

Searching for Heavy Stable Hadrons with ALICE in pp collisions

Alexandru Dobrin, Peter Christiansen Lund University

- Motivation
- R-hadrons
- Pythia results
- Detector response simulations of R-hadrons
- Conclusions and Outlook

17.10.2008

The start-up period of LHC is also ideal for ALICE to look for new physics because of the lower luminosity

- Heavy Stable Hadrons
 - Predicted by some theories for new physics

 - SUSY-models (long lived gluino/stop/stau)
 Universal Extra Dimensions (UED) (Stable KK excitations of the gluon)
 - Limits from previous experiments for R-hadrons(arXiv:hep-ph/0611040v2)
 LEP: m>27 GeV at 95% CL

Motivation

- Tevatron: m>170 GeV (not explicitly considered)
- Hadrons
 - Coloured = "large" cross sections
- "Stable"
 - So long lived that they make it through the detector (direct detection)
- Heavy (mass > 100 GeV)
 - Slow -> Could be difficult to trigger on for ATLAS and CMS (β > 0.7)
 Ionization different from "normal" high momentum particles

 - TOF could give clean signal

17.10.2008

R-hadron – Our unusual suspect

- SUSY: R-hadrons consist of a heavy gluino/squark and quarks (ignore glueballs)
 - Quark system interacts
 - Gluino is "just" a reservoir of kinetic energy
- R stands for R-parity = number of SUSY particles is conserved
- Split-SUSY: gluino is light (mass < 1 TeV), squark is heavy (mass >> 1 TeV)
 - Because squark is heavy, the R-hadron decay to neutralino is suppressed

Pythia simulations

Cut: |η|<1 n distribution **号**등0.5 Gluino 100 GeV/c² ~ <mark>~</mark> Gluino 200 GeV/c² 0.4 Gluino 300 GeV/c² Gluino 500 GeV/c² 0.3 0.2 0.1 -2

 R-hadrons are pair produced approximately back to back

 The probability for a R-hadron to be charged is ~50%

 10000 Pythia (6.4.10) events were generated for each different gluino mass (100, 200, 300, 500 GeV)

 Used a cut in pseudorapidity: n <1 (to have full length tracks in the TPC)

Increasing gluino mass, the particle are produced more centrals

Pythia results - pT and β distributions

TPC acceptance

- A broad pT distribution -> Challenge for ALICE because of the low magnetic field
- After cut, gluino velocity in the range 0.3<β<0.9</p>

• R-hadrons are very different from ordinary particles (p, e, μ , π , K) at momenta in this range P > 50 GeV

17.10.2008

$$R \sim 2 \times \frac{\sigma_{Rhadron}}{\sigma_{pp}} \times Acc, \sigma_{pp} \sim 110 mbarn$$

Gluino Mass [GeV]	σ [mbarn]	Acc	Rate_charged (50%)	Number of charged R-hadrons per 10 ⁹ collisions ($ \eta < 1$) $\begin{array}{c} & 10^3 \\ \times \\ & 10^2 \\ & 10^2 \end{array}$
100	5.6x10 ⁻⁵	0.31	1.6x10 ⁻⁷	
200	2.2x10 ⁻⁶	0.36	0.7x10 ⁻⁸	
300	2.8x10 ⁻⁷	0.38	1.0x10 ⁻⁹	10 ⁻¹
500	1.6x10 ⁻⁸	0.44	0.7x10 ⁻¹⁰	10 ⁻² 100 150 200 250 300 350 400 450 500 Mass [GeV/c ²]

 Golden signal would be two slow back to back high momentum particles

17.10.2008

Triggering on multiplicity to enhance the R-hadrons

Number of charged tracks in the silicon pixel acceptance ($|\eta|$ <2)

- When ALICE has to downscale the triggers, triggering on multiplicity can enhance the R-hadron sample
 - Example: Selecting the 10% events with the highest multiplicity only removes 1/3 of the R-hadrons: factor ~ 7 enhancement

17.10.2008

Detector response simulations

- Pythia input -> ALICE (GEANT 3 based) Simulation
 - Magnetic field 0.5 T
- R-hadron quark exchange interactions are not taken into account because of the low material budget
- R-hadrons (gluino mass 100 GeV) with charge +1 are simulated and reconstructed
 - Reconstruction efficiency (ITS, TPC, TOF): ~65%
 - Tracking (ITS+TPC): ~83% (10% dead zones)
 - TOF matching: ~80% (10% loss due to η coverage)
 - Also investigated exotic charge: +2/3, +4/3, +2
- PID signals are compared to pions, protons, and muons with the same momentum distribution

Momentum resolution

- Momentum resolution is ~4% at p=100 GeV/c
- Interesting, multiple scattering dominates for p<50 GeV/

17.10.2008

dE/dx in ITS and TPC

- dE/dx for R-hadrons is in the region of 1/β² (the same as for low momentum SM particles)
- dE/dx for pions, muons, protons is on the relativistic plateau
 - ~30% of the R-Hadrons can be identified by the large dE/dx

17.10.2008

- TOF allows separation for 99% of the R-hadrons
- Also the mass can be determined from the measurement of the momentum and TOF

17.10.2008

Charge +2 R-hadrons

- Models: a small fraction (1%) of R-hadrons have charge +2, but this is based on the low energy QCD hadronic spectrum.
 For R-hadrons with charge +2 the reconstructed momentum is half (Reconstruction assumes charge +1)
- Complete separation for R-hadrons with charge +2 very clean signal

Fractional charge R-hadrons

- Signature of free (heavy) quarks
- Reconstruction efficiency for charge +2/3 and +4/3 (ITS, TPC, TOF): ~62%
- dE/dx for fractional charge R-hadrons follows dE/dx~q²

17.10.2008

- Heavy stable charged particles provide good candidates for ALICE searches because the trigger and the detector system is simpler and optimized for PID of charged particles
 - dE/dx gives a good separation of the new integral/fractional charge particles from the SM particles
 - TOF separates these particles from slow SM ones and gives an estimate for their mass
- For gluino R-hadron one expects around 80 (0.5) reconstructed R-hadron tracks for a gluino mass of 100 (300 GeV/c) in a nominal ALICE year (10⁹ MB events)
 - this can be increased by a factor 7 using the multiplicity trigger

BACK-up slides

17.10.2008

R-hadron multiplicity per event after the η cut

Number of R-hadrons per event after the η cut -> golden signal would be two slow back to back high momentum particles

TPC: dE/dx for pi, p, mu and R-hadrons

