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Coronal Heating problem

Random footpoint
motion creates
magnetic stresses
which gets relieved
in different ways.
Depending on the
exact mechanism,
we have different
theories.
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T'heories of coronal heating

* In general, two types of
theories:

* By Alfven waves
* By nanoflares

* Both are impulsive in
nature and its exact
details depend on the
local plasma conditions.

Sakurai 2017



Heating the active regions

Some concensus that active regions are definitely heated, at
least partially, by nanoflares. (e.g. Ishikawa et al. 2017).

Wave heating scenarios are also being studied.
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* Was done on quiscent active regions.

* Detected temperature > 10 MK. Cannot be explained
without invoking the nanoflare theory:



Predictions

e Nanoflares should occur through out the corona
as the temperature do not show huge variation
across the corona.

e The number distribution of nanoflares should
satisfy the Hudson’s criterion N(E) x E~%,a > 2
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Related to quiet sun

< Flare frequency over a large |
energy range well modelled by . et A
. zm’: 68:32551 99;%;0::3’15:;01 TING5A
a powerlaw with powerlaw e 0 T
index 1.8 (Aschwanden et al.
2000)

Shimizu (1997). Yohkoh/SXT
S: N(E,)=E, 74 N=291

C: N(E,)=E, 2% Ne2878

<= Nanoflares not important for ;
coronal heating !! 2 SXR
= Problems:
< Definition of flare
<= Instrumental resolution
NANOFLARES MICROFLARES MILLIFLARES
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Crosby, Aschwanden, & Dennis (1993); SMMHXRBS >25 keV



New approach to old problem

Pauluhn & Solanki (2007) tries to model quiet sun
radiance timeseries using impulsive events with 5 free

parameters:
maximum and minimum flare amplitude
powerlaw index of flare frequency distribution
damping time of flare

flaring probability
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Particle acceleration 1in quiet sun

e Turbulent reconnection
can happen easily in the
solar corona due to
presence of multitude
of Alfven waves and
turbulent medium.

* Particle acceleration
has been studied in
such medium by several
authors (e.g. Pisokas et

al. 2017, 2018, Isliker et

al. 2017)
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Solar radio emission

Solar radio emission: a) thermal
bremsstrahlung b) radio bursts

Radio bursts: Coherent emission mechanism:
caused by plasma instabilities due to the
motion of a beam of energetic electrons

Coherent emission results in high brightness
temperature; easily detectable in radio



Past works 1n radio

* The powerlaw index is jol | |
greater than 2. gm
|
ol | ||
* Concerned noise storms. o
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Impulsive events in quiet sun

<= Sharma et al. (2018) showed the presence of very small scale
impulsive events in the quiet sun.
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<= Powerlaw index<2.

< Determination not
robust.

<= The authors
themselves suggest
that the fit is limited
by the lack of data
points at the high Sim
regime.

Sharma et al. 2018
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Figure 10. Histogram plot showing the power-law fit to the tail of the S,
distribution for three of the frequencies for data from one of the baselines. The
best-fit index, «, and the associated uncertainty are mentioned in the legend.



Our goal

* To look for any impulsive emission from the quiet sun.

* Investigate if the detected impulsive emissions satisty
the necessary conditions of coronal heating.



Solar conditions

Chose to work with

MWA data from
2017/11/27.

Very quiet.

No X-ray flare, radio

flare reported.

Well suited for such an
investigation.

HMI continuum - DAV SN




Data analysis

* Imaged 70 minutes of data
at 4 frequencies near 98,
120, 132 and 160 MHz at
0.5§s cadence.

* Imaging was done in a
completely automated
manner using the
Automated Imaging
Routine for Compact
Arrays for Radio Sun
(AIRCARS, Mondal et al. Mondal et al. 2020b

2019); ~33000 images made
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What 1s different?

* Data from the Murchison Widefield Array

* Automated Solar Imaging pipeline for Compact Arrays
for Radio Sun (Mondal et al. 2019)

* High dynamic range images

* Produce thousands of images in manageable time



lemporal width distribution
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Spatial distribution
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Characteristics

Clearly show up as a powerlaw tail in histogram.

Impulsive in nature, Median duration: -1s; Powerlaw
distribution in widths.

Present everywhere on the Sun. No evidence of
clustering along both time and location.

No correlation observed between frequencies: Narrow

band.
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e Evidence of small scale reconnections

* Electrons beam emits radiation and gets dissipated very
close to site of origin.

* Energy dumped into the corona satisfies the coronal

heating budget.



Parker Solar Probe’s solar encounter

Bale et al. 2019

‘jets’ or ‘switchbacks’

PSP spacecraft
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Similarities

Magnetic switchbacks Impulsive emissions
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Similarities

Magnetic switchbacks Impulsive emissions
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Similarities

e Bale et al. 2019 noted that the magnetic switchbacks
were detected in ~-6% of the observation duration.

* Very similar to the fractional time impulsive events are
detected in our work.



Producing these simultaneously
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Switchbacks through turbulence

» Squire et al.
2020
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Switchbacks can be produced by spectrum of Alfvenic
fluctuations advected by a rapidly expanding flow.



Summary

For the first time found evidence of ubiquitous
impulsive emissions in the quiet sun.

Energy enough to maintain the high temperature of the
corona.

Properties consistent with being produced by magnetic
reconnection.

these impulsive emissions and the magnetic switchbacks
observed by the Parker Solar Probe, might have similar
origin.
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