

Dijet angular distributions from pp collisions at $\sqrt{s} = 14$ TeV

Nele Boelaert

Outlook

- Introduction: dijet angular distributions
- L0 + NLO QCD
- ATLAS MC study
- Summary and conclusions

Dijet angular distributions

Dijet final state, in pp-collisions through qq, qg and gg interactions.

Dijet angular distributions: $d\sigma/d\chi$ vs χ

- Binned in dijet invariant mass (Mjj), one can show that dσ/dχ vs χ is approximately flat for QCD
 → dσ/dχ test of QCD + sensitivity probe for new physics
- Strategy with ATLAS data:
 - Low integrated luminosity: study QCD
 - Later on: effects beyond the Standard Model (eg. gravitational scattering in large extra dimensions)

Selection cuts for $d\sigma/d\chi$

- Atlas calorimeters: η -coverage up to 4.9
- Make sure full jet is fully seen by detector, i.e. for cone 0.7 jets only η -coverage up to η_{max} = 4.2 $\exists c \in [0, \eta_{\max}]$

$$\begin{cases} \eta_{boost} = (\eta_1 + \eta_2)/2 \\ \eta^* = (\eta_1 - \eta_2)/2 \end{cases} \xrightarrow{\left\{ -\eta_{max} < \eta_1 = \eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ 2 \mid \eta^* \mid < 2\eta_{max} - 2 \mid \eta_{boost} \mid \end{cases} \xrightarrow{\left\{ 2 \mid \eta_{boost} \mid < c \\ 2 \mid \eta^* \mid < 2\eta_{max} - c \\ 2 \mid \eta^* \mid < 2\eta_{max} - c \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_2 = -\eta^* + \eta_{boost} < \eta_{max} \\ -\eta_{max} < \eta_{max} < \eta_{max} \\ -\eta_{max} < \eta_{max} < \eta_{max} \\ -\eta_{max} < \eta_{max} < \eta_{max} < \eta_{max} \\ -\eta_{max} < \eta_{max} < \eta_{max} < \eta_{max} \\ -\eta_{max} < \eta_{max} <$$

Suppose you want to measure
$$d\sigma/d\chi$$
 up to χ_{max} or equivalently $|2\eta^*|$ (= log(χ)) up to $X \equiv 2\eta_{max} - c \rightarrow$ Can be done without loss in acceptance by requiring: $2 |\eta_{boost}| < c$

Require:
$$2|\eta_{boost}| = |\eta_1 + \eta_2| < c$$
,
 $2|\eta^*| = |\eta_1 - \eta_2| < 2\eta_{max} - c$
and measure χ up to $exp(2\eta_{max} - c)$

| < c

Selection cuts

Require: $|\eta_1 + \eta_2| < c$, $|\eta_1 - \eta_2| < 2\eta_{max} - c (\chi < \chi_{max})$ and Mjj in bin [Mjj_{min}, Mjj_{max}]

Minimum pT of both jets for which the dijet passes the selection cuts?

For 2 partons in final state (LO, NLO virtual) : $Mjj = p_T(\sqrt{\chi} + \frac{1}{\sqrt{\chi}})$

→ for events in bin [Mjj_{min}, Mjj_{max}] and χ < χ _{max}:

$$p_T \ge Mjj_{\min} / (\sqrt{\chi_{\max}} + \frac{1}{\sqrt{\chi_{\max}}}) = p_{T\min 2}$$

For 3 partons in final state (NLO real), it can be shown that for events with Mjj in [Mjj_{min}, Mjj_{max}] and $\chi < \chi_{max}$:

$$p_T \ge Mjj_{\min} / 2 / \sqrt{1 + 0.5\chi_{\max} + 0.5/\chi_{\max}} = p_{T\min 3}$$

minimum pT:

$p_{T\min} = p_{T\min3} \le p_{T\min2}$	Mjj-bin	χ _{max} =100 p _{Tmin}	χ _{max} =600 p _{Tmin}
Trigger selection	0.5-1 TeV	35 GeV	14 GeV
	1-2 IeV	70 GeV	28 GeV
	2-3 TeV	140 GeV	55 GeV
	3-14TeV	210 GeV	84 GeV

|n + n| < 15

χ

do/dχ (pb)

QCD up to NLO

- jetrad [HEP-PH 9302225] for NLO calculations at 14TeV
- no hadronization, clustering at the parton level: Cone 0.7 or kT 1.0

Measurement with ATLAS

- No real data yet!
- But we have ATLAS MC samples that include detector response (=Full Chain MC)
- We need Full Chain MC to study detector response and sensitivity, and estimate corrections in order to be able to compare measurement with theory

ATLAS Monte Carlo study

• ATLAS Jx samples, binned in partonic Pt:

Event sample	J2	J3	J4	J5	J6	J7	J8
Pt range (GeV)	35-70	70-140	140-280	280-560	560-1120	1120-2240	>2240
σ (mb)	9.3E-2	5.9E-3	3.14E-4	1.3E-5	3.6E-7	5.3E-9	2.22E-11

QCD Only

- O(100k) events for each Jx
- Each reconstructed event has a corresponding truth event: truth: particles at generator level, no detector ↔ reco(nstructed): particles at from generator through detector simulation and reconstruction
- Cone 0.7 Jets
- Need to combine samples to get full Pt range, weight events with σ/N (N number of events in sample)

0.01

 $log(\chi)$

Impact from experimental uncertainties

- Jet energy scale
- Jet energy resolution
- Resolution in η
- Resolution in φ

Systematic error <4%

Impact of Jet Energy Scale (JES)

- 1. Generate events with pythia 6.4, no detector simulation
- 2. Calculate $d\sigma/d\chi$ vs χ for 1<Mjj<2 TeV
- 3. Increase jet pT with +5%: pT=pT+5%
- 4. Calculate $d\sigma_{increase}/d\chi$ for 1<Mjj<2 TeV
- 5. Take ratio of differential cross-sections: $(d\sigma_{increase}/d\chi) / (d\sigma/d\chi)$ (red curve)
- 6. Repeat steps 3.-4.-5. with pT-5% (green)

JES:

D0 [Phys. Rev. Lett. 80, 4, 666-671]: less than 4% and nearly independent of dijet invariant mass. (using photon + jet and dijet events)

ATLAS [Atlas Collaboration: Detector Level Jet Corrections, 2008]: expected around 5% (from combined test beam)

Impact Jet Energy Scale (JES)

- Effect due to binning in Mjj of $d\sigma/d\chi$
- Shape of distributions not effected by a global (η independent) error on JES
 - → normalize distributions $d\sigma/d\chi/\sigma$ ($dN/d\chi/N$)
- Remaining η dependence of JES error needs to be investigated → systematic error on $d\sigma/d\chi/\sigma$

Summary and conclusions.

Dijet angular distributions:

- can be measured with ATLAS up to χ ~600
- already good statistics with 1 pb-1
- QCD calculations up to NLO
- **good experimental resolution in** χ
- experimental uncertainties dominated by uncertainties in JES, normalize (= $d\sigma/d\chi/\sigma$) to get rid of global JES uncertainty, but a residual η -dependent error on JES still affects distributions