Properties of polarized synchrotron emission from Fluctuation dynamo action Application to galaxy clusters

Sharanya Sur Indian Institute of Astrophysics

Nordic Dynamo Seminar 2021

Outline

- Turbulence and magnetic fields in galaxy clusters
- Motivation and Key questions
- Methodology and basic physical parameters
- Highlights of the key results

Sur, Basu & Subramanian, MNRAS, Vol. 501, 2021

- The Faraday depth and connection to the properties of the magnetic field
- Nature of total and polarized synchrotron intensity, correlation scales
- Effects of beam smoothing
- Conclusions & Ongoing work
- Collaborators : Aritra Basu (Thüringer Landessternwarte) & Kandaswamy Subramanian (IUCAA)

Turbulence & magnetic fields in galaxy clusters

Illustris TNG, Brown & Rudnick, MNRAS, 2011

- Largest gravitationally bound systems
- Numbers : M ~ 10¹⁴ − 10¹⁵ M_☉, size of several Mpc, hot X-ray emitting gas T ~ 10⁷ − 10⁸ K with gas number densities n ~ 10⁻² − 10⁻⁴ cm⁻³
- Drivers of turbulence : Structure formation, ongoing merger activity, other galactic scale processes
 - Turbulent velocity $v \sim 200 300 \,\mathrm{km \, s^{-1}}$ in the cluster core (*Hitomi collaboration, PASJ, 2018*); Sound speeds $c_{\mathrm{s}} \approx 10^3 \,\mathrm{km \, s^{-1}} \Rightarrow$ subsonic turbulence

Turbulence & magnetic fields in galaxy clusters

- Observations of the Faraday rotation measure (RM) suggest that the intracluster medium (ICM) is magnetized
 - + Field strengths $\sim few\,\mu G$, correlated on several kpc scales

Ryu et al., Science, 2008

^{r [kpc]} Bonafede et al., A&A, 2010

1000

500

8 [µG]

Sharanya Sur

Properties of polarized synchrotron emission from Fluctuation dynamo action

1500

2000

----- Analytic profile

Power spectrum

Motivation

- In the absence of rotation Fluctuation dynamos ideally suited for amplifying fields to observable strengths
- ► Faraday RM only provides info about the line-of-sight magnetic field
- > Synchrotron emission and it's polarization are the other two observables
 - Furnish info about magnetic fields in the plane of the sky
 - Stokes I, Q and U can be measured by a radio telescope
- Polarized emission from radio halos have been difficult to detect (Vacca et al., A&A, 2010, Govoni et al., A&A, 2013)
 - Observed only in bright filaments in A2255 and in MACS J0717+1345 Govoni et al., A&A, 2005, Bonafede et al., A&A, 2009

Motivation

- Stokes parameters are related to magnetic field components in a non-linear manner (see Waelkens, Schekochihin & Enßlin, MNRAS, 2009)
- Fluctuation dynamos : Spatially intermittent fields, field components are non-Gaussian (Haugen et al. 2004, Schekochihin et al. 2004, Brandenburg & Subramanian 2005, Vazza et al., 2018, Seta et al. 2020)
- ▶ Explore and extract information from simulations of Fluctuation dynamos

Fundamental Questions

- Can one relate the power spectrum of Faraday depth to the magnetic field?
- What is the statistical nature of total and polarized synchrotron emission?
- How are these affected by Faraday depolarization?
- What is the effect of beam smoothing on the observables?

Methodology and basic physical parameters

- ► Non-ideal subsonic simulation using the compressible FLASHv4.2 code
 - Forced turbulence ($k_{
 m f}\sim 2$), Periodic boundaries, solenoidal forcing
 - $512^3, \mathcal{M} \approx 0.18, \text{Rm} = \text{Re} = 1080$
 - Weak seed fields of the form ${m B}=B_0[0,0,\sin(10\pi x)],eta\sim 10^6$

Parameter name	Value
Mean electron density	$\langle n_{ m e} angle = 10^{-3}{ m cm}^{-3}$
Isothermal sound speed	$c_{ m s} = 10^3 { m km s^{-1}}$
Turbulent rms velocity	$u_{\rm rms} \approx 180 {\rm km s^{-1}}$
Rms field strength	$b_{\rm rms} \approx 1.3 \mu{ m G} \sim B_{\rm eq}/2$
Box size	$512 imes 512 imes 512 { m kpc}^3$
Resolution	$\Delta x = \Delta y = \Delta z = 1 \mathrm{kpc}$
Turbulence driving scale	$256{ m kpc}$
Spectral index	$\alpha = -1$
Frequency range	$\nu_{\rm min} = 0.5{\rm GHz}$, $\nu_{\rm max} = 7{\rm GHz}$
Total flux density	1 Jy at $1 m GHz$

- $n_{\rm CRE}$ assumed to be constant at mesh points
 - Follows a power law energy spectrum $n_{\rm CRE}(E)dE = n_0 E^{\gamma} dE; \gamma = -3$

►
$$B_{\perp} = (B_x^2 + B_y^2)^{1/2}, B_{\parallel} = B_z$$

▶ Results at three representative frequencies : $0.5, 1 \& 6 \text{ GHz} \Rightarrow \lambda : 60, 30 \& 5 \text{ cm}$

Methodology and basic physical parameters

- ▶ Simulation output ⇒ input to COSMIC (Basu et al., Galaxies, 2019)
 - COSMIC : Computerized Observations of MHD Inferred Cubes
 - Computes a variety of observables that characterize the nature of the polarized emission; benchmarked with analytic models of magneto-ionic media (e.g., *Sokoloff et al., MNRAS, 1998*)

Sharanya Sur

Properties of polarized synchrotron emission from Fluctuation dynamo action

Nordic Dynamo Seminar 2021

Power spectra

Power spectrum of kinetic energy K(k), magnetic energy M(k), the magnetic integral scale M(k)/k and kM(k)

- M(k) exceeds K(k) on all but the largest scales
 - M(k) peaks at $\sim 1/4 1/6$ of the box size; physical scales of $\sim 128 - 85 \, {
 m kpc}$
- ▶ kM(k) peaks on scales $\sim 51 \, {\rm kpc}$; smaller than that of M(k)
- Peak of M(k)/k occurs on the scale of turbulent driving

Outline		Key Results	Ongoing work	Other Slides
		00000		

Faraday depth (FD) map and spectra

► Faraday depth : $FD = K \int n_e B_{\parallel} dl$, $\delta n_e / n_e \sim M^2 \sim 3\% \Rightarrow n_e$ is nearly uniformly distributed

7

Faraday depth (FD) map and spectra

 σ_{FD} ≈ 110 − 130 rad m⁻²; related to the magnetic integral scale L_{int}, M
 (see Cho & Ryu, ApJL, 2009, Bhat & Subramanian, MNRAS, 2013)

$$\sigma_{\rm FD} = K \langle n_{\rm e} \rangle \frac{b_{\rm rms}}{2} \sqrt{L L_{\rm int,M}} , \quad L_{\rm int,M} = \frac{2 \pi \int (M(k)/k) \, dk}{\int M(k) \, dk}$$

- Power spectrum of FD remarkably similar to that of M(k)/k
- \blacktriangleright Can infer about random magnetic fields in the ICM, provided fluctuations in $n_{\rm e}$ are small
- Information on the evolutionary stage of the turbulent dynamo

Faraday depth (FD) map and spectra

σ_{FD} ≈ 110 − 130 rad m⁻²; related to the magnetic integral scale L_{int}, M (see Cho & Ryu, ApJL, 2009, Bhat & Subramanian, MNRAS, 2013)

$$\sigma_{\rm FD} = K \langle n_{\rm e} \rangle \frac{b_{\rm rms}}{2} \sqrt{L L_{\rm int,M}} , \quad L_{\rm int,M} = \frac{2 \pi \int (M(k)/k) \, dk}{\int M(k) \, dk}$$

- Power spectrum of FD remarkably similar to that of M(k)/k
 - At $t/t_{\rm ed} = 23$, $L_{\rm int}, M = 112.4 \, {\rm kpc}$
 - For $b_{\rm rms} \approx 1.3 \,\mu{\rm G}, L = 512 \,{\rm kpc}$ and $n_{\rm e} = 10^{-3} \,{\rm cm}^{-3} \Rightarrow \sigma_{\rm FD} \approx 127 \,{\rm rad} \,{\rm m}^{-2}$

Outline		Key Results	Ongoing work	Other Slides
		000000		

Synchrotron emissivity and total intensity

ε_{sync} ∝ ν^α B²_⊥, I_{sync} ∝ ν^α ∫ B²_⊥ dl; structures essentially arises due to magnetic fields being randomly stretched and twisted due to turbulent driving
 Unlike FD, the PDF is well represented by a log-normal distribution

Sharanya Sur

Polarization parameters

- ► Focus on how the polarization parameters depend on frequency
- The linearly polarized intensity (Pl) map at a frequency ν computed from the Stokes Q and U parameters

$$\mathrm{PI}_{\nu}(i,j) = \sqrt{Q_{\nu}^2(i,j) + U_{\nu}^2(i,j)}, \ p_{\nu} = \mathrm{PI}_{\nu}/I_{\nu}$$

 \blacktriangleright The Stokes Q and U parameters at a frequency u

$$Q_{\nu}(i,j) = \sum_{k} p_{\max} \varepsilon_{\operatorname{sync},\nu}(i,j,k) \, l_{\operatorname{cell}} \, \cos\left[2\,\theta(i,j,k)\right],$$
$$U_{\nu}(i,j) = \sum_{k} p_{\max} \varepsilon_{\operatorname{sync},\nu}(i,j,k) \, l_{\operatorname{cell}} \, \sin\left[2\,\theta(i,j,k)\right], p_{\max} = 0.75$$

• $\theta(i, j, k) = \theta_0(i, j, k) + FD'(i, j, k) c^2 / \nu^2$ and $\theta_0 = \pi / 2 + \arctan(B_y / B_x)$

Outline		Key Results	Ongoing work	Other Slides
0		000000		

Polarization parameters

• Polarized intensity (PI $_{\nu}$) and the fractional polarization $p_{\nu} = \mathrm{PI}_{\nu}/I_{\nu}$

Quantity	Resolution			
		$0.5\mathrm{GHz}$	$1\mathrm{GHz}$	$6\mathrm{GHz}$
PI_{ν}	Native	0.67	0.638	0.228
$(\mu Jy/pixel)$				
$p_{ u}$	Native	0.09	0.17	0.345

- Small scale structures in PI_{ν} at low frequencies

• $\langle PI_{\nu} \rangle$ progressively decreases from $0.67 \rightarrow 0.23$ as frequency increases

• Opposite trend for p_{ν} ; $\langle p \rangle$ increasing from $9\% \rightarrow 34\%$

Correlation scales in a magneto-ionic medium

- How do the correlation scales of the observables compare with that of the magnetic field?
 - Can be measured directly from the simulation

$t/t_{\rm ed}$	$L_{\mathrm{int},V}$	$L_{\mathrm{int},M}$	$L_{\rm int,FD}$	$L_{\mathrm{int},I}$	$L_{\text{int},PI}$ (kpc)		c)
	(kpc)	(kpc)	(kpc)	(kpc)	$0.5\mathrm{GHz}$	$1\mathrm{GHz}$	$6\mathrm{GHz}$
16.6	320	106	212.5	224	122	155	199
23.0	340	112.4	216	227.6	138	128	182

• $L_{\text{int},V} \sim 3 L_{\text{int},M}$, Integral scales of FD, I_{sync} and PI are all comparable and larger than $L_{\text{int},M}$ by a factor of about two

Outline		Key Results	Ongoing work	Other Slides
		000000		

Smoothed polarization parameters

 \blacktriangleright Smoothing performed with a Gaussian kernel with FWHM $10\times 10\, \rm pixel^2$

Quantity	Resolution	Mean					
		$0.5\mathrm{GHz}$	$1\mathrm{GHz}$	$6\mathrm{GHz}$			
PI_{ν}	Native	0.67	0.638	0.228			
$(\mu Jy/pixel)$	10 pixels	0.099	0.227	0.222			
$p_{ u}$	Native	0.09	0.17	0.345			
	10 pixels	0.013	0.06	0.337			

- Noticeable differences seen at 0.5 and $1\,G\mathrm{Hz}$
 - Bright filamentary structures seen at native resolution are lost in the smoothed maps

At higher frequencies : Both native resolution and smoothed maps show similar structures

Sharanya Sur

Conclusions

- ► Faraday depth maps contain information on the evolutionary stage of the dynamo
 - Can reconstruct the power spectrum of random magnetic fields from FD power spectrum
- \blacktriangleright Faraday depolarization affects polarized structures at $\nu \lesssim 1.5\,{\rm GHz}$
- Effects of Beam smoothing
 - Significantly affects statistical properties of polarized emission below $\lesssim 1.5\,{\rm GHz}$
 - Properties at higher frequencies ($\gtrsim 5\,{\rm GHz})$ remains largely unaffected
- ▶ High frequency ($\nu \gtrsim 5 \, {\rm GHz}$) observations needed to effectively probe the properties of polarized emission in the ICM
 - At resolution of 1 kpc : $p_{6 \text{ GHz}} \simeq 30\%, p_{0.5 \text{ GHz}} \simeq 9\%$

- Probe the effect of intermittency of the field structure
 - Left : $\mathcal{M} \approx 0.1, Pm = 1$, Right : $\mathcal{M} \approx 0.1, Pm = 50$

▶ Turbulent driving at half the scale of the box, more intermittent and less volume filling fields for Pm = 50 (*Brandenburg & Subramanian 2005*)

- ▶ How does *p* change due to beam smoothing on different scales?
 - Additional simulations at $\mathcal{M} pprox 0.19$ with $k_{
 m f} = 5,8$

 \blacktriangleright Nature of the dependence of p on the scale of turbulent driving

- Simulation domain kept fixed at $512\,\rm kpc$
- Turbulent driving at $l_{\rm f}=256,102$ and $64\,{\rm kpc}$
- Fractional polarization scales as : $\langle p \rangle \propto l_{\rm f}^{-1/2}$

 \blacktriangleright Variation of p_{ν} as a function of the smoothing scale

▶ $p = A/(1 + l/l_s)$, l is the smoothing scale and l_s is the scale at which p reduces by 1/2

Outline			Ongoing work	Other Slides
			00	

Thanks!

Outline			Ongoing work	Other Slides

Other Slides

Outline			Ongoing work	Other Slides
0				00000

PDFs of the magnetic field

• Left : PDF of $B_z/B_{\rm rms}$, Right : PDF of the normalized field strength

Outline			Ongoing work	Other Slides
				00000

Nature of turbulence in galaxy clusters

- Cluster turbulence dominated by solenoidal modes
 - Predominance more clearly revealed when large-scale motions are filtered out

 Contribution from compressional modes becomes important during merger events

Power spectra of PI_{ν} , Stokes Q and U

▶ Power spectra of PI_{ν} (left), Stokes Q (middle) and U (right) at different frequencies

Properties of polarized synchrotron emission from Fluctuation dynamo action

18

2D maps of Stokes Q and U

- 2D maps of Stokes Q and U
 - Left : At native resolution, Right : Smoothed maps

Properties of polarized synchrotron emission from Fluctuation dynamo action

19

Outline			Ongoing work	Other Slides
				00000

Spectra using RM Synthesis

▶ Left : Power spectra of $FD_{RM\,synth}$ and M(k)/k, Right : power spectra of $p_{RM\,synth}$ and p

▶ Power spectra of the recovered $FD_{RM synth}$ deviate significantly from M(k)/k

▶ In contrast, excellent match between the power spectra of $p_{\rm RM\,synth}$ and that of p