

Weina Ji (University of Lund) Sally Seidel (University of New Mexico and Kunliga Tekniska hogskolan) Konstantin Toms (University of New Mexico) Sergey Sivoklokov, Alexandre Berejnoi (SINP, Moscow University)

Partikeldagarna

- B-physics program in ATLAS
- B_c properties and purpose in ATLAS
- Current studies based on Monte Carlo Samples
- Facing to the early running and plans

B Physics at ATLAS

- Large b b production at LHC Estimated cross-section ~ 500 µb
- > ATLAS

Excellent muon systems and trackers, large $|\eta|$ acceptance, triggers

Large variety of B-physics topics at ATLAS

Production cross-section of beauty and charm hadrons and heavy-flavour quarkonia

Properties of B meson family and B baryons (B_d , B^+ , B_s , B_c , Λ_b ...)

Measurement of weak B hadron decays

New physics

At LHC early running, favourable lower luminosity for B-physics (up to 10³³ cm⁻² s⁻²)

- Mass predictions Theoretical predictions: potential models, QCD sum rules, Lattice QCD $6150 \sim 6500 \text{ MeV/c}^2$ with large uncertainties 7.5
- ➢ Unique system: $B_c^+ = \overline{b}c$ $B_c^- = b\overline{c}$ Bound state of two heaviest quarks, c and b, suppress relativistic effects Carry flavour, heavy-quark dynamics different from cc & bb quarkonia

Bc Meson Properties

Mass Spectrum of Bc family

38

Bc Meson Properties

- Predicted mass values from potential models.
- Mass differences are more tightly constrained than the precise mass values.
- The form of strong potential could be extracted by measuring excited states and ground state.

state	Martin	BT
$1^{1}S_{0}$	6.253	6.264
$1^{1}S_{1}$	6.317	6.337
$2^{1}S_{0}$	6.867	6.856
$2^{1}S_{1}$	6.902	6.899
$2^{1}P_{0}$	6.683	6.700
$2P \ 1^+$	6.717	6.730
$2P 1'^+$	6.729	6.736
$2^{3}P_{2}$	6.743	6.747
$3^{1}P_{0}$	7.088	7.108
$3P 1^+$	7.113	7.135
$3P 1'^+$	7.124	7.142
$3^{3}P_{2}$	7.134	7.153
$3D 2^{-}$	7.001	7.009
$3^{5}D_{3}$	7.007	7.005
$3^{3}D_{1}$	7.008	7.012
$3D 2'^{-}$	7.016	7.012

Bc decays

- Three classes:
 - 1. \bar{b} quark decay while c is spectator (~20%)
 - 2. c quark decay while \overline{b} is spectator
 - **3.** annihilation channel $B_c^+ \rightarrow l^+ v_l(c \bar{s}, u \bar{s})$

The total width is summed over the three partial widths

$$\Gamma(B_{c} \rightarrow X) = \Gamma(b \rightarrow X) + \Gamma(c \rightarrow X) + \Gamma(ann)$$

(~70%)

(~10%)

> Shorter lifetime $\tau \sim 0.5$ ps

Prospects of Bc studies in ATLAS

- Bc has been observed by Tevatron experiment.
- ➤ At LHC energies, the dominant production will be gluon-gluon fusion. gg → Bc + anti-c+b. The summed cross section for the Bc meson production is about 10⁻³ of the total cross section of the bb production. With the luminosity of L=10³³cm⁻²s⁻¹ one could expect 5×10⁹ events per year.
- We are focusing on mass measurements of several Bc states and differences relative to ground state.

$$B_{c}^{+}(2^{1}S_{0,1}) \rightarrow B_{c}^{+}(1^{1}S_{0})\pi^{+}\pi^{-}$$
$$B_{c}^{+}(1^{1}S_{0}) \rightarrow J/\psi + \pi^{+} \rightarrow \mu^{+}\mu^{-}\pi^{+}$$

Bc+ Ground State Decay

Studies have been done to reconstruct ground state decay $B_c^+(1^1S_0) \rightarrow J/\psi + \pi^+ \rightarrow \mu^+ \mu^- + \pi^+$

Monte Carlo Samples
Signal: Bc+->J/Ψ(μ6μ3)+π+ (4550)
PythiaB(PYTHIA implementation in ATLAS for B events) + EVTGEN(B decay)
Full simulation and reconstruction with ATLAS geometry

Background: ATLAS CSC production bb->Jpsi(µ6µ4)+X (~150K) other B decays pp->Jpsi(µ6µ4) (~150K) large prompt Jpsi production

"new magnetic field, misaligned geometry with material distortions"

<u>J/Ψ Selection</u>

- > Require muon tracks with one Pt>6GeV, one Pt>4GeV, $|\eta|$ <2.5
- > Form $\mu^+\mu^-$ pairs and fit to a common vertex
- > Vertex Fit quality $\chi^2/ndf < 6$
- > Invariant mass $|M_{J/\Psi}-M_{PDG}| < 200 \text{ MeV}$

$J/\psi(\mu^+\mu^-)$ Cuts	Number of Selected Particles	Efficiency (%)
$\mu 4\mu 6, \eta < 2.5$	2990	
$ Inv(\mu^+\mu^-) - PDGMass < 200 MeV$	2550	85.3
$\chi^2/\mathrm{ndf} < 6$	2476	97.1
refitted $ InvMass - PDGMass < 200 MeV$	2476	100.0
Total Efficiency		82.8

Bc+ Selection

> π^+ candidates:

Positive charged tracks (excluding muons) with Pt>3GeV , $|\eta|$ <2.5 Not coming from primary vertex $|d_0|/\sigma_{d0}$ > 1

- > Make triplets from J/ Ψ and π^+ candidates. Fit $\mu^+\mu^-$ and π^+ to a common vertex . $\mu^+\mu^-$ tracks are constrained to $M_{J/\Psi(PDG)}$
- Bc⁺ candidates: vertex fitting $\chi^2/ndf < 5$ Proper Decay Length λ= cτ = Lxy*M_B/P_T > 0.1mm

$\cos(\alpha) > 0.1$	7 , cos(θ)>0.99
$ M_{BC}-M_{PDG} $	< 180 MeV

Signal: B _c Cuts	Selected $B_c \to J/\Psi \pi^+$ (NEvt: 4550)	Selection Efficiency (%)
$J/\Psi \pi^+$ triplets	2507	55.1
InvMass - PDGMass < 500 MeV	828	33.0
$\chi^2/\mathrm{ndf} < 5$	784	94.7
$\lambda > 0.1 \mathrm{mm}$	458	58.4
opening angle $\cos(\alpha) > 0.7$	457	98.3
pointing angle $\cos(\theta) > 0.99$	450	98.5
truth match	445	98.9
refitted $ InvMass - PDGMass < 180MeV$	432	97.1
Total Efficiency		9.5

Vertex Reconstruction

$$(x_{Rec} - x_{True})/error(x_{Rec}) \qquad (y_{Rec} - y_{True})/error(y_{Rec}) \qquad (z_{Rec} - z_{True})/error(z_{Rec})$$

Primary Vertex

Oct. 16, 2008

Reconstructed Invariant Mass

> Di-muon(J/ Ψ) invariant mass

Combination of Samples

- Cross section of samples we are using: Bc+->J/Ψ(µ6µ3)+π+ ~1.77pb
 bb->Jpsi(µ6µ4)+X ~ 11 nb
 pp->Jpsi(µ6µ4) ~ 23 nb
- Current λ > 0.1mm cut helps to reduce combinatorial background from prompt Jpsi. 3 events (out of 150K) fell into 6~7GeV mass range. Due to the limited sample statistics but the large actual production, we should still be careful when dealing with real data.
- Normalized both signal and background to different luminosities. Smear the background fluctuation

Conclusions

- Studies have been done with MC samples Bc(1S0)->Jpsi(µ6µ3)Pi (~1.77pb). The efficiency of our selection is ~ 10%. Background from the other B decay(bb->JpsiX) and prompt Jpsi has been investigated.
- Based on MC study, we expect that with the integrated luminosities of early running:
 - a) 1 fb-1
 - \sim 200 signal events after selection, we should see it.
 - d) 10-30 fb-1 at 10^33
 - ~ 2000 signal events, we should get some results.
- Excited States

Also planning to measure the mass of 2S state.

 $B_{c}^{+}(2^{1}S_{0,1}) \rightarrow B_{c}^{+}(1^{1}S_{0}) + \pi^{+} + \pi^{-}$

Will study on MC samples with similar strategy as ground state, sample production is ongoing.

