In-situ switchback formation

A computational study

Virtual Nordic Dynamo Seminar, Sep 2020

Jonathan Squire, University of Otago, New Zealand

Ben Chandran (UNH) + Romain Meyrand

THE ASTROPHYSICAL JOURNAL LETTERS, 891:L2 (7pp), 2020 March 1 © 2020. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/2041-8213/ab74e1

In-situ Switchback Formation in the Expanding Solar Wind

J. Squire¹, B. D. G. Chandran², and R. Meyrand¹ ¹Physics Department, University of Otago, Dunedin 9010, New Zealand; jonathan.squire@otago.ac.nz ²Department of Physics and Astronomy, University of New Hampshire, Durham, NH 03824, USA *Received 2020 January 23; revised 2020 February 6; accepted 2020 February 11; published 2020 February 26*

Abstract

Recent near-Sun solar-wind observations from *Parker Solar Probe* have found a highly dynamic magnetic environment, permeated by abrupt radial-field reversals, or "switchbacks." We show that many features of the observed turbulence are reproduced by a spectrum of Alfvénic fluctuations advected by a radially expanding flow. Starting from simple superpositions of low-amplitude outward-propagating waves, our expanding-box compressible magnetohydrodynamic simulations naturally develop switchbacks because (i) the normalized amplitude of waves grows due to expansion and (ii) fluctuations evolve toward spherical polarization (i.e., nearly constant field strength). These results suggest that switchbacks form in situ in the expanding solar wind and are not indicative of impulsive processes in the chromosphere or corona.

Unified Astronomy Thesaurus concepts: Space plasmas (1544); Alfven waves (23); Solar wind (1534); Solar magnetic fields (1503); Interplanetary turbulence (830)

1. Introduction

The recent perihelion passes of *Parker Solar Probe* (*PSP*) have revealed a highly dynamic near-Sun solar wind (Bale et al. 2019; Kasper et al. 2019). A particularly extreme feature compared to solar-wind plasma at greater distances is the abundance of "switchbacks": sudden reversals of the radial magnetic field associated with sharp increases in the radial plasma flow (Neugebauer & Goldstein 2013; Horbury et al. 2018, 2020). Such structures generally maintain a nearly constant field strength |B|, despite large changes to B. It remains unclear how switchbacks originate and whether they are caused by sudden or impulsive events in the chromosphere or corona (e.g., Roberts et al. 2018; Tenerani et al. 2020).

In this Letter, our goal is to illustrate that turbulence with strong similarities to that observed by *PSP* develops from simple, random initial conditions within the magnetohydrodynamic (MHD) model. Using numerical simulations, we show that constant-|B| radial-field reversals arise naturally when Alfvénic fluctuations grow to amplitudes that are comparable to the mean field. We hypothesize that the effect is driven by magnetic-pressure forces which by forcing |B| to be nearly

2. Methods

We solve the isothermal MHD equations in the "expandingbox" frame (Grappin et al. 1993), which moves outward in the radial (x) direction at the mean solar-wind velocity, while expanding in the perpendicular (y and z) directions due to the spherical geometry. We impose a mean anti-radial (sunward) field $\mathbf{B}_0 = -B_{x0}\hat{\mathbf{x}}$, with initial Alfvén speed $v_A = B_{x0}/\sqrt{4\pi\rho}$. The mass density ρ , flow velocity \mathbf{u} , and magnetic field \mathbf{B} evolve according to

$$\partial_t \rho + \tilde{\nabla} \cdot (\rho \boldsymbol{u}) = -2\frac{a}{a}\rho, \tag{1}$$

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \tilde{\nabla} \boldsymbol{u} = -\frac{1}{\rho} \tilde{\nabla} \left[c_s^2(t) \rho + \frac{B^2}{8\pi} \right] \\ + \frac{\boldsymbol{B} \cdot \tilde{\nabla} \boldsymbol{B}}{4\pi\rho} - \frac{\dot{a}}{a} \mathbb{T} \cdot \boldsymbol{u}, \qquad (2)$$

$$\partial_t \boldsymbol{B} + \boldsymbol{u} \cdot \tilde{\nabla} \boldsymbol{B} = \boldsymbol{B} \cdot \tilde{\nabla} \boldsymbol{u} - \boldsymbol{B} \tilde{\nabla} \cdot \boldsymbol{u} - \frac{\dot{a}}{a} \mathbb{L} \cdot \boldsymbol{B}.$$
(3)

From Kasper+ Nature (2019); Bale+ Nature (2019)

- Early passes of Parker Solar Probe have observed lots of "switchbacks"
- Sudden reversals of the radial magnetic field
- Nearly perfectly Alfvénic $\Delta U = \Delta B$

From Kasper+ Nature (2019); Bale+ Nature (2019)

- Electron Strahl direction shows SB is a local bend in the field.
- Field strength |**B**| remains nearly constant.

Some questions?

- What is their origin?
- What do they look like?
- Can they tell us about coronal heating?
- Can they tell us about solar-surface processes?
- Are they just a near-sun phenomenon? (No)
- What plasma conditions allow them to grow/survive?

Some other relevant observations:

- They have no intrinsic scale *switchback sizes have a power-law* 10 distribution 10 10 $0.4 \le z < 0.6$ 0.6 ≤ z < 0.8 $0.6 \le z \le 0$ 10-2 10 0.8 ≤ z < 1 0.8 < 7 < Dudock de Wit+ (2020) р(т_w) р(т,) 10 10-4 Horbury+ (2020)
- 10⁻² 10⁻² 10⁻¹ 10⁰ 10² 10³ 10⁴ 10⁵ 10³ 10⁴ 10⁵ 106 10¹ 10⁻¹ 10⁰ 10¹ 10^{2} waiting time $\tau_{...}$ [s] residence time τ_{r} [s] • They are very Alfvénic – *No significant temperature variation; modest* density change around SB; only small change to |B|

10

10-8

10-10

Wooley+ (2020) Farrel+ (2020)

10-6

10-6

Dudock de Wit+ (2020)

Some other relevant observations:

• They also occur at large distances (~1AU)

MacNeil+ (2020) Horbury+ (2018) Neugebauer & Goldstein (2013)

Occurrence increases at large radii in Helios data (MacNeil+)

- More, larger SBs occur in tangential (Parker spriral) direction Horbury+ (2020)
- Elongated in the radial direction Horbury+ (2020)

Their origin?

Ex-situ (solar surface/low Corona)

Switchbacks are telling us something about the solar surface, coronal heating, or solar-wind launching.

Reconnection? Streams? Photospheric convection? (e.g., Richardson+ 2018, Roberts+ 2018, Shi+ 2020, Fisk & Kasper 2020, Phan+ 2020...) Can they stably propagate outwards? (Probably) Tenerani+ 2020

In-situ

Switchbacks form naturally as wind flows outwards as a result of plasma processes.

Simplest explanation *if* it can fit the observations

Outline – *in-situ* switchback formation

General philosophy: simplest possible setup random initial conditions, no large-scale structures, radial background magnetic field

- Numerical methods
 - Expanding Box model (EBM)
 - Athena++ and Snoopy codes
- Results
 - Switchbacks form naturally!
 - Constant |B| (depending on β)
 - Turbulence and spectra
- Predictions and observations

Expanding Box Model

- Simplest model for local effect of outwards solar-wind flow
- We use isothermal compressible MHD
- $a(t) = 1 + \dot{a}t$ is current perpendicular box dimension
- Parallel dimension constant
- Launch waves outwards from transition region how do they evolve?

Grappin et al.1993, 1996

Expanding Box Model

Grappin et al. 1993, 1996 **Density decreases** due to expansion Sound speed changes in time as $\partial_t \rho$ + $(\rho \boldsymbol{u})$ $c_s \propto a(t)^{-t}$ $\cdot \nabla \left[c_s^2(t) \rho + \frac{B^2}{8\pi} \right] + \frac{B \cdot \nabla B}{4\pi^2}$ $\partial_t u + u : \nabla u =$ $\mathbb{T} =$ $\partial_t \boldsymbol{B} + \boldsymbol{u} \cdot \nabla \boldsymbol{B} = \boldsymbol{B} \cdot \nabla \boldsymbol{u} - \boldsymbol{B} \nabla \cdot \boldsymbol{u}$ $\mathbb{L} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ Gradient operator is $\nabla = (\partial_x, a^{-1}\partial_y, a^{-1}\partial_z)$ Parallel and perpendicular components weaker perpendicular of u and B evolve differently gradients

Expanding Box Model

Alfvén Waves

- $\omega \gg \frac{a}{a}$
- Waves grow due to ρ and B_x decrease (WKB regime)

$$\frac{B_{\perp}}{B_x} \propto a(t)^{1/2} \quad \frac{u_{\perp}}{v_A} \propto a(t)^{1/2}$$

• Very little wave reflection

• Slow motions behave like mean fields

 $\omega \ll -\frac{a}{2}$

$$\frac{B_{\perp}}{B_x} \propto a(t) \quad \frac{u_{\perp}}{v_A} \propto a(t)^0$$

- Acts like a reflection term
- Manifestation of wave reflection from large-scale density gradient

Large-scale waves in our boxes have $\omega \simeq \dot{a}/a$ This is also (approximately) solar wind's outer scale ~ 10^{-4} Hz

Initial conditions

Aim to be as simple as possible, explore different possibilities

(Loose) physical picture: waves released from transition region propagate outwards

Three choices:

- 1. Isotropic spectrum at large scales: Gaussian or $E_{\perp}(k) \sim k^{-3}$
- 2. "Critically balanced" spectrum: $E_{\perp}(k_{\perp}, k_{\parallel}) \propto k_{\perp}^{-10/3} \exp(-k_{\parallel}L_{\perp}^{1/3}/k_{\perp}^{2/3})$
- 3. Equal power at all scales: $E_{\perp}(k) \sim k^{-1}$

Numerics

Two simulation sets, two codes, with different strengths

- Fourier code (Snoopy)
- Allows large expansion factors
- Not so good with shocks and sharp features

We use Snoopy to follow small amplitude waves into the nonlinear regime, with PSP-like parameters

- Finite volume code (Athena++)
- Good at capturing shocks, low-β regime
- Numerical instabilities if the expansion factor gets too large

We use Athena++ to explore the physics of SB formation and its dependence on parameters

Both methods give similar results

Parameters

Outline – in-situ switchback formation

General philosophy: simplest possible setup random initial conditions, no large-scale structures, radial background magnetic field

- Numerical methods
 - Expanding Box model (EBM)
 - Athena++ and Snoopy codes
- Results
 - Switchbacks form naturally!
 - Constant |B| (depending on β)
 - Turbulence and spectra
- Predictions and observations

Switchbacks form robustly

Athena++ HR simulation: Gaussian initial conditions

Switchbacks form robustly

Switchbacks form robustly

Becomes robustly turbulent, $u_{\perp} \approx B_{\perp}$ (but $B \gtrsim u$)

Quantify switchback fraction with

 $f_{\hat{b}_x > 0} = \text{fraction of cells with reversed field}$ $P(|\delta_{\ell}\hat{b}_x| > 1) = \text{proportion of } \hat{b}_x \text{ increments with a}$ $|\delta_{\ell}\hat{b}_x| \equiv |\hat{b}_x(x+\ell) - \hat{b}_x(x)|) = 1 \text{ across 8 grid cells}$

Clear that system minimizes the variation in |B| – quantify with

$$C_{B^2} \approx 0.04$$

$$C_{B^2} \approx 0.4$$

$$C_{B^2} \approx 0.4$$

$$C_{B^2} \approx 0.4$$

$$C_{B^2} \approx 0.95$$

Discontinuities and SB fraction grow with amplitude

Reasonable correlation between SB fraction measures

Interpretation

Large amplitudes and spherical polarization are incompatible \Rightarrow discontinuities Barnes & Hollweg 1974, Vasquez & Hollweg 1996, 1998

Magnetic pressure forces decrease C_{B^2} at $\beta \lesssim 1$

Higher β: higher amplitude but lower SB fraction

Lower β : lower C_{B^2} causes more discontinuous field

Clearly not the whole story:

some switchbacks at high β

why C_{B^2} minimum at $\beta \simeq 1??$

Cohen & Kulsrud 1974 Parametric Decay?

Turbulence

Turbulence caused by wave reflection

- Need backward-propagating waves for turbulence
- Wave reflection from expansion
- Steeper or flatter initial spectra approach $\sim k^{-1.5}$
- Excess of magnetic energy, steeper magnetic spectra (Chen 2020)

Outline – in-situ switchback formation

General philosophy: simplest possible setup random initial conditions, no large-scale structures, radial background magnetic field

- Numerical methods
 - Expanding Box model (EBM)
 - Athena++ and Snoopy codes
- Results
 - Switchbacks form naturally!
 - Constant |B| (depending on β)
 - Turbulence and spectra
- Predictions and observations

Does it work?

In-situ hypothesis compelling if it matches observations

Does it?

Ex-situ (solar surface/low Corona)

Switchbacks are telling us something about the solar surface, coronal heating, or solar-wind launching.

Reconnection? Streams? Photospheric convection? (e.g., Richardson+ 2018, Roberts+ 2018, Shi+ 2020, Fisk & Kasper 2020, Phan+ 2020...) Can they stably propagate outwards? (Probably) Tenerani+ 2020

In-situ

Switchbacks form naturally as wind flows outwards as a result of plasma processes.

Simplest explanation if it can fit the observations

Very difficult to be as free from dissipation as the SW PSP

Simulation

Does it work?

Probably, but need higher-resolution, larger expansions C_{B^2} is about right, $f_{\hat{b}_x < 0}$ is a bit small

PSP data

Does it work? Observational properties

Conclusion: Promising, but needs more work to be sure

• Switchbacks form naturally in expanding MHD from random ICs

Properties that are broadly consistent with PSP observations

Correlations between components of *B* keep
 |*B*| constant; incompatible with large amplitudes ⇒ switchbacks

Effect is strongest at $\beta \simeq 1$

• Self-consistent turbulence broadly matches observations

Switchback shapes

