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Introduction:

* Definition Komlogorov’s Equation;

e Examples Komlogorov’s Equation;

e Solution of Komlogorov’s Equation as SDE;
e Discretization schemes;

The algorithm:

* Existing algorithms and issues;
* Description of the learning algorithm;

Results:
e Black-Scholes equation in d=100 + 1;
e Hamilton-Jacobi-Bellman equation in d=100 +1;
e Allan-Cahn equation in d=100 + 1;
e An exact solvable non-linear diffusion equation;
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(Backward) Kolmogorov

Equation

= 1
WD _ A1) Vag(®.t) — L Te(BBT (&) Hesszg (7. )

o f(t,f,g(f, t)v BT(f7 t)vxg(f’ t))

Terminal condition g(x, T) = ¢(X") where ¢ : RY — R is a known function.

GOAL: WE WANT TO FIND g(x’,0)
* Describes time evolution of a probability density of diffusion processes;
o A(X,t), BBL(X, 1) drift and diffusion term, respectively;

e f(t,%,8(X,0),B(xX, )" V+g(x,1)) is known
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(Forward) Kolmogorov
Equation

= — Vi - [A(Z,1)g(Z,1")] + %TY(HGSS:E[BBT(:?, t")g(Z,1')])

= F(¢', 7, (&, ¢"), BT (7,t)%g(7, 1)

Og(Z,t")
ot/

Initial condition g(x",0) = ¢(X) where ¢ : R — R is a known function.

GOAL: WE WANT TO FIND g(x’, T)

e The Forward and Backward equations are equivalent to each other;

* The Forward equation gives more directly the values of measurable quantities

as a function of the observed time, t’, and tends to be used more commonly in
physical applications.
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Kolmogorov’s
Equations

Finance:
(Backward) Black-Scholes equation
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Physics:
(Forward) Allan-Cahn equation




Kolmogorov’s
Equations

Physics:
(Backward) Fokker-Planck equation

d9(%, 1)
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Physics:
(Forward) Schrodinger equation

Schrodinger’s smoke

Purely Eulerian simulation of incompressible fluids.
The fluid state is represented by a C2-valued wave
function evolving under the Schrédinger equation

subject to incompressibility constraints. g -
EPFL



Stochastic processes

A stochastic process described by a conditional probability satisfying the Kolmogorov
Equation is equivalent to the Langevin (integral) equation, where the integral is evaluated in
Ito’s sense.

—

X(T):X(0)+/O A[)Z"(s),s]ds+/0 B[X(s), s] dW (s)

It is known that a solution of Backward Kolmogorov’s equation can be
interpreted as a solution of BSDE :

— g[X(T),T] - / (V2glX(s), s)TBIX (s), s]dW (s)
+/0 f(s,X(s), g]
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Stochastic numerical
Integration |

For implementing a discretisation of the SDE we divide the time interval [0,7] into N sub-
intervals of size 7 = T/N at points 7, = nt, so that a function can be evaluated at times
70 =0,7,75, T3, ... Tn_ LIy = T

Thus, the corresponding Wiener increments become AW" = ( T,11) — W(T ).
By applying Ito's chain rule lemma and fixing the so-called "commutativity" condition on the

diffusion tensor, i.e. ZZlelj[Y”, T](dkakl[Y”, 7]) = Zzzl Bl-l[)_{”, T](dkakj[Y”, 7]), one
obtains:

XM =XT 4 A (X7, 1T+ Z B[ X™, 7| AW

d
1 —
5 Z Tn](aa:kBkl[Xn, Tn])(AWJnAWln _ 7'5jl) 4
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Stochastic numerical
Integration I

Euler-Maruyama (EM) scheme: accuracy: O(\/;)
d
(Year)! ™ = (Yeu)} + AlY s, mlm + Y B[V, T AW}
j=1
Milstein (M) scheme: accuracy: O(7)

d
(V)™ = (Yo7 + A3l + > By [Yir, mal AW+
j=1

d
1 — >
+ 5 E B;; Y7, 7] (O, Bri|Yay, Tn])(AWJnAWln - 5le>
j.k,l=1

Leimkuhler-Matthews (LM) scheme: accuracy: O(z?)

d
— 1 —
(Year)i ™ = (Yoan)i + AlY ', mal 7 + 5 > BV ml (AW + AW,
j=1
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Algorithms for solving
PDEs (l)

MCMs for solving PDEs were developed by Fermi/Von Neumann for solving the neutron
transport in the Manhattan Project.

MC techniques are a set of algorithms used to calculate approximate numerical
quantities or estimate the probabilities of an outcome of an experiment by making use
of repeated random sampling.

It is known that Monte-Carlo sampling methods do not suffer from the curse of
dimensionality if the goal of the problem is evaluate the solution of a PDE on single
point.

However, to approximate a solution not only at a single value but, for example, on a full

hypercube [u, v]¢, there has been no known method not suffering from the curse of
dimensionality. In particular, there has been no known method that can provably be

applied efficiently in high dimensions, say, d > 100.
Es.:

— P~0(nd)
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Algorithms for solving
PDEs (ll)

WE INTRODUCE DEEP LEARNING BASED ALGORITHMS FOR APPROXIMATING

A SOLUTION OF KOLMOGOROV’S EQUATION ON A FULL HYPERCUBE |[u, v]d
THAT OVERCOME THE CURSE OF DIMENSIONALITY AND WE COMPARE,
NUMERICALLY, DIFFERENT DISCRETISATION SCHEMES.

1000 e
i date21
 AE)d° ——

100 |

10 |
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(Deep) Basic Idea |

Let’s discretise the formal solution of Backward Kolmogorov’s equation:

g[f/’n—kl’ Tn+1] — g[?na Tn] T vg[?nv Tn]TB[?nv Tn]AWn

— f(T, Y, g[Y ™, 1), BY ™, 7] T Vg [Y ", 7)) 7

—

The only term that we do not know is V¢ [Yn? Tn]

HOWEVER

We can imagine to approximate it by using a deep feed-forward neural network.
(Universal Approximation Theorem)

THEN

-
DATA INPUT (z,) —— ¥/ /(0 ,) — (Ve'BI7"|7,
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DATA INPUT (7,)

Ex.:

-0.5

0 5 10 15 20 25 30 35 40
{
YO:[1,1,1,11F

Y15 :10.49,2.04,1.53,1.80]7

YV :10.17,1.77,1.30,1.94]"
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(Deep) Basm Idea I
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(Deep) Basic Idea lll

Consider a variational class of functions or “deep networks” ﬂ/ﬂ/go(7|(90) € R and

/V/vas(7| A(s)) € R? where 0, and 0(s), 0 < s < T'is a set of “weights” to be optimised.

We want to minimise the loss functional :
2

10,00 = E|O(XD) = {4, (7100 = [] dfs. X g X051, 4 5, K106 + [] ds (- (106 dH05) |

where )_((S)and g()?(s) s) are solutions of the FBSDE’s

|

{dX(S) = A(X(s), )ds + B(X(s), HTdW(s),
tlg[X (8), s1=f(s, X X(s), g[ X (5), 5], N/ N Vg (X(s)] 0(s)))ds+(N Ny, (X(5)|6(s))"dW(s)

with g(X(O),O) = NN, (x]6,). The expectation in the loss function is over the Brownian

trajectories W(S), 0 < s < Tandover )?(O) e D uniformly distributed in a domain D C R<.
The non-linear Feynman-Kac Formula tells us that as long as the class of the deep networks

is sufficiently expressive, _there exists a minimiser (90, Q( ) such that the loss nearly
vanishes, and /V/Vgo(x | 90) 2(x’,0) and /V/va(x | Q(S)) ~ B(x, S)TV—»g(x S).

Raffaele Marino, NORDITA, Stockholm, September 8, 2020 15 =PrL



Architecture based on
Euler-Maruyama (EM) scheme:

[ng\—zla Tn—l—l] — g[YEMa Tn] + vqg[YEMa Tn] B[YEMa Tn]AWn
— f(Tn, YEMa g[YEMa Tnl, B[YEMv Tn]TV:BQ[YEMa Tnl)T

9(YO%m,7p)

A
‘ BTVg(Yoem|6)

NNy N Nyg,

\

> g(Ylem, 7))

T

NNy
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Architecture based on
Milstein (V') scheme:

g[?]\r'}_l_l 7Tn-l—1] [YM7 Tn] o (Tm YM? [YM7 Tn] B[YMv Tn]vag[YMv Tn])T

d d
1 . . B
T 5 Z { ang[yj\?}ﬂ-n]Bli[Y]\ZaTn]ﬁkakj[Yﬁ,Tn]}(AWnAWn
1,7=1 l,k=1

| >  g(Y'mr) —=zx > d(Yur) Poce—>  d(YNury)
g(YoM,T())
, Vg"BV -B(You|g) —>| Vg'BV-B(You|6y) —> --- >
Vg'BV - B (Yom|() ——>]
[ BTVg(YoM|90) —> ‘ BTVg(wal) —> ‘ Vo(Yom|6) P>
NN, NN N Wy NNy NN NNy NNy
Y > Yim E—— Y —_— — Y
— — —>
— — AW — AW
r=0 t=71 f=T2 t:TN
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Architecture based on
Leimkuhler-Matthews (LM) scheme:

Q[YfMaTnH] — Q[YfMa Tn] - f(Tn: YfMag[YfMa Tn]a B[YfMa Tn]vag[YI?Ma Tn])T

1 - .
+ §vg[ng, 7o) BY [, o] (AW + ijﬂ“)

1 = —
= Te(BBY[Y ]!y (), 7n]Hesszg ¥ ['nr (), 7al)7

| 4 A > 9(Y'mr) T 7> 9(Yamz) > A > oVuzy)
g(Youm,7) I
Tr(BBTHessg)(Y1 w, | 0{) Tr(BBTHessg)(YOLM, | 9;) s
Tr(BB THessg)(Y Om, | 6’6)
7 N
BTVQ(YOLM|90) —> ‘ BTVg(Y‘LM|91) > ‘ BTVg(Y2LM|92) oo —p
NWg NNy NWg NN NNy NNy NNy
YOm < Yim —_—T Y2, — — YN
— —>
[ AW+ aAwW W! + AW WYl 4 AW
2 2
t=0 t=1 t=r1, t=1y
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Results | - (backward) Black-
Scholes equation in d=100 + 1

Problem:

g — —— — 5> d 0° — - - -
(X D+FX - Vee(X. 0+ X 151P—(F, 0 = (1 - H)0e(X, 0)g(X, 1) + Rg(X, 1)

Where R is the interest rate of the risk free asset, and Q(V) is a piece-wise linear function given by:

0(y) = ReLU <ReLU(y —v)

Yh =7
Vh—

+7h_7l> + 7.

Vi

Numerically we have chosen the values as:

0=2/3,R=0.02,7 =0.02,6 =0.2,v, =50,v,=70,y, =0.2,y, = 0.02.

We fix the dimension to d = 100, and, therefore, we impose the equation to live on the space [0,7'] X R 100
with T = 1, and we fix the terminal condition be g(x, T) = ¢(x') = min{x,, ..., X0}

Because the exact solution of the equation is not known, we confine ourselves on a single point
x = (100,...,100), where analysis performed with the multilevel Picard method indicates that the value of

Zpieard(X = (100,...,100),0) ~ 57.300 .
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Results | - (backward) Black-
Scholes equation in d=100 + 1

59 »
__ 585 .
T
= OB Fedsettodsteteoostisttoortsteey
o
T 575 | -
S
= EM ——
56.5 | LMH% ]
Picard’s method= 57.300 —

56 |
97000 97500 98000 98500 99000 99500 100000

Number of training steps
The figure shows the value of g(x” = (100,...,100),0) returned by EM (blue points), M (green points) and LM (red points) as
function of the number of training steps done. Each point is the mean over five independent runs. The number of equidistant
time steps was fixed at 40, i.e. N = 40. All the parameters were initialized randomly uniformly between [-1,1]. The total

number of training steps was 105, while learning rate was chosen dynamically. The black horizontal line identifies the
multilevel Picard method value.
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Results Il — (backward) Hamilton-
Jacobi-Bellman equation in d=100+1

Problem:

0g 2
—(x, 1)+ Ag(xX, 1) =4[ Vg(x, 0|
where A is a positive constant representing the strength of the control.

With terminal condition g(%, T) = (X)) = In((1 + || X | [?)/2 with X" € R?

Exact solution: g(x’, 1) = — A1 In(E[—Ag(X + ﬁWT_t)])

—_—
where W, is a standard Brownian motion.

GOAL:
g(x,t=0),x =(0,.0 R 1=1

Raffaele Marino, NORDITA, Stockholm, September 8, 2020 21
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Results Il — (backward) Hamilton-
Jacobi-Bellman equation in d=100+1

4.7

4.65 | -
_lu, 46 .u".naé" 200190 To 0l ng o 0 S ‘i l:--_ bo, & #'y o oo & &
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Number of training steps

The figure shows the comparison between the Euler-Maruyama (blue points) and the Leimkuhler-Mattews (red

points) schemes in approximating the solution g(x, ¢ = 0), with 1 = 1, at the origin of R'%", as a function of the
training steps. Each point is the average over 5 experiments. Error bars are standard deviations. The black line is
the exact value obtained by standard Monte Carlo on the exact solution.
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Results lll — (forward) Allan-
Cahn equation in d=100 + 1
T 0(E 1) = Dg(E 1) + (9(@1) — 9(3. 1))

Initial conditions: g(x,0) =¢(X) =2 +04|| x| 2y~

0.4 ‘ ‘ ‘ ‘ ‘ 0.06
0.35 | 0.059 |
0.058 | f
— 2| ™ 0.057 | 1
5 025 I 0.056 H{}}{HWHHJHHHHhH}HH{HM“{mﬂ
9 0.2 | = 0.055 | f
X i S 0.054 | |
Z 015 2 0.053 'ﬁwpﬂqq%hhq}lwﬁm iﬂ g #-’
01t 0052 | LI EME . ]
el | Branching diffusion method=0.05L2|\E/3| ]
0 0.05 w w w »

15000 16000 17000 18000 19000 20000
Number of training steps
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Results IV — (backward) An exactly
solvable non-linear diffusion equation

Problem:

0g(X, 1)
ot

d 08(X,1)
=1 OX;

l

+ DA g(T.1) = — lzng n-L- D] y

With terminal condition g(x, T) =

1

Exact solution: g(Y, 1) = y
1+ e " Zi=1 i

We want to compute the computational complexity of the algorithm O(db).

For doing so, we analyze:

g(%,,0) = V¥ N(X,,0]0)
g(x,,,0)

(€)= %zle
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Results IV — (backward) An exactly
solvable non-linear diffusion equation

1 A— S — 00 ———m™™ o
C \S\ d=2%.% r
d=4
d=6}—I—<
d=8>—E|—<
0.1 | 9=10 100 |
A
{7 o
0.01 © 10 |
10 100 1000 1 2 4 8 16
P d

Left: Average relative error (¢) as a function of number of initial points of stochastic trajectories
P =42_8,16,---,1024,2048,4096, on a log-log scale for different values of d = 2,4,6,8,10.

Right. Computational complexity, given an average relative error {¢) < 5% , measured by P as a function of
d=2,4,6,8,10,12,18, on a log-log scale the slope is b ~ 1.78. The computatlonal complexity obtained is

proportional to A(e)d?, with A(e) ~ 0.20. The results are obtained by fixing D = 7, where ¢ = 0.25, and
T = 0.01.
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THANK YOU !
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