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GAUGE INVARIANCE AND THE EFF. POTENTIAL

IS IT APROBLEM?

It is well known that the effective potential approach is gauge dependent to some extent.
* The shape of the potential might depend on the gauge choice
* The location of minima might also depend on gauge choice

* The depth of minima does not depend on gauge choice

co:V(¢,8)+C(¢P,8)0,V(¢, &) = 0;



GAUGE INVARIANCE AND THE EFF. POTENTIAL

IS IT APROBLEM?

Things are (as usual) much simpler at lower orders, and one can say e.g. that:

e At one-loop all gauge dependence manifests itself in the Goldstone boson masses!

* If one works at T = 0, then as long as you are minimally careful, all is well. Just be sure
Goldstone masses vanish.

*At T # 0, resummations have to be included to improve the perturbative expansion. Then
more care has to be taken with power counting to get the Goldstone masses to be 0.



POWER COUNTING CAN REALLY CHANGE
THE PICTURE



Baryon washout, electroweak phase transition, and
perturbation theory

I HAS E I RANS I I Io NS Hiren H. Patel® and Michael J. Ramsey-Musolf®?

POWER COUNTING IS IMPORTANT!

Without careful power counting, phase
transitions can even disappear for some
gauge choices!

Power counting depends on the parameters
of your theory! It is not a unique recipe

Incredibly relevant for > 1 loop

Vig(6.T) = D(T? — T2)* — ET S + %54 .

The coefficients D, T, E and X\ depend on the parameters of the underlying model. In
the SM, the coefficients are [37]
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and A = A\ + (S‘dep 1Og) )

where y; is the top yukawa coupling; g; and go are the U(1) and SU(2); gauge coupling
constants; and the scalar quartic self coupling A picks up a logarithmic ¢é-dependence.

We observe that the coefficient of the quadratic term is gauge-independent, as one
expects based on the gauge-independence of thermal masses (see e.g., ref. [38]). In ap-
pendix C, we explicitly demonstrate this property for the general model. As we will discuss
below, we take advantage of this property to define the high-temperature effective theory
used to obtain a gauge-independent sphaleron scale.

Unfortunately, the coeflicient E' is not only gauge-dependent but strongly so. For
example, by choosing & = 3%/3 the E-coefficient can be made to vanish, and the barrier
necessary for a first order phase transition is permanently absent. One might hope that



The situation is alleviated with a proper power-counting. Consider the first-order tran-
sition scaling A ~ e>, mgff(T) ~e3T?, T ~ % A new minimum develops when the quartic
term competes with the mass term: ¢ ~ T. Now, the Goldstone mass is of order G ~ e3T?,

P H AS E TRAN S ITI o N S while the photon mass is of order e2¢? ~ eT?2. This means that the gauge dependent
terms (to leading order) cancel, leaving
(G +Ee?Pp2)PPT — 31233 T = gT\/EeqSE~e4T4. (3.8)
The order depends on how the potential looks/
develops for T>0.

3.1 Second-order transition

Consider first a second-order transition. With the scaling T ~ 1/+/# the energy is
Vin = { (Vo + T2V2) + VRTV (3.2)

The proper contributions at the leading-order have to (12T o 2an
> (3 VO+T8V1))+...}

be properly calculated.

+ 1 (T2V§ +V9— My d VY —T?
X

bo(T)

The leading-order term (VO + T2V12) determines the temperature dependent VeV ¢(T).

Th iS depends on the SpeCifiC thGO ry’ a nd the reg ion Of Terms in T2V12 are gauge invariant and are of the form ~ e?¢2T? for some coupling e [5].
. So all that changes for finite T is m? — mgff(T). The transition occurs at the temperature
pa rameter Spa ce Of Interest. where m?,(T) changes sign: m2(T,,q) = 0. This is a second-order transition.
. o 3.2 First-order transition
A feedback loop between valid expansion and the
. . . To be concrete, consider a high temperature expansion in the Abelian Higgs model. For
p0$S| b I eo rd er fO r tra ns It on. high temperatures the potential is approximately

. V(p)~—m2¢p2 + T2¢p%(e2 + 1) —e3Td> + 1™ (3.3)
For SM (or toy-SM) this has been done ->
Following [8], these various terms have to balance each other for a barrier to develop. The
balance occurs if Ap* ~ e>Tp ~ (—m?* + T?e* + AT?) = m2(T), or

Needs to be combined with proper gauge invariant

3 6

& 2 7y~ EoT2
methOdS!! ¢ 2 T & mg(T) 1 r=. (3.4)
This leaves only one option [8],
A~e’: ¢~T & mi(T)~e’T* & T«%. (3.5)
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SMEFT

FIRST OR SECOND ORDER?

. . 1
In th.e SM, we need the quartic coupling to be large to get PR d~T & mi(T)~eT2 & T~ -.
the right Higgs mass. €

With nothing extra, it is really hard to get a first order
phase transition with my = 125 GeV.

How about the SMEFT? L = (D,0)'(D"0) + m2(610) - 5(670)°
The quartic coupling could be smaller
The potential looks different

Power counting has to be done properly > 1

miy(¢) = —m® + - (m?*(C?P — 4C?7) + 3)¢”

What are the allowed regions for the WCs? _ 2(56@ + (CPP — 40P \) o
Are they consistent with a 1st order phase transition?
What about other observables?

+C%plp)® + CH(oT9)D(pTe) + COP(¢"D,d)* (¢! D) .




PHASE TRANSITIONS IN THE SMEFT

Com 1/TeV]?

* Really early stages, but looking promising

* We will establish a power counting scheme for
the SMEFT at T > O, first at one-loop

* We want to carefully map regions of allowed
parameter space consistent with 1st order PT

* We want to compare those regions with future
interesting regions in collider experiments and
consider contributions to di-Higgs production

Higgs Mass [GeV]

200

175

150

125

100

75

50

25

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

0.9

15.0

12.5

10.0

7.5

5.0

2.5

0.0

-2.5



