
DISCOVER WHAT THE EYE CAN'T SEE

greateyes

SMART-X Stockholm Network Symposium

Conrad Friedrich

Overview

- I. Introduction
- II. Activities & Contributions within SMART-X project
- III. Sensor technologies for scientific X-ray/XUV cameras
- IV. Development of hardware platform for CMOS-based scientific cameras
- V. Summary & Outlook

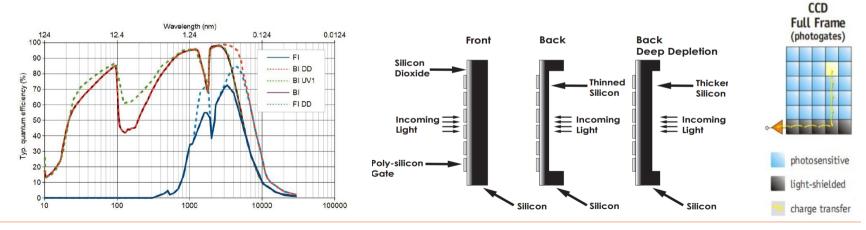
greateyes

"greateyes develops, manufactures and markets high performance (scientific) digital cameras as well as optical inspection systems for research & industry."

- Founded in 2008, headquarters in Berlin
- Quickly developed into an internationally acting company
- Two main business units: scientific cameras & inspection systems
 - Strong focus on new technologies & innovations, currently two funded research projects
- One of greateyes' core competencies has been in designing EUV and X-ray detectors

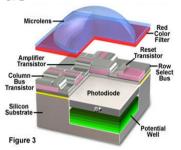

Activities & Contributions in SMART-X project

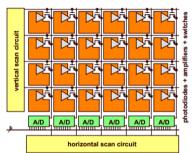
- development of high repetition rate XUV/X-ray imaging and single photon detection system ESR15 (GREATEYES) in collaboration with ESR3 (Max Born Inst.)
 - comparison of present detector technologies (i.e. CCD vs. CMOS)
 - quantum efficiency, spatial resolution, detector sizes, frame rate, read-out noise
 - evaluation of novel technologies (e.g. TimePix/MediPix, SPAD sensor arrays,...)
- extend present CCD/CMOS camera hardware platform
- proof of principle & characterization of the camera at FVB-MBI
- application in ultrafast X-ray spectroscopy of molecules in solution and molecular powders
 - investigation of the transient electronic structure of push-pull chromophores undergoing ultrafast charge transfer process by means of time-resolved soft x-ray absorption spectroscopy

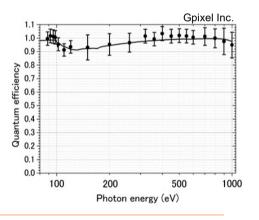

(also see talk on Wednesday by Erik Nibbering)

Sensor technologies for scientific X-ray/XUV cameras

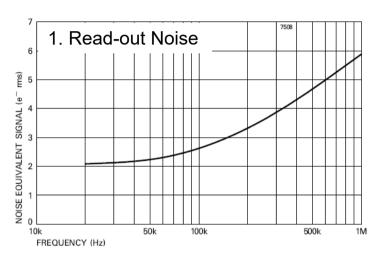
- CCD detectors still dominant in XUV/X-ray experiments
 - photo-generated electrons are trapped in a potential well
 - accumulated charge is readout sequentially for each pixel individually

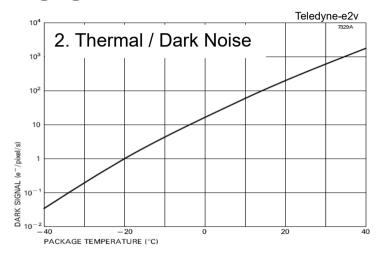



Back-illuminated (BI) CCDs required for (direct) soft X-ray, EUV, VUV detection


Sensor technologies for scientific X-ray/XUV cameras

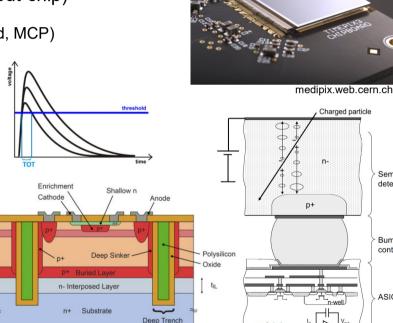
- CCD read-out speed is most limiting factor
 - Pixel rates ~5MHz → ~1 Hz/fps for CCD arrays (2kx2k)
 - Pros: high QE, dynamic range & SNR





- XUV/X-ray sensitive CMOS sensors have been emerging
 - accumulated charge is readout in parallel for entire pixel columns
 - A/D conversion performed on-chip (amplifier & ADC array at periphery)
 - much higher read-out speeds up to several 10-100 fps (2kx2k)
- Scientific CMOS sensors are catching up fast in terms of QE and SNR
 - back-illuminated, back-thinned, uncoated sensors with thin passivation layers

Dominant Noise Sources in CCD / CMOS Imaging Detectors



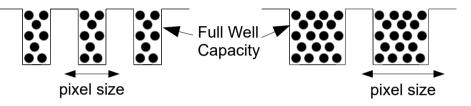
- 3. Reset Noise → usually eliminated by Correlated Double Sampling (CDS)
- 4. Fixed Pattern Noise → more important for CMOS sensors
- 5. Multiplication Noise → only relevant for EM-CCDs (SiPM/SPAD sensors)

greateyes

Alternative sensor technologies for direct X-ray/XUV detection

- "real" pixel sensors (e.g. via TimePix, MediPix readout-chip)
 - arbitrary sensor material (semiconductor, gas gain grid, MCP)
 - programmable measurement of counts/hits, deposited energy (per Time over Threshold - ToT), arrival time O(ns)
 - very high repetition rates
 - limited array size (but buttable layout possible)
- SiPM / SPAD array detectors
 - picosecond photoresponse
 - still limited in area / array size
 - limited fill factor (→ QE)

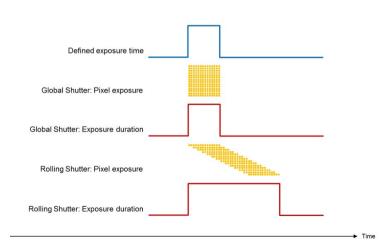
10.1109/JSTQE.2018.2867439


ASIC

Semiconductor detector

Bump-bond contact

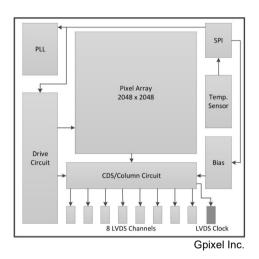
Comparison of CCD/CMOS imaging sensor technologies


common trade-off: pixel size
→ spatial resolution vs. dynamic range

	Scientific CCDs	sCMOS
Quantum Efficiency	High (20-90%)	Moderate (but close to CCDs)
Dynamic Range	100.000:1	20.000:1 (50:000:1 via HDR modes)
Read-out Noise	down to 2-3 e ⁻	1-2 e ⁻
Read-out Speed	up to 10-20 Mpx/s	~ several 100-1000 Mpx/s
Spatial resolution / pixel size	typ. 5-25µm	typ. 2-15µm
array size / (active area)	up to 9kpx × 9 kpx / (92mm × 92mm)	up to 6kpx × 6kpx / (62mm × 62mm)
Other (dis-)advantages	requires complex electronics light sensitive during read-out, CTE	easier hardware integration (no ADCs) more complex wrt. SW/FW design

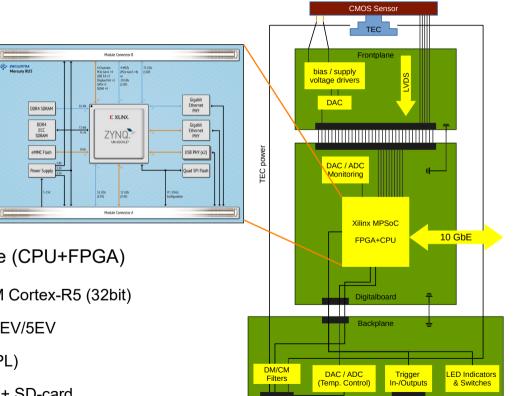
Hardware platform for CMOS-based scientific cameras

- present CMOS camera platform at greateyes needs to be extended / redesigned
 - easier & faster electrical integration of different new CMOS sensor types and formats
 - increased external interface speeds
 - implementation of flexible sensor read-out firmware
 - use of different gain channels of many sensors
 - on-board image post-processing / calibration
 - use of rolling / global shutter modes (noise penalty)
 - region of interest (RoI) functions
 - → highest possible repetition rates (low dead times, low pile-up)
 - → lowest possible read noise (high SNR)


greateves

Sensor interface & control

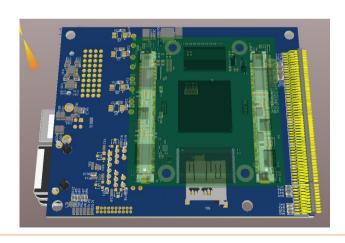
- SPI configuration interface
- CMOS-level I/O's for readout control (pixel reset, row selection)
- data transfer typically via multiple parallel high-speed LVDS lanes:
 - GSense400 2048(H) x 2048(V):
 - Gsense4040 4096 (H) × 4096 (V):
 - GSense6060 6144 (H) x 6144 (V):
 - HFR Sensors (e.g. GSPRINT4521):
- 2.4 Gbps 9.6 Gbps 21Gbps



- bandwidth of external interface / storage becomes limiting factor
- also puts high demands on on-board memory & FPGA resources
- for mid-sized sensors: integration of 10GbE / USB3.2 interfaces via PCIe

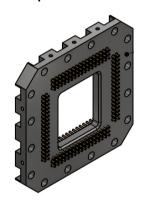
Camera Electronics Design

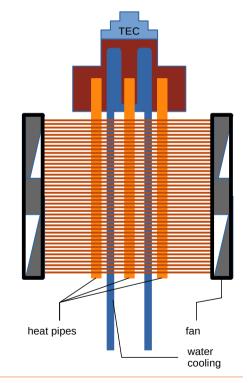
- follows strictly modular design
 - adaptable to different sensors via exchangeable Interface board
 - up to 32 high-speed differential links to sensor (e.g. LVDS)
 - modular central CPU/FPGA board
- Xilinx Zyng Ultrascale+ MPSoC Module (CPU+FPGA)
 - 2-4x ARM Cortex-A53 (64bit) + 2x ARM Cortex-R5 (32bit)
 - FPGA options: ZU2CG, ZU3EG/4CG/4EV/5EV
 - up to 8 GB DDR4 (PS) / 2 GB DDR4 (PL)
 - 64 MB QSPI flash, 16 GB eMMC flash + SD-card


Camera Electronics – status & features

External interfaces:

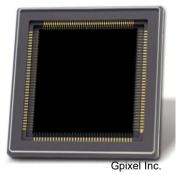
- 1Gb/s Ethernet & 5Gb/s USB3.0 interface already implemented & running
- TODO: integration of PCIe interface & 10GbE MAC/PHY (flexible SFP+ socket for different media types)
- I2C, SPI, UART, GPIOs (Switches, Status LEDs)
- 2x/2x trigger input/output (flexible logic functions)


Monitoring & Cooling:


- Piranii sensor interface (to avoid condensation)
- Monitoring of all sensor bias voltages (12bit ADCs)
- Steering up to 4 thermoelectric coolers (I&V control)
- max. 8 temperature sensors (e.g. thermistors)

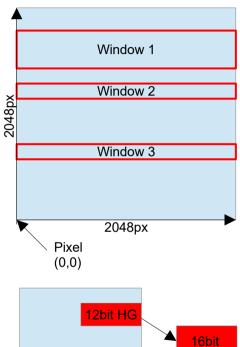
Mechanics & Cooling

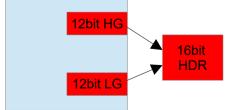
- max volume/size of detector often is limited → small footprint
- number of vacuum feedthroughs heavily increased
 - \sim 20-80 (CCDs) → up to 250 pins (CMOS)
 - larger potential for leaks (thermal cycling)
 - → investigating alternative feed-through techniques
- higher demands on cooling system
 - sensor power dissipation much larger than of CCDs (~ x4)
 - power dissipation of electronics (dep. on FPGA size/load)
 - typ. 50-200W need to be removed → water cooling option mandatory


Integration of first sensor candidate

First prototypes using Gpixel GSENSE-400BSI back-illuminated CMOS sensor

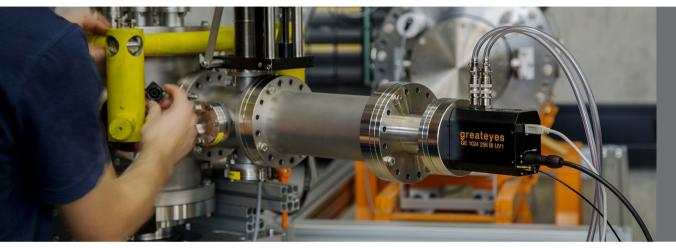
- prototype samples of X-ray / XUV optimized version now available for evaluation
- 2048(H) x 2048(V); 11μm x 11μm pixels → active area 22.5mm x 22.5mm
- 24 fps @HDR mode (2x12bit /pixel) / 48 fps @STD mode (1x12bit /pixel)
- Full well capacity: 90 ke⁻; readout noise: 1.6 e-
- Electronic Rolling Shutter
- Data interface: 8xLVDS @300Mbps (2.4Gbps)


first batch of electronics & sensor interface boards powered up


- sensor configuration interface + data link & training is working
- next steps: get "real image" & implement correction / post-processing algorithms

Firware & Software features

- Windowing (Rol) operation
 - on sensor: often only in vertical direction
 - on camera: fully flexible (reduces data rate on ext. interface)
- **HDR** image composition
 - image signals readout from the PGA high gain (HG) and low gain (LG) channel simultaneously row by row after exposure
 - digitized with on-chip 12-bit ADC respectively → two images are readout
 - combine HG and LG image to generate "16bit" HDR image on camera
 - all channels configured with same gain setting → two different rows readout at the same time (frame rate is doubled)
- GUI & SDK; TANGO/EPICS drivers; interfaces for setup & monitoring


Summary & Outlook

- present CMOS camera platform at greateyes is extended / redesigned
 - flexibility to accommodate different new CMOS sensor types and formats
 - implementation of key read-out functions (Rol, HDR, rolling/global shutter)
 - \rightarrow highest possible repetition rates \rightarrow O(100fps), low dead times
 - → lowest possible read noise → O(1e⁻)
- finalize design & assembly of 1st prototype
- proof of principle & characterization at MBI
 - quantum efficiency, spatial resolution,repetition rate, pixel charge capacity, response linearity, read-out noise & dark current (→ SNR), ...

Summary & Outlook

- present CMOS camera platform at greateyes is extended / redesigned
 - flexibility to accommodate different new CMOS sensor types and formats
 - implementation of key read-out functions (Rol, HDR, rolling/global shutter)
 - \rightarrow highest possible repetition rates \rightarrow O(100fps), low dead times
 - → lowest possible read noise → O(1e⁻)
- finalize design & assembly of 1st prototype
- proof of principle & characterization at MBI
 - quantum efficiency, spatial resolution, repetition rate, pixel charge capacity, response linearity, read-out noise & dark current (→ SNR), ...

Thank You!

- High quantum efficiency from NIR to X-ray
- Low readout noise
- Deep cooling
- High dynamic range
- Compact design
- Broad portfolio
 - Customized solutions

Scientific high-performance CCD cameras

- → More than 50 different cameras for X-Ray, EUV, UV, VIS and NIR applications
- → Pixel arrays: 1024 × 128/256/1024, 2048 × 512/2048, and 4096 × 4096
- → Read noise of 2.4e⁻, Cooling down to -100°C, 16/18 bit ADC

Scientific CCD Camera Portfolio

NIR / VIS / UV

- window flange series
- vacuum head
- → more than 20 models

EUV & Soft X-Ray Detectors

- → vacuum flange series
- → more than 15 models

- → in-vacuum series
- → more than 10 models

→ wafer-scale camera

greateyes

DISCOVER WHAT THE EYE CAN'T SEE