

# The physical mechanism behind normal and peculiar SN Ia

#### YOSSEF ZENATI

AND

Hagai B. Perets, Silvia Toonen, Robert T. Fisher, Alexey Bobrick, and Rediger Pakmor.

## Supernovae are classified according to their spectra

Type I (no hydrogen)

**Observations** 

la (Si, no He) Ib (He, no Si) Ic (no Si; no He)



Theory

Thermonuclear explosion

Carbon-Oxygen WD Hybrid-CO WD?





### There are many sub-types of SNe



### Non "standard" SNe might even be the norm among WD SNe



Nordíta

12/16/20



Figure 1.1: SN classification decision tree. Classification of SNe is based on the presence of elements in SN spectra observed near maximum light.

#### Importance of Supernovae



#### **Observational expectations**















Pinto et al. 2001 Gal-Yam 2016 Kushnir et al. 2013 Maoz, Mannucci & Nelemans 2014 Maoz et al. 2014

Nordíta 12/16/20

### White Dwarf Nuclear Energetics

• Total kinetic energy = energy released - binding ~  $10^{51}$  erg Implying a typical expansion velocity ~  $10^4$  km/s

 Light curve is powered by radioactive decay of <sup>56</sup>Ni to <sup>56</sup>Co to <sup>56</sup>Fe, ~6 MeV / nucleus,

$$L_{
m SNIa} \sim E_{
m SNIa}/t_{
m decay} \sim 10^{10} L_{\odot}$$
  
 $M_{
m SNIa} \sim -20$ 



### Single Degenerates

Whelan & Iben 1973 Nomoto 1982a Livne 1990 Woosley & Weaver 1994 Livne & Arnett 1995 Garc 'Iasenz, Bravo & Woosley 1999 Fink, Hillebrandt & Ropke 2007 Fisher et al. 2018 Townsley et al. 2018

- C/O WD + MS or sub-giant star, mass transfer of H/He via RLOF/winds
- Accrete to near Chandra limit:
  - central detonation
  - central pure deflagration
  - deflagration to detonation transition
- Light curve is powered by radioactive decay of <sup>56</sup>Ni to <sup>56</sup>Co to <sup>56</sup>Fe, ~6 MeV / nucleus,

 $L_{\rm SNIa} \sim E_{\rm SNIa}/t_{\rm decay} \sim 10^{10} L_{\odot}$ 

The B15 lies in specific regime.

### **Double Degenerates**

Seitenzahl et al. 2009 Pakmor et al. 2009 Soker Noam 2011 Marius et al 2012 Jordan et al. 2012 Markus et al. 2010-2016 Kushnir et al. 2013 Shen & Bildsten 2014 Kashyap et al. 2015 Sato et al. 2015 Perets et al.2020 • CO + CO merger with total M  $\geq 1.4 M_{\odot}$ 

"Slow" merger --- DDT

- Violent ("Fast") merger --- Detonation
- Direct collision --- Detonation
- Super slow ----D6
- CO + CO merger with total M  $< 1.4 M_{\odot}$
- The primary mass at explosion is more important than total mass at explosion.

- Core degenerate (AGB core + C/O WD)
- Collision of DWD.

### **Outstanding Problems**

0.68

Nordíta

12/16/20



Röpke et al., 2012 Graur et al., 2016 Shappee et al. 2016

### **Deflagration - Detonation**



Website FXT, Detonation textbook 73

Nordíta

12/16/20

### **Turbulent** Combustion Modeling

Burning rate on scale r determined by integration over the joint PDF  $P_r(X, \rho, T)$  of composition, density, & temperature



Nordíta 12/16/20

YZ ∉ Fisher (PRL)

### The Ia SN are Multiscale, which is a real challenge



Nordíta 12/16/20

Implies a large dynamic range down to Kolmogorov scale :  $\eta_K$ 

### Binary evolution can produce other types of WD



In binaries  $M_{HeCOWD} \gtrsim 0.33 M_{\odot}$ (Prada Moroni & Straniero 09)

### S/Binary evolution can produce other types of WD





### The masses of hybrid-WDs overlap with both He and CO WDs



Hybrid-WDs are composed of significant fractions of both CO and He.

In binaries  $M_{HeCO WD} \gtrsim 0.33 M_{\odot}$ (Prada Moroni & Straniero 2009)

```
Iben & Tutukuv 1985
Tutukov & Yugelson
1992
Drirble et al. 1998
YZ+18
```

### Wide range of possible mergers

- ► Hybrid WD's masses range  $0.36 \le M_{WD} \le 0.74 M_{\odot}$
- ► He mass fractions in the range 5-25%.
- 15-30% of all hybrid cases will merge with another WD.





### Possible discovery of Hybrid HeCO WD

First ultracompact Roche lobe-filling hot subdwarf binary

- ► Period of P = 39.3401 min,  $M_{Donor,sdOB} \sim 0.337 M_{\odot}$ ,  $M_{accretor} \sim 0.545 M_{\odot}$
- Thick helium layer of  $\approx 0.1 M_{\odot}$
- First known pulsating Eclipsing double WD binary
  - ► SDSS J115219.99+024814.4, Period of P = 2.4 hour,  $M_1 \sim 0.362 M_{\odot}$ ,  $M_2 \sim 0.325 M_{\odot}$ .
- X-ray observations of the eclipsing polar HY Eri (RX J0501–0359)

Period of P = 2.855 hour,  $M_{WD} = 0.42 M_{\odot}$ . The secondary is a MS of  $M_2 = 0.24 M_{\odot}$ .

Kupfer et al. 2020 Parsons et al. 2020 K.Beuermann et al. 2020

### Work- flow



### Simulations should include both hydrodynamics and thermonuclear reactions

- **BH-WD** merger –during the merger, the WD is tidally disrupted and sheared into accretion disk. (Papaloizou et al 83, Fryer et al 1998 and Metzger 2012).
- Also Paschalidis et al. (2011) & Bobrick et al. (2017) have explored the disruption and the disk formation process with time-dependent simulations.
- Thermonuclear processes can also play an important role on the dynamics of accretion following the TD of WD. (Metzger12, Fernandes&Metzger13, YZ+19).

Nordíta

NS-WD mergers could be modeled in 2D using accretion disk. (Fernandes&Metzger13, Bobrick et al 2016, Margalit&Metzger16, and YZ+19, 20).

$$t_{\text{visc}} \simeq \alpha^{-1} \left(\frac{R_0^3}{GM_c}\right)^{1/2} \left(\frac{H_0}{R_0}\right)^{-2} \qquad \rho_{\text{disk}} = \rho_{\text{max}} \left[\left(\frac{2H}{R_0}\right) \frac{2d}{d-1} \left(\frac{R_0}{r} - \frac{1}{2} \left(\frac{R_0}{r \sin \theta}\right)^2 - \frac{1}{2d}\right)\right]^{7/2} \\ \sim 2600 \, \mathrm{s} \left(\frac{0.01}{\alpha}\right) \left(\frac{R_0}{10^{9.3} \text{cm}}\right)^{3/2} \left(\frac{1.4M_{\odot}}{M_c}\right)^{1/2} \left(\frac{H_0}{0.5R_0}\right)^{-2} \qquad \frac{P}{\rho} = \frac{2\text{GM}}{5R_0} \left[\frac{R_0}{r} - \frac{1}{2} \left(\frac{R_0}{r \sin \theta}\right)^2 - \frac{1}{2d}\right] \qquad (4)$$

### CO WD-hybrid WDs could merge and lead to DD type Ia SN

- A He envelope can ignite and lead to the detonation.
- Merger of low mass double WDs could explode as well.











### Light curves & Spectra



### Light curves & Spectra



#### Peak width relation



### Our assumptions could be more realistic



### Our assumptions could be more realistic



### CO WD-hybrid WDs could merge and lead to DD type Ia SN



Pakmor, YZ, Perets, Toonen 2020

### The hybrid WD - CO WD merger give rise to normal and peculiar SN



### Summary-SNe la

- Hybrid HeCO WDs can form robustly.
- Turbulent enhancement formalism we present provides a promising basis for an approach for sub-grid modeling of turbulent nuclear burning and detonation initiation.
- Mergers with Hybrids could potentially give rise to explosive thermonuclear events.
- Our models can only reproduce the somewhat faster evolving and somewhat fainter normal type Ia SNe. ( $M_B \gtrsim -19.2$ ).
- Our models can generally reproduce the detailed light-curves and spectra of normal but fainter ( $M_B \sim -18.4 -19.2$ ,  $M_R \sim -18.5 -19.4$ ) type Ia SNe.