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The Hubble constant H0
The expansion rate of our Universe

Hubble 1929

H0 = Distance
Velocity

H0 ~ 500 km s-1 / Mpc



The Hubble constant H0
The expansion rate of our Universe

Hubble 1929

H0 = Distance
Velocity

H0 ~ 500 km s-1 / Mpc

Age of the Universe =
H0

1

~ 2 billion years ??



The Hubble constant H0
The expansion rate of our Universe

Kirshner 2004

Freedman 2017



Verde, Treu & Riess 2019

The Hubble tension



Gravitational Waves as “Standard Sirens”
Schutz 1986; Holz & Hughes 2005

H0 =                   =
Distance
Velocity

Distance
[speed of light] x Redshift

Identification of the source / host galaxy



GW 170817 / AT 2017gfo
The first Electromagnetic Counterpart of a Gravitational Wave event

Abbott+2017a

Gravitational-wave signal consistent with the 
merger of two neutron stars

Video credits: ESO



GW 170817 / AT 2017gfo
The first Electromagnetic Counterpart of a Gravitational Wave event

Abbott+2017b

Abbott+2017a



Gravitational Waves as “Standard Sirens”
Schutz 1986; Holz & Hughes 2005

H0 =                   =
Distance
Velocity

Distance
[speed of light] x Redshift

Identification of the source / host galaxy



Gravitational Waves as “Standard Sirens”
GW170817 / AT2017gfo

Abbott+2017c



Strong degeneracy between distance and inclination

H0 (km s-1 / Mpc)

Inclination
(deg)

Abbott+2017c

Face-on
far away

Edge-on
closer in

Gravitational Waves as “Standard Sirens”
GW170817 / AT2017gfo



Strong degeneracy between distance and inclination

H0 (km s-1 / Mpc) Abbott+2017c

p(H0) H0 = 74.0         km s-1 / Mpc+16.0
-8.0

Gravitational Waves as “Standard Sirens”
GW170817 / AT2017gfo



Strong degeneracy between distance and inclination

Inclination

Hotokezaka+2020

Gravitational Waves as “Standard Sirens”
GW170817 / AT2017gfo



Strong degeneracy between distance and inclination

Hotokezaka+2020

H0 (km s-1 / Mpc)

p(H0)
H0 = 74.0         km s-1 / Mpc+16.0

-8.0

H0 = 70.3         km s-1 / Mpc+5.3
-5.0

GW only

GW + radio

Gravitational Waves as “Standard Sirens”
GW170817 / AT2017gfo



Metzger & Berger 2012

Kilonova



neutronproton

Seed nucleus

Kilonova
A radioactively-powered emission from NS-NS and NS-BH mergers



High density of free neutrons

Kilonova
A radioactively-powered emission from NS-NS and NS-BH mergers



Neutron capture via “r-process” (“rapid process”) 

Kilonova
A radioactively-powered emission from NS-NS and NS-BH mergers



Kilonova
A radioactively-powered emission from NS-NS and NS-BH mergers

r-process responsible for the creation of ~1/2 of the nuclei heavier than Fe

Wikipedia 😉



Kilonova
A radioactively-powered emission from NS-NS and NS-BH mergers

r-process nucleosynthesis controlled by the matter composition

Electron fraction  𝑌! =
"#$%&' () *'(+(", [/&/&0+'(",]

"#$%&' () *'(+(",2"#$%&' () "&#+'(",

Ye < 0.25

Ye > 0.25



Radioactive elements -> decay -> 𝛾 photons

Kilonova
A radioactively-powered emission from NS-NS and NS-BH mergers

𝛾

Increasing wavelength

Optical



Kilonova
A radioactively-powered emission from NS-NS and NS-BH mergers

𝛾

Increasing wavelength

Optical

𝛾 photons thermalize -> setting the temperature

T ~ 5 000 – 10 000 K @ 1 day



Kilonova
A radioactively-powered emission from NS-NS and NS-BH mergers

Increasing wavelength

𝛾 photons thermalize -> thermal emission at longer wavelengths (UV-opt-IR)

Optical

Credit: hyperphysics.phy



𝛾 photons thermalize -> thermal emission at longer wavelengths (UV-opt-IR)

Kilonova
A radioactively-powered emission from NS-NS and NS-BH mergers

Optical

Increasing wavelength

Optical

Kilonova emission

UV-opt-IR photon
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A Monte Carlo radiative transfer code to predict observables for kilonovae
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H0 and kilonovae
3 approaches to measure/improve on H0

1. Constrain inclination with kilonova light curves -> GW + EM (improve standard sirens)

2. Constrain inclination with kilonova polarization -> GW + EM (improve standard sirens)

3. Constrain distance directly from kilonovae -> EM

H0 =                   
Distance

[speed of light] x Redshift

H0 (km s-1 / Mpc)
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Material ejected anisotropically

Asymmetric distribution

(At least) Two components with different compositions
and corresponding opacities

1. Constrain inclination with kilonova light curves

Ye >0.25

Ye <0.25



Nucleosynthesis controlled by the matter composition

Electron fraction  𝑌! =
"#$%&' () *'(+(", [/&/&0+'(",]

"#$%&' () *'(+(",2"#$%&' () "&#+'(",

Ye < 0.25

Ye > 0.25

1. Constrain inclination with kilonova light curves
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Opacity

τ = #𝜅 𝜌 𝑑𝑟
Source of opacities in kilonovae
Electron scattering
Bound-bound (line) absorption

[g-1 cm2]
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Tanaka+2018

1. Constrain inclination with kilonova light curves



°0.3 °0.2 °0.1 0.0 0.1 0.2 0.3

Equatorial velocity [c]

°0.3

°0.2

°0.1

0.0

0.1

0.2

0.3

Po
la

rv
el

oc
ity

[c
]

qobs

2F

Lanthanide-free Lanthanide-rich

Opacity

τ = #𝜅 𝜌 𝑑𝑟
Source of opacities in kilonovae
Electron scattering
Bound-bound (line) absorption

[g-1 cm2]

Wavelength (Å)

𝜅 (g-1 cm2) 

Ye < 0.25

Ye > 0.25

Tanaka+2018

1. Constrain inclination with kilonova light curves
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1. Constrain inclination with kilonova light curves
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1. Constrain inclination with kilonova light curves

Viewing-angle dependence in kilonova light curves



1. Constrain inclination with kilonova light curves

550 models varying 
Mej, Φ and ϑobs

Best-fit model:
Mej = 0.05 M¤

Φ = 30 deg
cos(ϑobs) = 0.9
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1. Constrain inclination with kilonova light curves
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24% improvement on H0

H0 = 70.0         km s-1 / Mpc
+12.0
-8.0

H0 = 72.4         km s-1 / Mpc
+7.9
-7.3

GW only

GW + kilonova



2. Constrain inclination with kilonova polarization

Polarized photons

electron

line

Unpolarized photons



2. Constrain inclination with kilonova polarization

Polarizing 
electron scattering:

each polarizing 
contribution is cancelled by 

one 90 degree away



Ptot = 0
Polarizing 

electron scattering:
each polarizing 

contribution is cancelled by 
one 90 degree away

2. Constrain inclination with kilonova polarization



Polarizing 
electron scattering
+ depolarizing line 

Break of symmetry and 
overall polarization signal

Ptot ≠ 0

2. Constrain inclination with kilonova polarization



Polarization levels ≈ 1% could be detected in future kilonovae seen from favorable viewing angles
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2. Constrain inclination with kilonova polarization

Ptot ≠ 0 Ptot = 0



Polarization levels ≈ 1% could be detected in future kilonovae seen from favorable viewing angles

2. Constrain inclination with kilonova polarization

Ptot ≠ 0 Ptot = 0
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3. Constrain distance directly from kilonovae



1. Use grid of kilonova models to infer absolute magnitude in the K-band

3. Constrain distance directly from kilonovae
Models from 
Kasen+2017



1. Use grid of kilonova models to infer absolute magnitude in the K-band as a function of:
• Observed parameters (‘measured’)

• Model parameters (‘inferred’)

3. Constrain distance directly from kilonovae
Models from 
Kasen+2017



1. Use grid of kilonova models to infer absolute magnitude in the K-band as a function of:
• Observed parameters (‘measured’)

• Model parameters (‘inferred’)

2. Infer distance modulus 𝞵 and thus distance D: 

3. Constrain distance directly from kilonovae
Models from 
Kasen+2017



3. Constrain distance directly from kilonovae

Models from 
MB 2019



3. Constrain distance directly from kilonovae

H0 = 74.0         km s-1 / Mpc
+16.0
-8.0

GW only
Kilonova only (‘inferred’)

H0 = 85.0         km s-1 / Mpc
+22.0
-17.0 H0 = 79.0         km s-1 / Mpc

+23.0
-15.0

Kasen models Bulla models



3. Constrain distance directly from kilonovae

Apply same technique to 4 GRBs from the literature + GW170817



3. Constrain distance directly from kilonovae
Kasen models Bulla models

H0 = 74.0         km s-1 / Mpc
+16.0
-8.0

GW only
Kilonova only (‘inferred’)

H0 = 73.8        km s-1 / Mpc
+6.3
-5.8 H0 = 71.2        km s-1 / Mpc

+3.2
-3.1

Kasen models Bulla models



1. Constrain inclination with kilonova light curves -> GW + EM (improve standard sirens)

2. Constrain inclination with kilonova polarization -> GW + EM (improve standard sirens)

3. Constrain distance directly from kilonovae -> EM

H0 =                   
Distance

[speed of light] x Redshift

H0 (km s-1 / Mpc)
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Conclusions


