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Prelude: laminar flow of colloidal particles through a 

long pipe should be straightforward
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𝝁𝛁𝟐𝐮 = 𝛁𝐩

Laminar & fully developed flow → no 

nonlinearities in the Navier-Stokes equations. 



Prelude: laminar flow of colloidal particles through a 

long pipe should be straightforward, but isn’t
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[1]

Particles laterally 

and irreversibly flow 

into a specific 

annular region 

within the pipe 

(Segré-Silberberg 

effect)!



Inertial effects can play a significant role even in low 

Reynolds number systems
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Magnus effect pushes

the particle downwards!

Moral of the story: 

Particle inertia + colloidal dispersion 

= macroscale inertial effects even in 

low-Re systems! 



Colloidal particles flowing through a channel will 

displace laterally when interacting with an obstacle
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Flow

Flow

Expectation for low Reynolds number

What usually happens
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Colloidal particles flowing through an obstacle-

patterned channel show size-dependent dynamics

Deterministic lateral displacement[3]

(DLD)

[2]



The dynamics of a colloidal particle in a fluid are very 

complicated
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Particle 

acceleration

Local fluid 

acceleration

Added-mass effect (accounts for 

fluid mass displaced by particle) 

Drag (Stokesian) Buoyancy Particle-obstacle 

contact force

Basset force (accounts 

for time-lag in boundary 

layer development lag)

The Maxey-Riley (or Basset-Boussinesq-Oseen) equation[4]:



• Assumptions we make:

– Peclét number is large

– Obstacles are negligibly small

– Particle-particle interactions are negligible

– Particle-obstacle interactions are modeled as hard-sphere repulsion 

forces[5]

• With these assumptions, trajectories can be approximated 

as purely streamwise advection plus a sequence of lateral 

displacements from collisions! 
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We have taken complicated analyses of particle motion 

through these lattices and simplified it into a dynamical 

sequence

𝒓

Rodriguez-Gonzalez et al., Phys Rev E, 2020



This simplified dynamical model reproduces 

deterministic lateral displacement

9Streamwise direction (μm) 

Flow 

[6]

Rodriguez-Gonzalez et al., Phys Rev E, 2020



Our goal was to construct a theory that allowed us to 

obtain key dynamical readouts as a function of particle 

size & lattice geometry
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?

Streamwise direction (μm) 

Flow 

[6]

Rodriguez-Gonzalez et al., Phys Rev E, 2020



Our model describes colloidal particle advection 

through lattices as a discrete sequence of collision 

outcomes using symbols

• After colliding with an obstacle, the particle displaces either up 

or down a distance of 𝒓 from the obstacle it collided with.

– or     
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Lattice 

vectors 𝒓

…

…

…

…

What 

sequences 

can occur?

Rodriguez-Gonzalez et al., Phys Rev E, 2020



First 

collision

Second collision

Periodicity, 1 

collision/cycle

Third collision

Second collision

Periodicity, 1 

collision/cycle

Third collision

Periodicity, 2 

collisions/cycle

Periodicity, 1 

collision/cycle

Periodicity, 2 

collisions/cycle

… …

Periodicity, 1 

collision/cycle

…

…

…

…

The spatial symmetry of the collisions heavily restricts 

the kinds of paths the particles can take

…?

…?

…? …?

…?

…?

[6]

Rodriguez-Gonzalez et al., Phys Rev E, 2020



First 

collision

Second collision

Periodicity, 1 

collision/cycle

Third collision

Second collision

Periodicity, 1 

collision/cycle

Third collision

Periodicity, 2 

collisions/cycle

Periodicity, 1 

collision/cycle

Periodicity, 2 

collisions/cycle

… …

Periodicity, 1 

collision/cycle

…

…

…

…

The spatial symmetry of the collisions heavily restricts 

the kinds of paths the particles can take

[6]

First observed in [7], we term the general phenomenon 

“symmetry-induced cyclical dynamics”

Rodriguez-Gonzalez et al., Phys Rev E, 2020



After determining which orbits are possible, we can 

determine the conditions needed for each to occur

• Under what conditions does a particle follow 

a                    … orbit?
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y = f(lattice)r

Rodriguez-Gonzalez et al., Phys Rev E, 2020

Location where dynamical 

cycle would repeat

r ≥ |y|

True of              as well!…

x = f(lattice)



After determining which orbits are possible, we 

characterized trajectories that were previously not  

fully understood
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[6]

Rodriguez-Gonzalez et al., Phys Rev E, 2020

y1

y2

y1 - r  
r - y2

Period-2 orbit occurs 

if 𝒚𝟏 − 𝒓 ≤ 𝒓 − 𝒚𝟐
or

𝒚𝟏 ≥ 𝒓 ≥
𝒚𝟏 + 𝒚𝟐

𝟐

…



After determining which orbits are possible, we 

characterized trajectories that were previously not  

fully understood
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[6]

Rodriguez-Gonzalez et al., Phys Rev E, 2020

As a function of particle radius, there is always a 

period-2 orbit sandwiched between period-1 orbits 

for all obstacle lattice geometries!



We can determine the lattice coordinate where a 

trajectory repeats its dynamical cycle
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Sort lattice coords. (x,y) by increasing x value

r = biggest possible value, 𝒚𝒑𝒓𝒆𝒗 = y of first obst. on list

For increasing x > 0,

if r ≥ |y|

if 𝒓 ≥
𝒚 + 𝒚𝒑𝒓𝒆𝒗

𝟐

mode is period-2 (g = 2)

next mode is period-1 on same (x,y)

else

mode is period-1 (g = 1)

y = yprev

decrease r enough to not satisfy inequality

else

proceed to next (x,y) pair in sequence

end

Rodriguez-Gonzalez et al., Phys Rev E, 2020



We can now obtain key dynamical readouts for 

particles displacing through lattices of this type

• If we average the lateral displacement and 

collision frequency over a single dynamical 

cycle:

– Lateral displacement per length =  
𝒚

𝒙

– Spatial collision frequency =  
𝒈

𝒙
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Rodriguez-Gonzalez et al., Phys Rev E, 2020



We’ve used this framework to predict all possible 

particle trajectories through the microchannel
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?

Rodriguez-Gonzalez et al., Phys Rev E, 2020

[6]

• Thanks to this theoretical framework, we 

can fully predict the trajectories a particle 

can take through the microfluidic lattice.



20

Rodriguez-Gonzalez et al., Phys Rev E, 2020

[6]
[6]

• Thanks to this theoretical framework, we 

can fully predict the trajectories a particle 

can take through the microfluidic lattice.

We’ve used this framework to predict all possible 

particle trajectories through the microchannel



Work in the literature validates that we have captured 

the dominant physics and that the theory is extendable

• Our results are in good qualitative & 

quantitative agreement with what’s been 

described in the literature ([3][7][8][9] among 

many others).

• Particularly, [9] discusses the existence of a 

parameter describing the irreversible 

displacement of a particle after a collision in a 

square lattice of finite-sized obstacles.

– Incorporates finite obstacle size/hydrodynamics

– Converges to +/- r in the infinitesimal obstacle limit

– Could this Risbud-Drazer parameter be the key to 

extending this theory to finite sized obstacles?
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Chaining Obstacle Lattices Lets Us Generate Versatile 

Particle Sorting Microdevices

• We can chain obstacle 

lattices with different 

parameters to obtain 

displacement behaviors 

unavailable in single 

lattices.

• Total lateral displacement 

and collision number are 

additive.
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𝒅 =෍

𝒊=𝟏

𝑵

𝒅𝐢 =෍

𝒊=𝟏

𝑵

ℓ𝒊𝚼𝐢
𝒄 =෍

𝒊=𝟏

𝑵

𝒄𝐢 =෍

𝒊=𝟏

𝑵

ℓ𝒊𝝎𝐢

Total lateral 

displacement

Lateral 

displacement 

per length

Lattice length 

(streamwise)

Streamwise direction (μm) 

Spatial 

collision 

frequency

Total no. of 

collisions



Our method of approximating target functions is very 

similar to Fourier series approximation
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𝒇 𝒙 = ෍

𝒌=𝟎

∞

𝒂𝒌 𝐜𝐨𝐬
𝒌𝝅𝒙

𝑳
+ 𝒃𝒌 𝐬𝐢𝐧

𝒌𝝅𝒙

𝑳

𝒅(𝒓) =෍

𝒊=𝟏

𝒏

ℓ𝒊𝚼𝒊

Same mathematical 

structure, but 𝚼𝒊 are 

not orthonormal!

How do we know this kind of approximation process can 

always work?



We’ve shown that we can approximate any given lateral 

displacement function of size with chained lattices
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Particle radius

• We can approximate 

any lateral 

displacement 

function of particle 

size using a 

sequence of specific 

pairs of rotated 

square lattices.

• The type of 

approximation we 

use is convergent 

with respect to many 

common error 

metrics, like least 

squares and least 

absolute deviation 

for both continuous 

and discrete 

functions.



We have developed a systematic inverse design 

algorithm for microfluidic lattice chains

• For a chain of 𝒏 lattices, we 

find the individual lattice 

parameters that best 

approximate some target 

function.

– Lattice parameters ℓ𝒊, 𝒂𝒊, 𝒃𝒊
→ ℓ𝒊, 𝚫𝐢, 𝜽𝒊

• We approximate by 

sequentially increasing 

lattice number.

– Lattice complexity reduced 

as much as possible.

– Accuracy thresholds can be 

established.

– Convergence guaranteed.
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Optimization 

algorithm 

dimension:

𝟑𝒏𝟐

𝟐
+

𝟑𝒏

𝟐

𝒏 Dimensions

1 3

2 9

3 18

4 30



We have significantly improved dimensionality 

constraints by applying mathematical tools

• Least-squares solving reduces dimensionality 

drastically.

– Hilbert projection theorem ensures sequential solutions are 

still global solutions.

– Since lateral displacement is linear in lattice lengths, closed-

form solutions for lengths exist given the other two 

parameters.

• To ensure unique solutions, we maximize the inner 

product of the target function with the lateral 

displacement per length function when lattice length 

is zero.
28

𝟑𝒏𝟐

𝟐
+

𝟑𝒏

𝟐
𝟑𝒏 𝟐𝒏



To validate our designs, we utilize three different 

techniques and three different design metrics

• Device complexity (# of 

lattices)
– High complexity leads to amplification 

of edge effect/lock-in errors between 

lattices

• Total device length
– Large device lengths cause lateral 

pressure gradients to develop, harming 

the DLD effect

• Mean square error to target
– Large error diminishes intended device 

performance
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• Direct L2
– Directly finds the lattice 

parameters that minimize 

the cost function with no 

extra constraints.

• 𝜽-restricted L2
– As above, but fixing the 

angle such that LD function 

are step functions.

• Riemann
– Doesn’t use optimization, 

fits the target with step 

functions. Consistent with 

current design strategies.

Metrics Techniques



Optimization improves error convergence considerably 

for nearly every target function 
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Direct L2 method Riemann method



Our algorithms are considerably better at constructing 

“prismatic” microdevices than the unoptimized 

approach

31

[6] [6]



We can use novel knowledge about these colloidal 

dynamics to construct devices that sort arbitrary 

polydisperse suspensions
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Platelet, red blood cell, white blood cell, emboli

[6]



Our device designs vastly outperform those reported in 

literature, in theory

Huang et al. (2004) Rodriguez-Gonzalez 

et al. (2020)

Number of lattices 8 2

Total device length 14 mm 1.57 mm

33

[3][6]
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