 2029: POEMMA?

PRD101 (2020) 023012