Constraints and prospects for charged Higgs bosons

Oscar Stål Uppsala universitet

Partikeldagarna 2008 Stockholm, 2008-10-16

work done in collaboration with D. Eriksson and F. Mahmoudi arXiv:0808.3551 [hep-ph]

Oscar Stål – Constraints and prospects for charged Higgs bosons – Partikeldagarna 2008

Oscar Stål – Constraints and prospects for charged Higgs bosons – Partikeldagarna 2008

The MSSM Higgs sector

• MSSM Higgs sector special case of 2HDM (II) \rightarrow No tree-level FCNC Two complex SU(2) doublets H₁, H₂

$$V(H_1, H_2) = \left(m_{H_1}^2 + |\mu|^2\right) |H_1|^2 + \left(m_{H_2}^2 + |\mu|^2\right) |H_2|^2 - B\mu \left(\epsilon_{ij} H_1^i H_2^j + \text{h.c.}\right) + \frac{1}{2}g^2 \left|H_1^{i*} H_2^i\right|^2 + \frac{1}{8} \left(g^2 + g'^2\right) \left(|H_1|^2 - |H_2|^2\right)^2$$

- EWSB \rightarrow Five physical Higgs states: h, H, A, H⁺, H⁻
- Potential fixed from SUSY in terms of Gauge couplings => Only two free parameters in the Higgs sector at tree-level, usually

$$\tan\beta = \frac{v_2}{v_1} \qquad m_A$$

Tree-level mass relations for the other Higgs masses, for example

$$m_{H^+}^2 = m_A^2 + m_W^2$$

 Yukawa sector potentially richer than in the SM. This is where most constraints on MSSM Higgs sector come from. Charged Higgs H⁺, H⁻ known to give strict constraints on MSSM parameters.

Constrained MSSM models

- The full MSSM has 124 parameters → Can study only limited models Universality assumptions Minimal flavor violation (MFV)
- Constrained MSSM (CMSSM, "mSUGRA") and models with Non-Universal Higgs Masses (NUHM) assume SUSY breaking mediated by gravity.
- CMSSM: unified boundary conditions at high "GUT" scale:

Universal scalar (incl. Higgs) masses:	m _o
Universal gaugino masses:	m
Universal trilinear couplings:	A
Sign of Higgsino mass parameter:	sign(µ)

- In the NUHM model the universality of scalar masses are relaxed for the Higgs doublets. → Two new mass parameters
- These GUT-scale parameters can be traded for the two parameters $m_{_{\!A}}$ and μ at the EW scale

Oscar Stål – Constraints and prospects for charged Higgs bosons – Partikeldagarna 2008

Parameter Scan

- To identify the allowed regions for the charged Higgs we scan over the NUHM parameter space.
- Theoretical constraints, such as radiative breaking of the EW symmetry, restricts the useful ranges for the input parameters
- Physical mass spectrum at EW scale through RGE running (SOFTSUSY)
 - \rightarrow All masses and couplings determined by the six input parameters

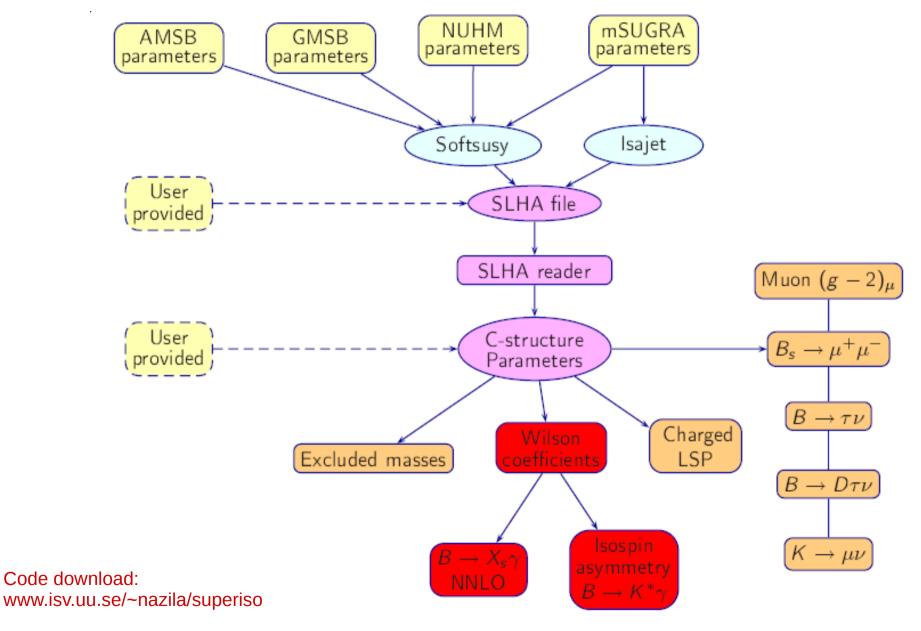
Parameter	min	max
m_0	50	2000
$m_{1/2}$	50	2000
A_0	-2000	2000
μ	-2000	2000
m_A	5	600
aneta	1	60

Constraints

- With R-parity conservation, all effects of SUSY on low-energy observables occur through loops
- Several types of observables constraining the parameters for charged Higgs bosons can be identified:

Direct search limits

Flavor data constraints


Anomalous magnetic moment of muon Restricts $\mu > 0$

Cosmological constraints on dark matter No exclusion power specifically for H⁺

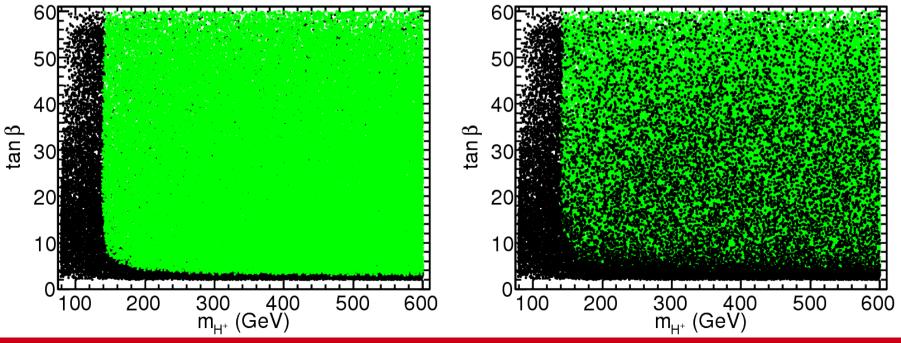
SuperIso

Old manual: Comput. Phys. Commun. 178 (2008) 745 New manual: arXiv:0808.3144

Constraints from direct searches

- UPPSALA UNIVERSITET
- Constraints at 95% C.L. from LEP searches for Higgs bosons and sparticles

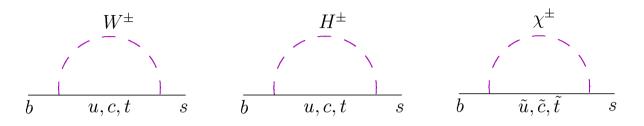
Particle	H^+	h	χ_1^0	χ_1^+	\tilde{e}_R	$ ilde{\mu}_R$	$ ilde{ au}_1$	$\tilde{ u}$	${ ilde b}_1$	${ ilde t}_1$	\widetilde{g}
Mass limit (GeV)	79.3	111	46	94	73	94	81.9	94	89	95.7	308

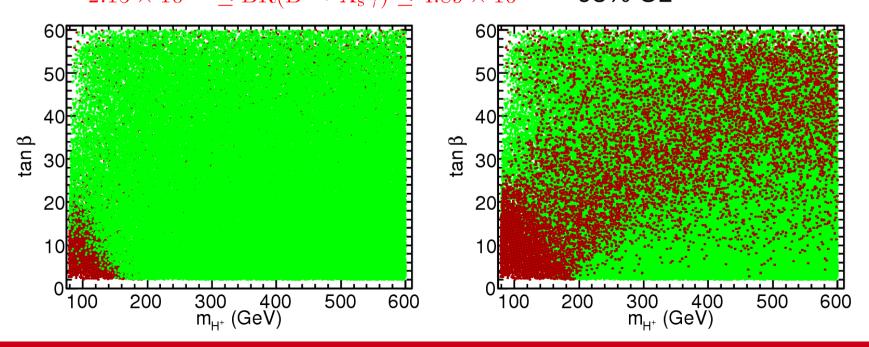

[PDG2008]

- Lightest Higgs mass limit gives sharp edge
 - $\sim m_{H^+} > 135 \text{ GeV}$ for $m_h > 111 \text{ GeV}$

$$\sim m_{_{H^+}} > 123 \text{ GeV for } m_{_h} > 93 \text{ GeV}$$

m_h-max


SM-like light Higgs


Oscar Stål – Constraints and prospects for charged Higgs bosons – Partikeldagarna 2008

Rare transition mediated by W loop in SM

• MSSM contributions mainly from H⁺ (constructive) and χ^+ (const. or dest.) $BR(\bar{B} \rightarrow X_s \gamma)_{exp} = (3.52 \pm 0.23 \pm 0.09) \times 10^{-4}$ [HFAG] $BR(\bar{B} \rightarrow X_s \gamma)_{SM}^{NNLO} = (3.15 \pm 0.23) \times 10^{-4}$ [Misiak & Steihauser 07] $2.15 \times 10^{-4} \leq BR(\bar{B} \rightarrow X_s \gamma) \leq 4.89 \times 10^{-4}$ 95% CL

• Tree-level decay, helicity suppressed in SM. Also H^+ at tree-level.

• SUSY effects enter through tan β -enhanced SUSY-QCD corrections ϵ_0 .

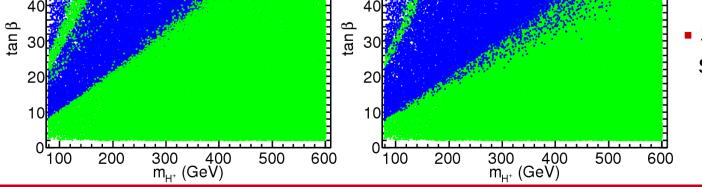
$$BR_{MSSM} = \frac{G_F^2 f_B^2 |V_{ub}|^2}{8\pi\Gamma_B} m_B m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 \left[1 - \left(\frac{m_B^2}{m_{H^+}^2}\right) \frac{\tan^2\beta}{1 + \epsilon_0 \tan\beta}\right]$$

Large parametric uncertainties from V_{ub}

DMSSM a oo

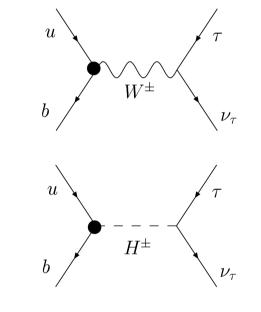
 $\mathbf{B} \to \tau \, \nu_{\tau}$

$$R_{\tau\nu_{\tau}}^{\exp} \equiv \frac{\mathrm{BR}(B_u \to \tau\nu_{\tau})_{\exp}}{\mathrm{BR}(B_u \to \tau\nu_{\tau})_{\mathrm{SM}}} = 1.28 \pm 0.38 \quad \text{[HFAG]}$$


• Similar constraints, but weaker, from
$$\begin{array}{l} \mathbf{B} \to \mathbf{D} \, \tau \, \nu_{\tau} \\ \mathbf{K} \to \mu \, \nu_{\mu} \end{array}$$

- Strong exclusion, but
shifted if changing
$$V_{ub}$$

 $|V_{ub}^{comb}| = (3.95 \pm 0.35) \times 10^{-3}$
[PDG2008]

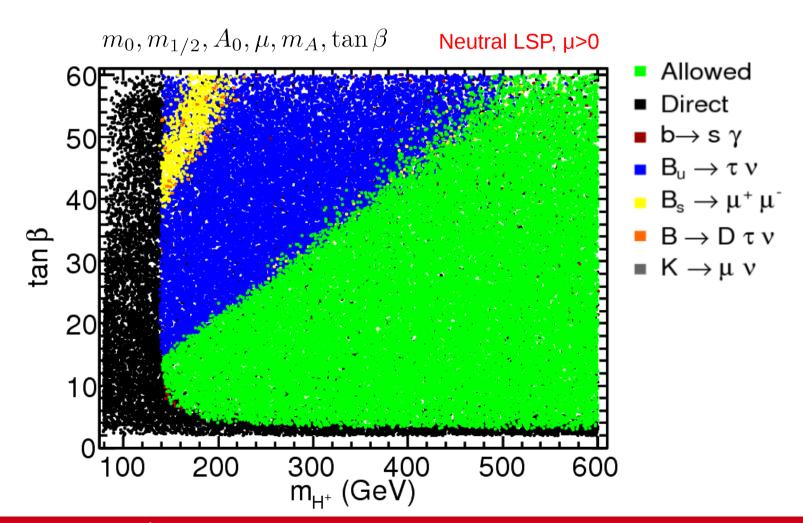

60

50

60

50

2008-10-16

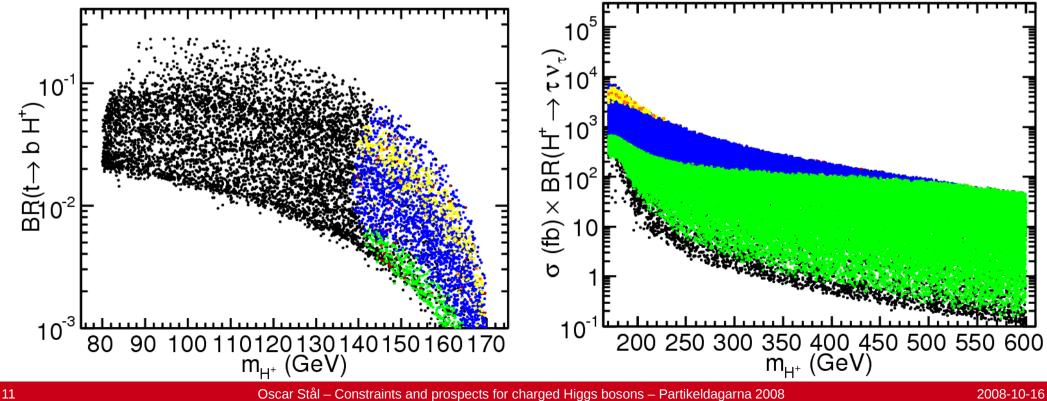


Combined constraints in NUHM models

Large exclusion by flavor constraints.

Low charged Higgs mass allowed only for intermediate tan β .

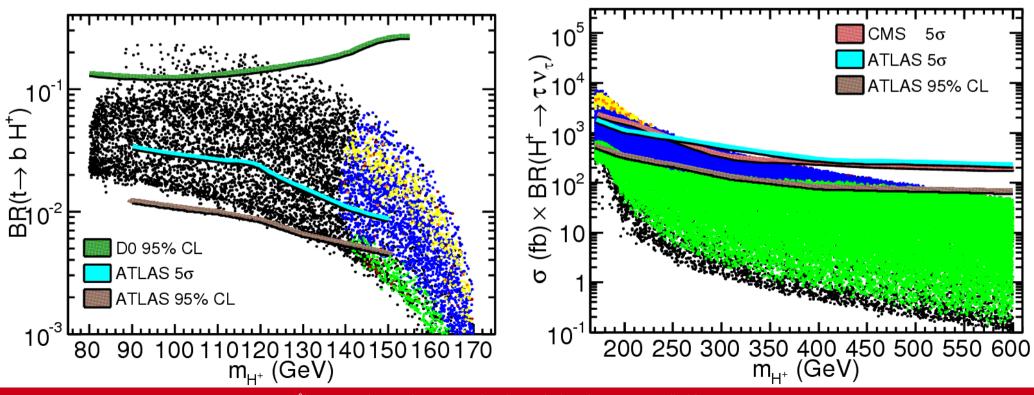
 $m_{H^+} \gtrsim 135 {\rm ~GeV}$


LHC discovery prospects

- Main discovery channel is $H^+ \rightarrow \tau^+ \nu_{\tau}$, both for light and heavy H⁺
- Determine cross section (BR) for each point in NUHM scan Parametrization of NLO cross section + HDECAY (FeynHiggs) tan β -enhanced corrections to $m_{\rm b}$ included consistently
- Points which have highest cross-section (BR) are also those for which the indirect constraints are most efficient

Neutral LSP, $\mu > 0$

Allowed Direct $b \rightarrow s \gamma$ $B_{\mu} \rightarrow \tau \nu$ $B_s \rightarrow \mu^+ \mu^ B \rightarrow D \tau \nu$ $K \rightarrow \mu \nu$



Comparison to experimental reach

- Tevatron results with 1 fb⁻¹ from this summer starting to probe interesting NUHM region
- Reach for CMS and ATLAS with 30 fb⁻¹

12

- LHC experiments will probe most of the NUHM parameter space for low $m_{\rm H^{+}}$

Neutral LSP, $\mu > 0$

Allowed

Direct

• $b \rightarrow s \gamma$

 $\blacksquare B_u \rightarrow \tau \nu$

 $B_s \rightarrow \mu^+ \mu^-$

• $B \rightarrow D \tau v$

• $K \rightarrow \mu \nu$

DØ Note 5715-CONF

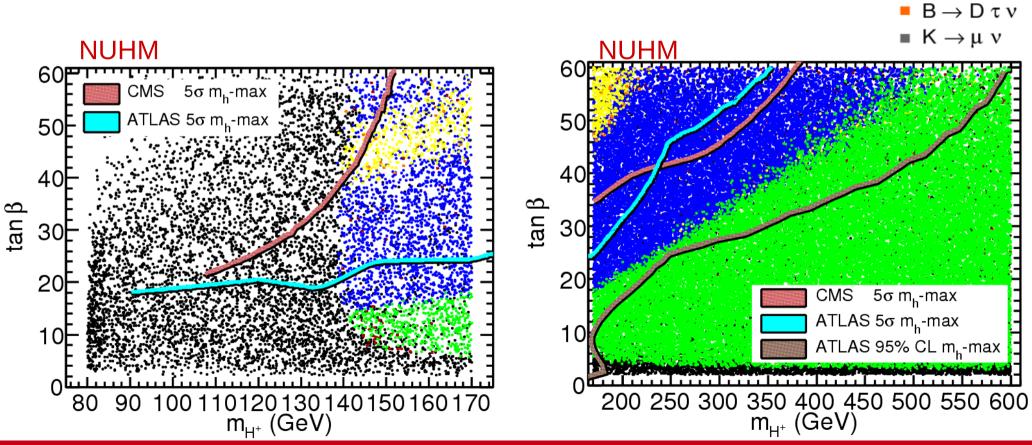
CERN-OPEN-2008-020

CMS-NOTE-2006-100, 2006-056

Model-dependent comparison

- Experimental results interpreted in m_h-max scenario
- NUHM model points with constraints superimposed

Neutral LSP, µ>0

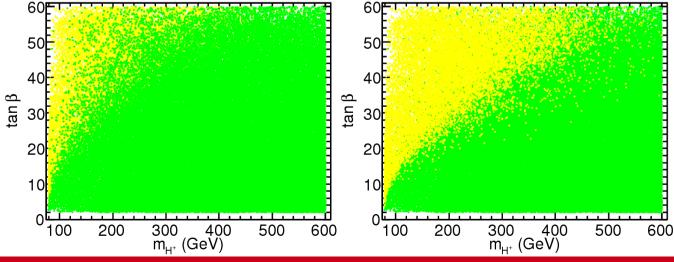

Allowed

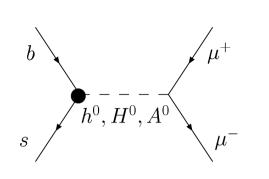
Direct

• $b \rightarrow s \gamma$

 $\blacksquare B_u \rightarrow \tau \nu$

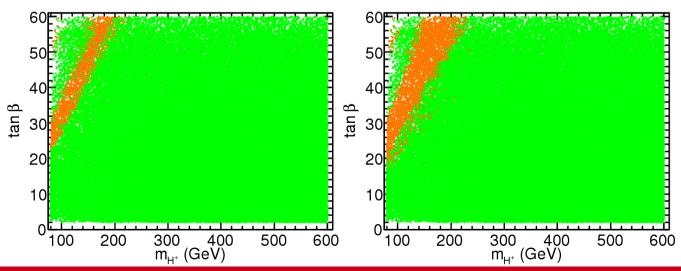
 $B_s \to \mu^+ \, \mu^-$

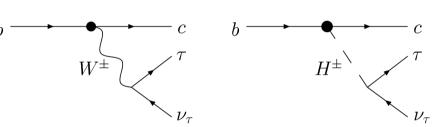

- We have studied constraints on charged Higgs bosons in MSSM models with non-universal Higgs masses using the SuperIso tool.
- B-physics observables yield powerful constraints, but uncertainties both from theory and experiment are still quite large.
- The region where indirect searches obtain the highest exclusion power is where the largest cross sections are expected for H⁺ production at the LHC.
- Finding a charged Higgs early at the LHC points to non-minimal models.


Backup Slides

$\mathbf{B_s} \to \mu^+ \, \mu^-$

- Rare FCNC mediated by neutral Higgs bosons
- Decay not observed, only upper limit: ${\rm BR}(B_s \to \mu^+ \mu^-) < 5.8 \times 10^{-8} \quad {\rm [CDF]}$
- SM prediction: $BR(B_s \to \mu^+ \mu^-)_{SM} = (3.2 \pm 0.5) \times 10^{-9}$,
- MSSM contribution at high tan β proportional to $\frac{m_{\mu}^2 m_B^2}{m_A^4} \tan^6 \beta$



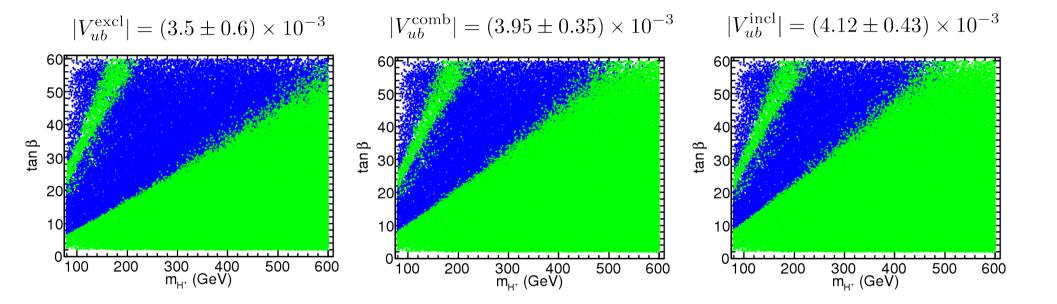

16

- Uncertainties from form factors ρ_v and ρ_s .

$$\xi_{D\ell\nu} \equiv \frac{\text{BR}(B \to D\tau\nu_{\tau})}{\text{BR}(B \to De\nu_{e})}$$

$$\xi_{D\ell\nu}^{\text{exp}} = (41.6 \pm 11.7 \pm 5.2) \times 10^{-2} \quad \text{[BaBar]}$$

$$15.1 \times 10^{-2} < \xi_{D\ell\nu} < 68.1 \times 10^{-2}$$

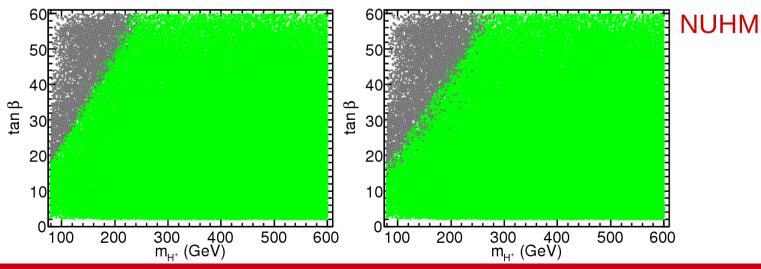


- Exclusion complementary to ${\bf B} \to \tau \, \nu_{\tau}$

UPPSALA UNIVERSITET

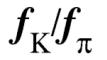
Uncertainties in $\mathbf{B} \to \tau \, \nu_{\tau} \, \text{from} \, \mathbf{V}_{ub}$

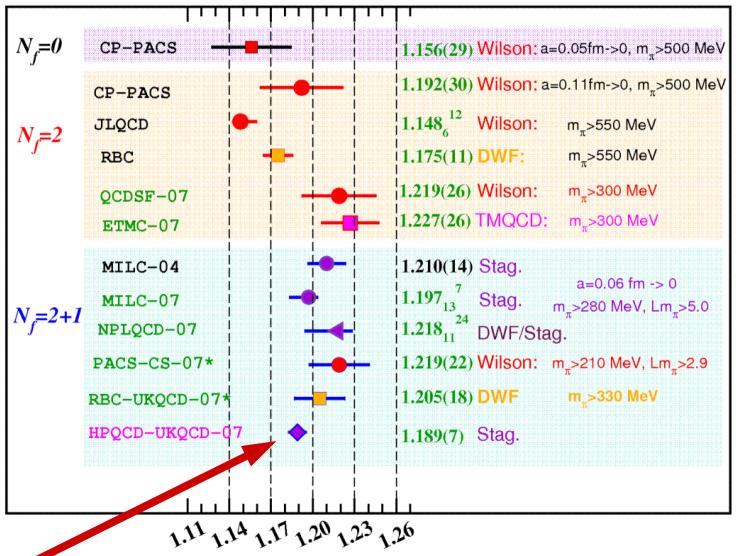
 $\mathbf{K} \to \mu \, \nu_{\mu}$


• Similar to $\mathbf{B} \to \tau \, \nu_{\tau}$. Also mediated by \mathbf{H}^{*} at tree-level.

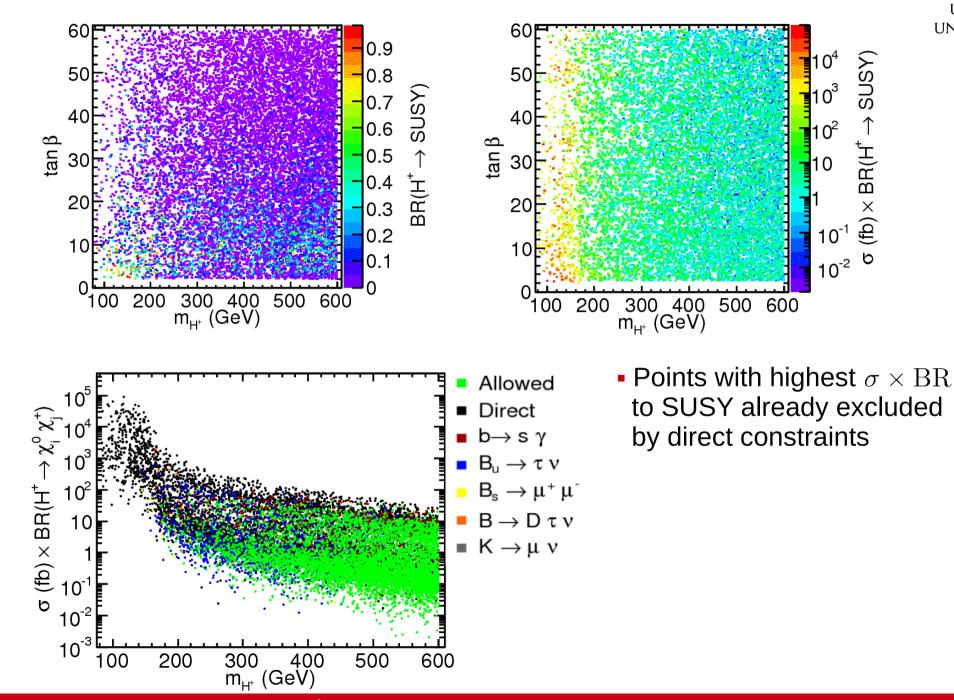
$$R_{\ell 23} \equiv \left| \frac{V_{us}(K_{\ell 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{us}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell 2})} \right| = \left| 1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta}$$

[FlaviaNet Kaon WG, arXiv:0801.1817]

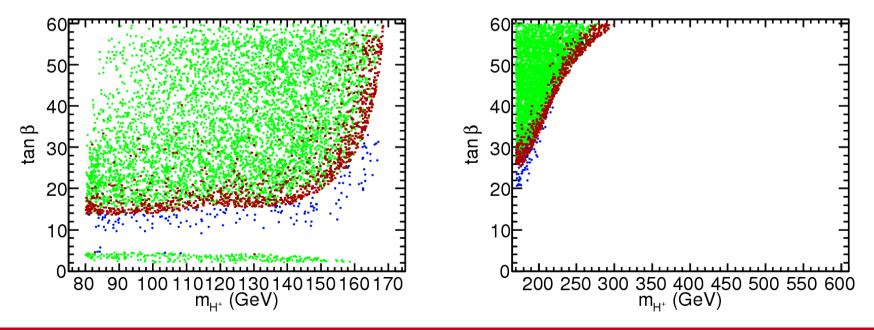

 $R_{\ell 23} = 1.004 \pm 0.007$


• Large parametric uncertainty in this quantity from f_{κ}/f_{π} obtained using lattice QCD Using value with larger error removes constraint.

Lattice uncertainties in $\mathbf{K} \rightarrow \mu \, \nu_{\mu}$



[FlaviaNet Kaon WG, arXiv:0801.1817]


Charged Higgs decays to sparticles

NUHM model dependence

- Green: NUHM points which are " 5σ detectable" by ATLAS
- Red: NUHM points which are **not** 5σ detectable due to ε_{b} corrections
- Blue: NUHM points which are 5σ detectable thanks to ε_{b} corrections

UPPSALA UNIVERSITET