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Introduction
I The discovery of gravitational waves at LIGO, generated by black

hole merging, poses the problem of computing very precisely the
dynamics of binary black hole merging.

I In the past this has mostly been done by solving Einstein’s
equations in the presence of the two black holes.

I Mostly using the expansion for small velocities: Post-Newtonian
(PN) expansion.

I More recently a different approach has been used: extract
classical quantities from the quantum scattering amplitude.

I When the two black holes are far away from each other, one can
use perturbation theory expanding in powers of the Newton’s
constant GN : Post-Minkowskian (PM) expansion.

I When they get closer to each other, their interaction becomes very
strong and one must use Numerical Relativity (NR).

I In recent years computations of higher loop orders have been
developed both for QCD and for studying the UV properties of
supergravity.
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I Can we use the methods of quantum field theory to compute in a
more efficient way classical quantities at higher orders?

I The KEY IDEA is to extract from the full quantum calculation the
EIKONAL that contains the information about classical quantities.

I At the tree level the elastic scattering amplitude of two massless
particles is given by the diagram where a single graviton is
exchanged:

iA0(s, t) = 8πiGN~
s2

−t
+ . . . ; t = −(p1 + p4)2 ; s = −(p1 + p2)2

. . . stand for subleading term at high energy.
I Going to impact parameter space one gets

2iδ0 =

∫
dD−2~q

(2π~)D−2
iA0(s, t = −~q2)

2s
e

i
~
~b~q = i

Gs
~

Γ(D
2 − 2)

(
√
πb)D−4

I This quantity is called the (leading) eikonal.
I In the classical limit, it is natural to take b, s and the length scale

RD−3 ∼ GN
√

s (in analogy with the Schwarzschild radius) as
classical quantities characterising the collision.
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+

Figure: Examples of ladder diagrams involved in the exponentiation of the
leading energy contributions.
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I In terms of these classical quantities the (lead.) eikonal becomes

2iδ0 = i
Γ(D

2 − 2)

π
D−4

2

(
R
b

)D−3 b
√

s
~

I The regime we are describing is the one in which

~√
s
<< R << b

corresponding to classical regime on the left and perturbative
regime on the right.

I 2δ0 is a big quantity and the factor 1/~ signals that this quantity
should appear in an exponential e2iδ0 , so it can describe the value
of the classical action.

I The exponentiation can be shown by summing (ladder) diagrams
with the exchange of many gravitons
Kabat and Ortiz, hep-th/9203082

I Conversely, the hypothesis that the eikonal exponentiates fixes the
high energy behaviour of the multiloop diagrams.
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I From the eikonal we can extract the deflection angle:

sin
θ

2
= − ~√

s
∂

∂b
2δ0 =

R
b

; R = 2GN
√

s for D = 4

I What happens at smaller values of b?
I We have to extract the subleading eikonal.
I It is contained in the scattering amplitude at one loop.
I We have first to check that, in impact parameter space, the

leading term at high energy comes from the exponentiation of the
leading eikonal.

I We call this term super-classical because it behaves as 1
~2 .

I Then extract the subleading classical term 2δ1.
I It turns out that in the massless case this term is vanishing.
I There is a quantum term ~0 that diverges logarithmically at high

energy that is also very important for the exponentiation.
I In order to get the next classical term in the massless case we

have to go to two loops (3PM).
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I The basic assumption that has been verified in many cases is that,
in the Regge limit, the full amplitude is encoded in the expression:

i Ã(s,b) ≡
∫

dD−2q
(2π)D−2

iA(s,q2 = −t)eibq

4Ep
= (1 + 2i∆(s,b)) e2iδ − 1

where δ = δ0 + δ1 + δ2 + · · · is the classical eikonal and ∆
encodes the quantum corrections.

I First compute the amplitude and then, from it, extract the classical
contribution δ that then can be used to compute the deflection
angle.

I Unitarity relation:

SS† = 1 =⇒ 2ImTab =
∑

n

TanT †nb ; S = 1 + iT
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I In the massless case in GR it was computed by
Amati, Ciafaloni and Veneziano (ACV90)
getting (ε = 4−D

2 )

Re(2δ2) ' 4G3
Ns2

~b2 + . . . ; 2δ0 = −Gs
ε~

Γ(1− ε)(πb2)ε

and

Im(2δ2) ' 1
2s

(8GNs)3 log sΓ3(1− ε)
16(πb2)1−3ε

[
− 1

4ε
+

1
2

+O(ε)

]

I From the real part one can compute the deflection angle:

sin
θ

2
= − ~√

s
∂

∂b
(2δ0 + Re(2δ2)) =

R
b

+
R3

b3 + . . .

where R ≡ 2G
√

s.
I Einstein’s light deflection by the Sun is given by the first term if√

s → M, M is the mass of the Sun.
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I The result for Re(2δ2) is confirmed for N = 8 supergravity
Naculich, Russo, White, Veneziano, PDV, 1911.11716
and in GR (massless scalars) and N ≥ 4 supergravities
Bern, Ita, Parra-Martinez, Ruf, 2002.02459.

I Everybody agrees that the result found in ACV90 is universal
(valid for any massless theory)

I The two-loop calculation with two arbitrary masses m1 and m2
was performed by
Bern, Cheung, Roiban, Shen, Solon, Zeng, 1901.04424 and
1908.01493.

I Their result is confirmed in two papers by
Kälin, Liu, Porto, 2007.04977 and Cheung and Solon, 2003.08351

I They computed the conservative 3PM contribution to the
deflection angle.
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I The total deflection angle is equal

1
2
χtot =

χ1

j
+
χ2

j2
+
χcons

3
j3

; j =
J

Gm1m2
; J = pb

where

χ1 =
2σ2 − 1√
σ2 − 1

; χ2 =
3π
8

(m1 + m2)(5σ2 − 1)√
m2

1 + m2
2 + 2m1m2σ

in terms of the variable

σ = − p1p2

m1m2
=

s −m2
1 −m2

2
2m1m2

I χ1 and χ2 have been known for long time.
I The deflection angle is a classical (finite at high energy) quantity:

χ1

j
∼ GNσ

p
∼ R
√
σ

p
;
χ2

j
∼ G2

Nσ
3/2M

p2 ∼ R2σ
1/2M
p2
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I At 3PM Bern et al. computed a new term that Damour wrote in the
following suggestive form

χcons
3 = χSchw

3 − 2ν
√
σ2 − 1

h2(ν, σ)
C̄cons(σ)

where

h(ν, σ) =
√

1 + 2ν(σ − 1) =

√
s

m1 + m2
; ν =

m1m2

(m1 + m2)2

χSchw
3 =

64σ6 − 120σ4 + 60σ2 − 5
3(σ2 − 1)3/2

together with

C̄cons(σ) =
2
3
σ(14σ2 + 25) +

4(4σ4 − 12σ2 − 3)√
σ2 − 1

sinh−1

√
σ − 1

2

I Finite at high energy (without sinh−1 factor)

χcons
3
j3
∼ G3

Nσ
3

p3 ∼ R3σ
3/2

p3
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I Since

sinh−1

√
σ − 1

2
∼ 1

2
logσ

the term with sinh−1 diverges at high energy.
I It comes entirely from the H diagram.
I What does it mean such divergence?
I Damour in 1912.02139 has tried to correct it, but his proposal is

also in contradiction with ACV90.
I On the other hand, the previous expression agrees with 6PN

calculations, Blümlein, Maier, Marquard, Schäfer, 2003.07145
I This logarithmic divergence has been confirmed in the case of
N = 8 supergravity where the massive states (describing the
black holes) are obtained by Kaluza-Klein reduction of
ten-dimensional type IIA string theory
Parra-Martinez, Ruf and Zeng, 2005.04236
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I This has led many people to conclude that there are two kinds of
universalities.

I One for massless states and the other for massive states.
I This was justified by the fact that in one case one takes

q2 << s,m2 and in the other case m2 = 0 < q2 << s
I Once the choice is made, one cannot go back to the other case.
I This contradicts the idea that at high energy one should have only

one universality and a finite deflection angle.
I The calculations in the massive case rely on the approximation of

the potential region.
I It consists in approximating the momentum of the gravitons

exchanged by (k0, ~k) ∼ (qv ,q) where v (the relative velocity in the
com frame) is small.

I and then resumming over the expansion in velocity.
I In the soft region one instead approximates kµ ∼ qµ.
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I We computed the various two loop integrals that appear in
massive N = 8 supergravity in the soft region using the diff. eq.
with boundary conditions given directly in the soft region and in
the ultra-relativistic limit we obtained:

A2(s,q2)

' (8πGN)3s3

(4π)4

(
4π~2e−γE

q2

)2ε{
− 2π2s

~3ε2 q2

~2

− 4π(i − π)

~ε2

+
1
~ε

[
4π2 + 8πi log

s
m1m2

− 8πi − i
π3

3

]}
+O(ε0)

whose real part is not divergent at high energy!
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I Going to impact parameter space, the real part can be written as
follows:

Re Ã2(s,b) ' − i
6

(2iδ0)3 − Im(2∆1)2δ0

+
4G3

Ns2(πb2)3εΓ3(1− ε)
b2 +O(ε)

I From which we can extract

Re(2δ2) ' 4G3
Ns2

~b2 +O(ε)

getting the same result as in ACV90!

Paolo Di Vecchia (NBI+NO) Gravitational scattering Stockholm, 2021 17 / 94



I The real part of the eikonal to 3PM for arbitrary masses with
s = m2

1 + m2
2 + 2m1m2σ (with σ ≥ 1)

Re(δ2) =
2G3

N (2m1m2σ)2

b2

×
[

σ4

(
σ2 − 1

)2 − cosh−1(σ)

(
σ2

σ2 − 1
− σ3 (σ2 − 2

)
(
σ2 − 1

)5/2

)]

I The corresponding 3PM contribution to the scattering angle as a
function of the angular momentum J = pb reads

χ3PM = − 16m3
1m3

2σ
6G3

N

3J3
(
σ2 − 1

)3/2 +
32m4

1m4
2σ

6G3
N

J3
(
σ2 − 1

)
s

−64m4
1m4

2G3
Nσ

4

J3s

(
1− σ

(
σ2 − 2

)
(
σ2 − 1

)3/2

)
arcsinh

√
σ − 1

2

that is finite at high energy! ; σ =
s−m2

1−m2
2

2m1m2
= − p1p2

m1m2
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I The interpretation of the previous result is that the deflection angle
computed by Bern et al contains only the conservative part and
does not take into account the effect of the radiation-reaction.

I When one takes into account the effect of the radiation reaction
then one gets extra terms that eliminate the problem with the
divergence in the ultra-relativistic limit.

I After our paper Damour in 2010.01641 has added a term coming
from radiation (loss of angular momentum) to the conservative
part of Bern et al and again found a finite behaviour at high
energy: his result is valid in GR.

I According to the last Damour’s paper the 3PM contribution to the
deflection angle is equal to

χ3 = χSchw
3 − 2ν

√
σ2 − 1

h2(σ, ν)
C̄Tot (σ) ;χSchw

3 =
64σ6 − 120σ4 + 60σ2 − 5

3(σ2 − 1)3/2

where
C̄Tot = C̄cons + C̄rad , h2(σ, ν) = 1 + 2ν(σ − 1) , ν = m1m2

(m1+m2)2
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I where

C̄cons(σ) =
2
3
σ(14σ2 + 25) +

4(4σ4 − 12σ2 − 3)√
σ2 − 1

sinh−1

√
σ − 1

2

I and

C̄rad = −(2σ2 − 1)2
√
σ2 − 1

(
−8

3
+

1
v2 + 2

3v2 − 1
v3 sinh−1

√
σ − 1

2

)

where

v =

√
σ2 − 1
σ

I More recently, in 2101.05772, we have included radiation reaction
effects, due to the emission of soft gravitons, and we found
agreement with Damour.

I The two calculations by Damour and us gave the same result, but
it is still not clear, at a more physical level, why.
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I In conclusion the deflection angle in GR up to 3PM is given by
χ

2
=
χ1

j
+
χ2

j2
+
χ3

j3
; j =

J
Gm1m2

; J = pb

where
(σ = − p1p2

m1m2
=

s−m2
1−m2

2
2m1m2

,h2(ν, σ) = 1 + 2ν(σ − 1), ν = m1m2
(m1+m2)2 )

χ1 =
2σ2 − 1√
σ2 − 1

; χ2 =
3π
8

(m1 + m2)(5σ2 − 1)√
m2

1 + m2
2 + 2m1m2σ

χ3 =
64σ6 − 120σ4 + 60σ2 − 5

3(σ2 − 1)
3
2

− 2ν
√
σ2 − 1

h2(σ, ν)

×
{

2σ(14σ2 + 25)

3
− (2σ2 − 1)2
√
σ2 − 1

(
−8

3
+

σ2

σ2 − 1

)

+

[
4(4σ4 − 12σ2 − 3)√

σ2 − 1
− 2(2σ2 − 1)2σ(2σ2 − 3)

(σ2 − 1)2

]

× sinh−1

√
σ − 1

2
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I My talk is divided in two parts.
I In the first part, using analyticity and crossing symmetry of the

scattering amplitude, we will show that a logarithmic divergence in
the real part cannot be present.

I This argument applies to GR and confirms the result of ACV90.
I In the second part we will consider N = 8 supergravity with

massive states obtained by the KK reduction of type II A
superstring to M4 × T 6.

I In this case there are only few (with respect to GR) diagrams at
two loop that can, with some effort, be computed using the
technique of the diff. eq. involving for each diagram several
master integrals.

I We solve the diff. eqs. giving boundary conditions in the soft
region.

I The log. divergent part coming from the H diagram is cancelled by
an analogous one coming from the other two-loop diagrams and
the deflection angle has a finite value in the UR limit.
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Analyticity, crossing symmetry and asymptotic(GR)
I We start by extracting the 3PM eikonal using the methods of

ACV90 that are based on the following properties:
I 1 Real analyticity of the scattering amplitude A(s∗, t) = A∗(s, t) as a

function of the complex variable s at t ≤ 0. t = −q2 is the
exchanged momentum (squared).

2 s ↔ u crossing symmetry A(s, t) = A(u, t) with
u = −s − t + 2(m2

1 + m2
2).

3 Some information about its high-energy asymptotic behaviour: at
`-loop order the leading term at high energy behaves as s`+2.

4 Eikonal exponentiation
I Help from an amusing mathematical analogy with high-energy

hadron scattering in QCD.
I The elastic hadron amplitude AHad (s, t) is believed to behave, at

high energy, as s logp s.
I An important quantity is ReAHad (s,0)

ImAHad (s,0)
.

I Such a ratio, for t 6= 0, plays also an important role in ACV90 and
in the present approach.

Paolo Di Vecchia (NBI+NO) Gravitational scattering Stockholm, 2021 23 / 94



I The constraints coming from analyticity and crossing, being linear,
apply at each loop order, at each order in ε and also to different
terms in the high-energy expansion (Pomeron and subleading
Regge contributions).

I Assuming 1, 2, 3 and

ImA(s, t) ∼ sn logp s and |A|s−n−1 → 0

one can write n + 1 subtracted dispersion relation:

Re A(s, t) = Q2m(s, t) +
2
π

s2m+2 P
∫ ∞

s0

ds′
Im A(s′, t)

s′2m+1(s′2 − s2)

s0 = (m1 + m2)2 is the s-channel threshold, Q2m(s, t) is a
polynomial of degree 2m, P denotes the principal part, and the
integer m is defined by n = 2m for n even or by n = 2m + 1 for n
odd.
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I From the previous dispersion relation one can compute
ρ = Re A(s,t)

Im A(s,t) .
I For n even one gets:

Re A(s, t)
sn =

2
π

s2P
∫ ∞

s0

ds′
Im A(s′, t)s′−n

s′(s′2 − s2)
+

Qn(s, t)
sn

⇒ ρ =
2
π

s2(log s)−pP
∫ ∞

s0

ds′
logp s′

s′(s′2 − s2)
+

Qn(s, t)
sn logp s

∼ − 2 log s
(1 + p)π

I while for n odd one gets:

Re A(s, t)
sn =

2
π

sP
∫ ∞

s0

ds′
Im A(s′, t)s′−n

(s′2 − s2)
+

Qn−1(s, t)
sn

⇒ ρ =
2
π

s(log s)−pP
∫ ∞

s0

ds′
logp s′

(s′2 − s2)
+

Qn−1(s, t)
sn logp s

∼ πp
2 log s
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I At the tree level the elastic amplitude is given by one graviton
exchange diagram:

A0(s, t) = −8πGNs2 (1− Σ
s +O(s−2)

)

t
+ analytic terms in t

where Σ ≡ 2
(
m2

1 + m2
2
)
.

I and correspondingly:

2δ0 = Ã0 ≡
∫

dD−2~q
(2π)D−2

A0
(
s, t = −~q 2) ei~q·~b

4
√

(p1p2)2 −m2
1m2

2

= GNs
(

1− Σ

2s
+O(s−2)

)
Γ(−ε)(πb2)ε

I 4Ep = 4
√

(p1p2)2 −m2
1m2

2
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I Following ACV90 and 1911.11716, in the Regge limit the full
amplitude is encoded in the expression:

i Ã(s,b) ≡
∫

dD−2q
(2π)D−2

iA(s,q2 = −t)eibq

4Ep
= (1 + 2i∆(s,b)) e2iδ − 1

where δ = δ0 + δ1 + δ2 + · · · is the classical eikonal and ∆
encodes the quantum corrections.

I At one-loop we know that A must include a leading imaginary
term, growing like s3 and responsible for the start of the
exponentiation.

I This comes from the box and crossed box in the form:

Im A(1)
1 (s, t) = s3

(
1− 3Σ

2s
+O

(
s−2

))
F1(t ,m2

i )

with s3
(

1− 3Σ

2s

)
F̃1 =

(2δ0)2

2
,

which therefore fixes F1 modulo analytic terms as t → 0.
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I Analyticity and crossing symmetry imply

A(1)
1 (s, t) = −1

π

[(
s − Σ

2

)3

log(−s) +

(
u − Σ

2

)3

log(−u)

]
F1(t ,m2

i )

∼ s3
(

1− 3Σ

2s

)
F1(t ,m2

i )

(
i +

3t
πs

(log s +O(1))

)
+O(Σ2s, t2s) ,

as confirmed by explicit calculations.
I From explicit calculations it is known that there is a quantum term

contributing:

A(2)
1 (s, t) ∼ s2G1(t ,m2

i )(−iπ + 2 log s) +O(s2)

in agreement with what one gets from analyticity and crossing for
n = 2 (n even) with p = 0.

I Both at one and two loops there are additional structures
containing the masses.

I They take care of each other and we do not consider them here.
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I At two loops, one needs a term ∼ s4 to reproduce the third-order
term in the exponentiation of 2δ0. From anal. + crossing symmetry

A(1)
2 (s, t) =

1
2

(
s4 + u4

)
F2(t ,m2

i )

∼
(

s4 + 2s3(t − Σ) +O(t2s2,Σ2s2)
)

F2(t ,m2
i )

with s4
(

1− 2
Σ

s

)
F̃2(b,m2

i ) = −1
6

(2δ0)3

I F2(t ,m2
i ) is known (up to analytic terms at t = 0).

I The terms of order s2 are not classical.
I In order to have a classical term we need a term that behaves as

s3 apart from possible logs.
I Let us parametrize the latter in the form

Im A(2)
2 (s, t) = G2(t ,m2

i )s3 logp(s) with some p > 0

I Then from analyticity and crossing symmetry we get

Re A(2)
2 (s, t) =

πp
2 log s

Im A(2)
2 (s, t)

(
1 +O

(
1

log2 s

))
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I Before proceeding further let us check the previous analysis on
massless N = 8 supergravity where the two loop amplitude has
been computed [Henn and Mistlberger,1902.07221].

I Two-loop amplitude for s − u symmetric case:

A2(s,q2) =
(8πGN)3

(4π)4

(
4πe−εγE

q2

)2ε

B2(ε)

{
− 2π2

ε2q2

(
s4 − 2q2s3

)

−4πis3

ε2
− 2πis3

ε3

+
s3

ε

[
4π (π + 2i log s) + 8πi +

7iπ3

12

]
+O(ε0)

}

where

B(ε) =
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
; q2 ≡ −t
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I We use exponentiation to argue

Re Ã2(s,b) = Re Ã(1)
2 (s,b) + Re Ã(2)

2 (s,b)

= −4
3
δ3

0 − 4δ0 Im ∆1 + 2 Re δ2

⇒ Re Ã(2)
2 (s,b) = 2 Re δ2 − 2s3(̃tF2)− 4δ0 Im ∆1

2 Im ∆1 = −πs2 G̃1 ,

I and

Im Ã2(s,b) = 2 Im δ2 + 4δ0 Re ∆1

2 Re ∆1 = 2s2 log s G̃1 +
3
π

s2 log s (̃tF1) ,

I The term 4δ0 Re(∆1) represents the full elastic contribution to the
s-channel discontinuity of the amplitude while 2 Im(δ2) represents
the inelastic (3 particle) contribution.
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I Use the previous equation to connect Re δ2 to 2 Im δ2 that is a
quantity easy to compute

2 Re(δ2) =
πp

2 log s
(2 Im δ2) + π(p − 1)2δ0s2G̃1

+
3p
2

s2(2δ0)(̃tF1) + 2s3(̃tF2) +O
(

1
log s

)

=
πp

2 log s
(2 Im δ2)− 4− 3p

s
δ0(2∇δ0)2

−(p − 1)(2δ0)(2 Im ∆1) +O
(

1
log s

)
,

where we have expressed (̃tF1) and (̃tF2) in terms of δ0, and G̃1 in
terms of Im ∆1.

I G̃1 is not a universal quantity, but the dependence on G̃1 drops out
if p = 1!
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I We will show that p = 1 and therefore we obtain

Re(2δ2) =
π

2 log s
Im(2δ2)− δ0

s
(∇2δ0)2 +O

(
1

log s

)

I Both Im(δ2) and δ0(∇δ0)2 are IR divergent, but these divergences
cancel so that physical observables derived from Re(δ2), such as
the deflection angle, are finite.
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Computation of the 3-particle cut
I In order to extract Im2δ2 we compute the three-particle

discontinuity represented by the following diagram:

k2

k

k1

p2 p3

p1 p4

q2 q3

q1 q4
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I The five-point amplitude involving four scalars and one graviton is
given by

Mµν = 2(8πGN)
3
2

{
(k1p2)(k2p1)

(
− k1µ

k1k
+

k2µ

k2k

)(
− p2ν

p2k
+

p1ν

p1k

)

+4q2
1q2

2

[
qµ1 (p1p2) + pµ2 (p1k)− pµ1 (p2k)

q2
1q2

2
+

kµ2
2k2k

(
p1p2

q2
1

+
1
2

)

− kµ1
2k1k

(
p1p2

q2
2

+
1
2

)]

×
[

qν1 (k1k2) + kν2 (k1k)− kν1 (k2k)

q2
1q2

2
− pν1

2p1k

(
k1k2

q2
2

+
1
2

)

+
pν2

2p2k

(
k1k2

q2
1

+
1
2

)]}
,

obtained, using KLT, from the amplitude with one gluon.
I Unlike ACV90 the four external particles are massive.
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I Compute the contribution of the 3-particle discontinuity to the
imaginary part of the elastic amplitude from the unitarity relation:

2 Im A(3p)
2 =

1
(
(2π)D−1

)3

∫
dD−1k1

2Ek1

∫
dD−1k2

2Ek2

∫
dD−1k

2Ek

×Mµν(p1,p2; k1, k2, k)Mµν(−k1,−k ,−k2; p3,p4)

×(2π)Dδ(D)(p1 + p2 + k1 + k2 + k)

I We compute it in the double-Regge limit

s � s1, s2 →∞ , with
s1s2

s
, q2

i = −(pi + ki)
2 , m2

i fixed

where s = −(p1 + p2)2 and si = −(k + ki)
2.

I In this limit the amplitude has no dilaton contribution as an
intermediate state.
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I In the double-Regge limit the amplitude becomes much simpler:

Mµν(p1,p2 → k2, k , k1) = (8πGN)3/2 (2p1p2)2

2q2
1q2

2

×
{[

(q1 − q2)µ − s1s2

s

(
− kµ1

k1k
+

kµ2
k2k

)
+

kµ2
k2k

q2
2 −

kµ1
k1k

q2
1

]

×
[

(q1 − q2)ν − s1s2

s

(
− kν1

k1k
+

kν2
k2k

)
+

kν2
k2k

q2
2 −

kν1
k1k

q2
1

]

−q2
1q2

2

(
− k1µ

k1k
+

k2µ

k2k

)(
k2ν

k2k
− k1ν

k1k

)}

where all momenta p1,p2, k1, k2, k are ingoing and

s = −(p1 + p2)2 , s1 = −(k1 + k)2 , s2 = −(k2 + k)2

q1 = −(k1 + p1) , q2 = −(p2 + k2) ; k = q1 + q2

I We get the same expression as in the massless case.
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I In this regime it is convenient to write the kinematic variables in
terms of the (D − 2) space-like vectors orthogonal to the direction
where the energetic states are boosted (taken to be xD−1).

I By working in the Breit frame and taking light-cone variables for
the time and longitudinal direction (p0 + pD−1, ~p,p0 − pD−1), we
have

p1 = (m1ey1 ,−
~q
2
,m1e−y1) ; p2 = (m2ey2 ,

~q
2
,m2e−y2)

p4 = (−m1ey1 ,−
~q
2
,−m1e−y1) ; p3 = (−m2ey2 ,

~q
2
,−m2e−y2)

yi are the rapidities of the ext. particles and m2
1,2 = m2

1,2 +
~q 2

4 .
I The intermediate states with momentum k1, k2, k (all incoming) are

k1 = (−m′1ey ′1 ,
~q
2
− ~q1,−m′1e−y ′1) ; k2 = (−m′2ey ′2 ,−

~q
2
− ~q2,−m′2e−y ′2) ,

k = (−|k |ey , ~k ,−|k |e−y )

where (m′1)2 = m2
1 + (

~q
2 − ~q1)2 and (m′2)2 = m2

2 + (
~q
2 + ~q2)2
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I We can use the two non-transverse δ-functions to perform the
integral over the rapidities y ′1,2 provided that

− log
√

s
mt ,k

≤ yk ≤ log
√

s
mt ,k

=⇒
∫

dyk = 2 log
√

s
mt ,k

∼ log s

I In the double Regge limit, one can approximate q2
i ∼ ~q 2

i getting
the result of ACV90

Im A(3p)
2 ' (16πGN)3s3 log s

2π

∫
dD−2~q1

(2π)D−2

∫
dD−2~q2

(2π)D−2
1

(~k2)2

×
[[

(~q1~q4)(~q2~q3) + (~q1~q2)(~q3~q4)− (~q1~q3)(~q2~q4)
]2

~q 2
1 ~q

2
2 ~q

2
3 ~q

2
4

+1− (~q1~q2)2

~q 2
1 ~q

2
2
− (~q3~q4)2

~q 2
3 ~q

2
4

]

where k = q1 + q2,q4 = q − q1,q3 = −q − q2.
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I Then, we can proceed as in ACV90.
I The integral over yk gives a logs term and the other integrals can

be performed getting

Im Ã(3p)
2 (s,b) ' 1

2s
(8GNs)3 log sΓ3(1− ε)

16(πb2)1−3ε

[
− 1

4ε
+

1
2

+O(ε)

]

I This result implies p = 1 and is nothing else than 2 Im(δ2) and we
can use it to obtain:

Re(2δ2) ' 4G3
Ns2

~b2

as in ACV90.
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The 2-loop amplitude in massive N = 8 sugra
I By performing a KK reduction of 10-dimensional IIA supergravity

to M4 × T 6 one obtains, at the massless level, N = 8 sugra.
I One gets also massive states arising from KK states getting their

mass from the component of the momentum in the six extra
dimensions.

I Those states are scalar fields in D = 4 that can be taken with
different masses if they acquire their mass from different
components of the momentum in the six extra dimensions.

I We consider a s − u symmetric case whose tree scattering
amplitude is equal to

A0(s,q2) =
8πGN

q2
1
2

(
(s −m2

1 −m2
2)2 + (u −m2

1 −m2
2)2 − q4

)

I The advantage is that this theory with respect to GR contains a
much simpler set of diagrams+no numerators.

I The disadvantage is that it contains also the exchange of the
dilaton.
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I We closely follow the approach of
Parra-Martinez, Ruf and Zeng, 2005.04236
computing the various diagrams in the soft region by solving
various diff. equations.

I With the important difference that also the boundary conditions
are given in the soft region and not in the potential region.

I In the Regge limit at tree level we get

A0 =
32πGNm2

1m2
2σ

2

q2 ; σ = − p1p2

m1m2
=

s −m2
1 −m2

2
2m1m2

x = σ −
√
σ2 − 1 ; 4pE = 4m1m2(σ2 − 1) =

2m1m2(1− x2)

x

I From it we can get the leading eikonal:

2δ0(s,b) =

∫
dD−2q

(2π)D−2 eibq A0(s,q2)

4pE
= GNm1m2(πb2)εΓ(−ε) 2σ2

√
σ2 − 1
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I At one loop we get

A1(s,q2) =
(8πGN)2

2
×
(

(s −m2
1 −m2

2)4 + (u −m2
1 −m2

2)4 − q8
) (

III + IĨI
)

where we get contribution from the box diagram

1

2

3 4

p1

p2 p3

p4

and from the crossed box.
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I We get

A1(s,q2)

4pE
=

(8πGN)2

(4π)2

(
4π
q2

)ε{2iπm2
1m2

2
q2

σ4

σ2 − 1
Γ(1 + ε)Γ2(−ε)

Γ(−2ε)

+
4
√
πm1m2(m1 + m2)√

q2

σ4

(σ2 − 1)
3
2

Γ(ε+ 1
2)Γ2(1

2 − ε)
Γ(−2ε)

− σ3

(σ2 − 1)2

×
[

m1m2

[
(1 + 2ε)

(
σ2 log x + σ

√
σ2 − 1

)
+ iπ

(
2(σ2 − 1) + εσ2

)]

+i
πε

2
(m2

1 + m2
2)σ

]
Γ2(−ε)Γ(1 + ε)

Γ(−2ε)

}

I Go to impact parameter for the first, second and the last two lines
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I From the term in the first line we get

i Ã(1)
1 (s,b) =

∫
dD−2~q

(2π)D−2

iA(1)
1 (s, t = −~q 2)

4Ep
ei~b~q

=
1
2

(
2im1m2GN(πb2)εσ2Γ(−ε)

~2
√
σ2 − 1

)2

=
1
2

(2iδ0)2

that reproduces the quadratic term of the expansion of the leading
eikonal.

Paolo Di Vecchia (NBI+NO) Gravitational scattering Stockholm, 2021 45 / 94



I From the term in the second line we get

iÃ(2)
1 ≡

∫
dD−2~q

(2π)D−2

iA(2)
1 (s, t = −~q 2)

4Ep
ei~b~q = 2iδ1

=
4(πb2)2εm1m2(m1 + m2)G2

N√
π
√

b2

[
1 + x2

x

(
1 + x2

1− x2

)3]

×Γ(1
2 − 2ε)Γ2(1

2 − ε)
Γ(−2ε)

=
8i(πb2)2εG2m1m2(m1 + m2)

~
√
π
√

b2

σ4

(σ2 − 1)
3
2

Γ(1
2 − 2ε)Γ2(1

2 − ε)
Γ(−2ε)

that vanishes for ε = 0 in agreement with
Caron.Huot, Zahraee, 1810.04694.
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From the last two lines we extract a quantum term

2Re∆1 =
4m1m2G2

N(πb2)2ε

πb2

(
1 + x2

1− x2

)3 [1 + x2

x
+

(1 + x2)2

x(1− x2)

× log x

]
(1 + 2ε)Γ2(1− ε)

=
8G2

Nm1m2(πb2)2ε

πb2

σ4
(
σ log x +

√
σ2 − 1

)

(σ2 − 1)2 (1 + 2ε)Γ2(1− ε)

that in the UR (s >> m2
1,m

2
2) behaves as

2Re∆1 =⇒ 4G2
N(πb2)2ε

πb2 s(− log
s

m1m2
+ 1)(1 + 2ε)Γ2(1− ε)
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and

2Im∆1 =
4(πb2)2εG2

N
b2

(
1 + x2

1− x2

)3

×
[
ε(m2

1 + m2
2)

1 + x2

1− x2 + 2m1m2
1− x2

x
+ εm1m2

(1 + x2)2

x(1− x2)

]
Γ2(1− ε)

=
8G2(πb2)2εΓ2(1− ε)

b2
σ3

(σ2 − 1)2

[
ε

2
(m2

1 + m2
2)σ + 2m1m2(σ2 − 1)

+εm1m2σ
2

]
=⇒ 4G2(πb2)2ε(ε+ 2)sΓ2(1− ε)

b2

Paolo Di Vecchia (NBI+NO) Gravitational scattering Stockholm, 2021 48 / 94



I At two loops we get

A2(s,q2) =
(8πGN)3

2

(
(s −m2

1 −m2
2)4 + (u −m2

1 −m2
2)4 − t4

)

×
[

(s −m2
1 −m2

2)2 (IIII + IIX + IXI)

+(u −m2
1 −m2

2)2 (IĨII + IĨX + IX̃I

)
+ t2(IH + IH)

]
; q2 = −t .
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I in terms of the double box diagram

1

2

3

4

5 6 7

p1

p2 p3

p4

of its crossed version
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I of the non-planar double box

1

2

3

4

5
6 7

p1

p2 p3

p4

of its crossed version
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I and of the H diagram

p1

p2 p3

p4

and its crossed version
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I In the UR limit one gets:

A2(s,q2) ' (8πGN)3s3

(4π)4

(
4πe−γE

q2

)2ε
{
− 2π2s
ε2q2 (1 +

2t
s

)− 4πi
ε2

+
1
ε

[
4π2(1 +

2i
π

log
s

m1m2
)− 8πi − i

π3

3

]}
+O(ε0)

I Going to impact parameter we get

Ã2(s,b) '
{

G3
Ns3(πb2)3εΓ3(1− ε)

6~3ε3
− 8G3

N(i − π)s2(πb2)3εΓ3(1− ε)
επb2~

+
2G3

Ns2Γ3(1− ε)
(πb2)1−3ε~

[
4π + 8i log

s
m1m2

− 8i − i
π2

3

]
+O(ε)

}
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I In order to compute the new contribution to the eikonal we must
first subtract the contribution of the lower eikonal δ0 and ∆1 that
are equal to

2δ0 =
GNsΓ(1− ε)(πb2)ε

−ε~

2 Im ∆1 '
8G2

Ns(πb2)2εΓ2(1− ε)
b2

(
1 +

ε

2

)

I Using them we can write the real part of the amplitude as follows:

Re Ã2(s,b) ' − i
6

(2iδ0)3 − Im(2∆1)2δ0

+
4G3

Ns2(πb2)3εΓ3(1− ε)
b2~

+O(ε)

recovering the universal value for Re 2δ2.
I Up to now all results are in the UR limit (s >> m2

i ).
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I In the general case (with arbitrary masses) from the two-loop
amplitude we can extract the sub-sub-leading eikonal through the
relations:

Re(2δ2) = ReÃ2 −
1
6

(2iδ0)3 + 2δ02Im2∆1

where Ã2(s,b) is the Fourier transform in impact parameter space
of the two-loop amplitude divided by the factor 4pE .

I We get

Re(2δ2) =
16m2

1m2
2G3

Nσ
6

b2(σ2 − 1)2 − 16m2
1m2

2σ
4G3

N
b2(σ2 − 1)

cosh−1(σ)

×
[

1− σ(σ2 − 2)

(σ2 − 1)
3
2

]
; cosh−1(σ) = log

(
σ +

√
σ2 − 1

)
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I The corresponding 3PM contribution to the scattering angle as a
function of the angular momentum J = pb reads

χ3PM = − 16m3
1m3

2σ
6G3

N

3J3
(
σ2 − 1

)3/2 +
32m4

1m4
2σ

6G3
N

J3
(
σ2 − 1

)
s

−64m4
1m4

2G3
Nσ

4

J3s

(
1− σ

(
σ2 − 2

)
(
σ2 − 1

)3/2

)
arcsinh

√
σ − 1

2

that is finite at high energy! ; σ =
s−m2

1−m2
2

2m1m2
= − p1p2

m1m2

I Blue terms are those obtained with boundary conditions in the
potential region.

I Red terms are the additional terms obtained with boundary
conditions in the soft region.

I In the PN expansion the sum of the terms in red are of the order
1.5 PN, while the terms in blue are of the order 0 PN and 2 PN.
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Solving differential equations (one-loop case)
I In the elastic scattering of two particles

p1 + p2 + p3 + p4 = 0 ; −p2
1 = m2

1 = p2
4 ; p2

2 = m2
2 = p2

3

it is convenient to introduce the new variables:

p1 = −p̄1 + q/2 , p4 = p̄1 + q/2
p2 = −p̄2 − q/2 , p3 = p̄2 − q/2

and

uµ1 =
p̄µ1
m̄1

, uµ2 =
p̄µ2
m̄2

,

with

m̄2
1 = −p̄2

1 = m2
1 +

q2

4
, m̄2

2 = −p̄2
2 = m2

2 +
q2

4
.

I They are useful because p̄i is orthogonal to q

p2
1 − p2

4 = −2 p̄1 · q = 0

p2
2 − p2

3 = 2 p̄2 · q = 0
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I Introduce the quantity

y = −u1 · u2 ∼ σ −
2m1m2 + σ(m2

1 + m2
2)

8m2
1m2

2
q2 +O

(
q4
)

that tends to 1 in the static limit and to∞ for large velocities.
I Introduce also

xy = y −
√

y2 − 1 ; x = σ −
√
σ2 − 1 ; σ = − p1p2

m1m2

I We want to compute the box diagram

III =

∫

`

1
[m̄1ρ1 + (`2 − q · `)][m̄2ρ2 + (`2 − q · `)]ρ3ρ4

where

ρ1 = 2u1·`−i0, ρ2 = −2u2·`−i0, ρ3 = `2−i0, ρ4 = (`−q)2−i0
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I To get the non-analytic dependence on q2 that gives the classical
contribution we expand the integrand in the soft region
characterised by

` ∼ q << m1,2

I Expand the integrand in the soft region and IBP reduce it to get

III =
1

ε2m̄1m̄2
√

y2 − 1

1
q2 f3 +

(m̄1 + m̄2)

m̄2
1m̄2

2(y − 1)

1
q

f2

−(1 + 2ε)
(
2m̄2m̄1y + m̄2

1 + m̄2
2
)

8ε2m̄3
1m̄3

2

(
y2 − 1

)3/2 f3

−(1 + 2ε)
[(

m̄2
1 + m̄2

2
)

y + 2m̄1m̄2
]

8εm̄3
1m̄3

2

(
y2 − 1

) f1

in terms of the three master integrals

f1 = εq2G0,0,2,1, f2 = −εq G1,0,1,1, f3 = ε2
√

y2 − 1 q2G1,1,1,1
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I The relevant integrals at one loop are

Gi1,i2,i3,i4 =

∫
dD`eγEε

iπD/2
1

ρi1
1ρ

i2
2ρ

i3
3ρ

i4
4

where ik are integers and

ρ1 = 2u1·`−i0, ρ2 = −2u2·`−i0, ρ3 = `2−i0, ρ4 = (`−q)2−i0

I

1

2

3 4

p1

p2 p3

p4
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I They are determined by the differential equation:

d~f
dlog xy

= εA~f , A =




0 0 0
0 0 0
1 0 0




I Their solutions

f1 = c1 , f2 = c2 , f3 = ε c1 log xy + c3

are uniquely determined by fixing the integration constants c1, c2,
c3 using the boundary conditions at xy = 1.
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III = −eγE εΓ(1− ε)2Γ(ε+ 1) (log x + iπ)

m1m2
√
σ2 − 1εΓ(1− 2ε)(q2)1+ε

+
eγE ε
√
π (m1 + m2) Γ

(1
2 − ε

)2
Γ
(
ε+ 1

2

)

4m2
1m2

2(σ − 1)Γ(−2ε)(q2)
1
2 +ε

+
eγE εΓ(1− ε)2Γ(ε+ 1)

[√
σ2 − 1

(
m2

1σ + m2
2σ + 2m1m2

)
+ s(log xeiπ)

]

4m3
1m3

2(σ2 − 1)3/2Γ(1− 2ε)(q2)ε
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Conclusions
I Analyticity and crossing symmetry allow to show that Re(2δ2) and

the deflection angle are not diverging at high energy.
I Explicit evaluation of Im(2δ2) allows to fix Re(2δ2) in agreement

with ACV90.
I Explicit evaluation of the loop integrals in the soft region in

massive sugra shows a universal behaviour at high energy.
I The interpretation of the previous result is that the deflection angle

computed by Bern et al contains only the conservative part and
does not take into account the effect of the radiation-reaction.

I When one takes into account the effect of the radiation reaction
then one gets extra terms that eliminate the problem with the
divergence in the ultra-relativistic limit.

I Recently Damour in 2010.01641 has added a term coming from
radiation to the conservative part of Bern et al and again found a
finite behaviour at high energy: his result is valid in GR.
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I According to the last Damour’s paper the 3PM contribution to the
deflection angle is equal to

χ3 = χSchw
3 − 2νp

h2(σ, ν)
C̄Tot (σ) ; χSchw

3 =
64σ6 − 120σ4 + 60σ2 − 5

3(σ2 − 1)3/2

where C̄Tot = C̄cons + C̄rad

I with

C̄cons(σ) =
2
3
σ(14σ2 + 25) +

4(4σ4 − 12σ2 − 3)√
σ2 − 1

sinh−1

√
σ − 1

2

I and

C̄rad = −(2σ2 − 1)2

2
√
σ2 − 1

(
−8

3
+

1
v2 + 2

3v2 − 1
v3 sinh−1

√
σ − 1

2

)

where

v =

√
σ2 − 1
σ
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Outlook

I Extend our results from massive N = 8 sugra to GR.
I Compute radiation emitted in the process.
I Compute EOB Hamiltonian and the Potential at two-loop order in
N = 8 massive sugra: check if the potential is real.

I Go to higher orders: 4PM?
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Additional explanatory slides
I The scattering angle in the elastic scattering of two particles is

given in perturbation theory by

sin
θ

2
=
|q|
2p

q is the momentum transfer q2 = −t = (p1 + p4)2 and p is the
absolute value of the momentum in the center of mass frame.
2p =

√
s in the massless case.

I More precisely

q2 = −t = (p1 + p4)2 = 2p2(1− cos θ)

where in the c.o.m. frame we use

p1 = (E1, ~p) ; p4 = (−E1,−~p′) ; |~p| ≡ p = |~p′|
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I After exponentiation we can transform back to momentum space
getting

iAL(s, ~Q) = 2s
∫

dD−2~be

[
e

i
~
~be~Q+2iδ0(s,~be) − 1

]

and here we get the momentum ~Q as the one that describes the
full momentum exchanged in the eikonal process where many
gravitons are exchanged, to distinguish it from q that is the
momentum exchanged in the perturbative amplitude.

I For large b we can approximate the integral with the saddle point
equation:

~Q = −~∂(2δ0)

∂be

~be

be
= 2Gs

Γ(D
2 − 1)

π
D
2−2bD−3

e

~be

be

I and after the resummation we get

sin
θ

2
=
|Q|
2p

= − ~
2p

∂(2δ0)

∂be
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1 4π − θ

θ

2
3 π − θ

θ

be b
θ
2
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Why D − 2 and not D

I In the Breit or brick wall frame one has

p1 = (E1,−
~q
2
, p̄1) ; p4 = (−E1,−

~q
2
,−p̄1)

p2 = (E2,
~q
2
,−p̄2) ; p3 = (−E2,

~q
2
, p̄2) .

The exchanged momentum −q ≡ p1 + p4 lies in a (D − 2) trans.
space and the incoming particle bounces back along the (D − 1)
dir..

I In e center of mass frame one has

p1 = (E1,0,p) ; p4 = (−E1,q,−
√

E2
1 − q2 −m2

1)

p2 = (E2,0,−p) ; p3 = (−E2,−q,
√

E2
2 − q2 −m2

2)

q = p1 + p4 = (0,q,p −
√

p2 − q2) ∼ (0,q,
q2

p
+ . . . ) ∼ (0,q,0)

q2

p negligible with respect to q at high energy and in the class. lim.
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DIMENSION OF THE ELASTIC AMPLITUDE AND FACTORS OF ~

I The elastic amplitude has dimension L2E2L−2ε.
I GN has dimension L1−2εE−1.

THE PROBE LIMIT

I In the probe limit m1 becomes very large and there is no back
reaction of the other particle on the very massive one.

I The scattering can be described by the motion of the probe
particle in the metric generated by the very massive one.

I In the rest frame of the massive particle we get

s = −(p1 + p2)2 = (m1 + E2)2 − ~p2
2 = m2

1 + 2m1E2 + m2
2

=⇒ σ =
s −m2

1 −m2
2

2m1m2
=

E2

m2
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THE PN EXPANSION

In the Post-Newtonian expansion the counting is as follows:

ε ∼ v2 ∼ GNm
r

<< 1 ; (v2)nGm
N ∼ εn+m =⇒ (n + m)PN

where
σ − 1 ∼ v2 ; cosh−1(σ) ∼ (σ − 1)1/2 = v
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I The change in length ∆L is given by:

∆L = hL

I h ∼ 10−21 is the strength of the gravitational waves.
I L = 4 · 103m is the length of the two arms of the interferometer.
I Then we get

∆L = 10−16cm = 10−3proton
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Waveform from GR
I In GR one can describe the merging or the scattering of two black

holes by the following Lagrangian:

L = − 1
2κ2

∫
d4x
√−gR −

2∑

i=1

mi

∫
dτi

√
−gµν(x)ẋµi ẋνi

where x(τ) is a function of the world-line parameter τ and ẋ = dx
dτ

and 2κ2 = 16πGN (GN is the Newton constant).
I The previous Lagrangian describes the two black holes as

point-particles.
I One can add additional terms containing the Riemann tensor.
I The lowest ones are

cE

∫
dτEµνEµν + cB

∫
dτBµνBµν + . . .

where

Eµν = Rµανβ ẋαẋβ ; Bµν = εµαβρẋρRαβ
σν ẋσ
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I Because of these additional terms the particle does not move
anymore along a geodesic and this implies stretching by tidal
forces as in the case of extended objects.

I In order to find the motion of the particles and the waveform of the
gravitational field one must derive the equations of motion from
the previous Lagrangian and solve them.

I This is an extremely difficult problem.
I One can expand for small velocities and perform the so-called

post-Newtonian (PN) expansion.
I But when the two black holes start to merge this approximation is

not valid anymore and one must solve the problem numerically:
numerical GR.

I A simple case is when one particle has a mass much bigger then
the other.

I In this case one can compute the motion of the light particle in the
gravitational field generated by the heavy particle: geodesic
motion.
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I In this seminar I will consider the scattering of two point-particle
(rather than their merging) and concentrate myself on the
calculation of the deflection angle.

I It can be shown that the two regimes are related.
I Compute the four-point scattering amplitude involving two scalar

particles with mass m1 and m2 in a perturbative expansion in the
Newton constant GN : Post-Minkowskian expansion (PM).

I Extract from it classical quantities as the deflection angle and the
Hamiltonian.

I We will neglect the spin.
I Our system is described by the following Lagrangian:

S =

∫
dDx

√
|G|
{

R
2κ2

D
− 1

2

2∑

i=1

[
∂µΦi∂νΦiGµν + m2

i Φ2
i

]}

I We work in D space-time dimensions to regularise infrared
divergences: dimensional regularisation.

I In perturbation theory we expand the metric gµν around flat space:

gµν = ηµν + 2κhµν ; κ =
√

8πGN
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I One has to choose a gauge: a very convenient gauge is the de
Donder gauge: ∂µhµν − 1

2∂
νh = 0.

I The expansion of the Einstein-Hilbert Lagrangian is
non-polynomial in hµν and a lot of terms are generated.

I Very soon it becomes too complicated to proceed this way and
new techniques have been used to go to higher loops.

I Use double copy or BCJ relations from gluon amplitudes that are
much easier to construct.

I Construct the unitarity cuts relevant for classical physics that
provide the integrand.

I Then you have to perform the integrals.
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General mass case in D dimensions
I Consider the scattering of two particles with mass m1 and m2 at

1PM and 2PM.
I In order to extract the classical contributions we take the limit:

16πGN = 2κ2 → 0 , s � q2 = |t | , with GNM∗ fixed

where M∗ is the largest mass scale in the process.
I Therefore we need to compute the amplitude in the Regge limit

where |t | << s
I In this case the gravitons exchanged in the process are almost on

shell and we can construct the amplitude by glueing together
almost on-shell amplitudes.

I For 1PM we can use the three-point vertex involving a graviton
and two massive scalars given by:

Aµν(k1, k2,q) = −iκD

(
k1µk2ν + k1νk2µ − (k1k2 −m2)ηµν

)
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I For small q we can neglect the term proportional to ηµν and use

q

k1 k2

= Aµν3 (k1, k2, q) = −iκD (kµ1 k
ν
2 + kν1k

µ
2 )

I For 2PM we can use the four-point amplitude involving two
gravitons and two massive scalars:

Âαβ;ρσ
4 (k1, k2,q1,q2) =

2κ2
D(k2q1)(k1q1)

(q1q2)

×
[

kρ2 kα1
k2q1

+
kα2 kρ1
k1q1

+ ηρα
] [

kσ2 kβ1
k2q1

+
kβ2 kα1
k1q1

+ ησβ

]
.
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I For our purposes it will be convenient to use the following
expression

q1 q2

k1 k2

= Aαβ;ρσ4 (k1, k2, q1, q2)

=
−2κ2D[(k1q1) + (q2q1)](k1q1)

(q1q2)

(
(k1 + q2)

ρkα1
(k1q1) + (q2q1)

− (k1 + q1)
αkρ1

k1q1
+ ηρα

)

×
(

(k1 + q2)
σkβ1

(k1q1) + (q1q2)
− (k1 + q1)

βkα1
k1q1

+ ησβ
)

I The two previous amplitudes are equivalent on shell.
I The second one is transverse in a slightly more general sense.
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I It vanishes when the polarization of the graviton takes the form
εµν = qµζν + qνζµ using only momentum conservation to rewrite
products between momenta such as kikj .

I Without the need of using it to rewrite the products between
momenta and the arbitrary vectors ζµ.

I In other words, it is transverse without any restriction on the
polarization ζµ.

I The 1PM and 2PM contributions are then obtained by glueing the
gravitons with a de Donder propagator:

[G(q)]µν;ρσ =
−i
2q2

(
ηµρηνσ + ηµσηνρ − 2

D − 2
ηµνηρσ

)
.
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I The S-matrix is given by

S = 1 + iT = 1 + (2π~)Dδ(D)(Pf − Pi)A

I Afi is the scattering amplitude from an initial state i to a final state
f :

Afi = 〈k1, k2 . . . kNf f |A|k1
′, k2

′ . . . kNi
′〉

I Taking into account that the creation and annihilation operators
satisfy the following covariant commutation relation:

[a(k),a†(p)] = 2Ep(2π~)D−1δ(D−1)(~k − ~p)

we can derive that the amplitude Afi , for Ni = Nf = 2 has
dimension of L2E2L−2ε where 2ε = 4− D.
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I For the 1PM we have to compute the following quantity

iA0 = [G(k1+k3)]µ1ν1;µ2ν2 Aµ1ν1
3 (k1, k3,−k1−k3)Aµ2ν2

3 (k2, k4, k1+k3)

represented by the following diagram:

k3k1

k4k2

getting

iA0 =
2iκ2

D
q2

(
1
2

(s −m2
1 −m2

2)2 − 2
D − 2

m2
1m2

2

)
=

2iκ2
Dγ(s)
q2

~2 ~
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I q ≡ k1 + k3 is the momentum exchanged between the two
massive scalars and

γ(s) = 2(k1k2)2 − 2
D − 2

m2
1m2

2 =
1
2

(s −m2
1 −m2

2)2 − 2
D − 2

m2
1m2

2

I We can go to impact parameter space by using:

Ã(s,b) =
1

4Ep

∫
dD−2q

(2π~)D−2 ei q
~bA(s,q2)

where E =
√

s = E1 + E2 and p = |~k1| = |~k2| is the absolute value
of the space-like momentum in the center of mass frame of the
two scattering particles.

I At high energy q has only non-zero components along the D − 2
directions orthogonal to the energy and the direction of motion.

I We get

iÃ0(s,b) ≡ 2iδ0 =
iκ2

Dγ(s)

2Ep
1

4π
D−2

2

Γ

(
D
2
− 2
)

1
~ bD−4

that is dimensionless.
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I In terms of the more convenient variable:

σ = − k1k2

m1m2
=

s −m2
1 −m2

2
2m1m2

; 4pE = 4m1m2

√
σ2 − 1

the leading eikonal in the massive case is equal to

iÃ0(σ, b) ≡ 2iδ0 = −
GNm1m2Γ(1− ε)(πb2)ε(2σ2 − 2

D−2)

ε~
√
σ2 − 1

where ε = 4−D
2 .

I It is the Fourier transform of the following tree-level amplitude

A0(σ, q2) =
16πGNm2

1m2
2(2σ2 − 2

D−2)

q2
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I For 2PM we need to compute

iA2 =

∫
dDk

(2π)D [G(k)]α1β1;α2β2 [G(k + q)]ρ1σ1;ρ2σ2

×Aα1β1;ρ1σ1
4 (k1, k3, k ,−k − q)Aα2β2;ρ2σ2

4 (k2, k4,−k , k + q)

corresponding to the following diagram:

k3k1

k4k2

I The amplitude contains four propagators (two massive and two
massless) and a numerator.
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I The contribution to the classical limit is given by the two following
topologies

corresponding to box diagram and

corresponding to triangular diagrams.
I They are extracted from the original amplitude.
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I The box gives the following contribution to the amplitude:

iA2 = 4κ4
D(γ2(s)I4(s, t) + γ2(u)I4(u, t))

where we have included the crossed diagram and

I4(s, t) =

∫
dDk

(2π)D
1
k2

1
(q + k)2

1
(k1 + k)2 + m2

1

1
(k2 − k)2 + m2

2
,

I4(u, t) =

∫
dDk

(2π)D
1
k2

1
(q + k)2

1
(k3 + k)2 + m2

1

1
(k2 − k)2 + m2

2

I In order to extract the classical contributions we take the following
limit:

16πGN = 2κ2 → 0 , s � q2 = |t | , with GNM∗ fixed

where M∗ is the largest mass scale in the process.
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I The leading term is equal to

iA(1)
2 (s,q2) = − 4π

D+2
2 κ4

Dγ
2(s)

2(2π)D
√

(k1k2)2 −m2
1m2

2

Γ2(D
2 − 2)Γ(3− D

2 )

~2Γ(D − 4)
(
q2

~2 )
D−6

2

I In impact parameter space it becomes:

iÃ(1)
2 (s,b) = −κ

4
Dγ

2(s)

(Ep)2
1

27πD−2 Γ2
(

D
2
− 2
)

1
~2b2D−8 =

1
2

(iÃ1)2

that is the first sign of an exponentiation.
I The subleading contribution is:

iA(2)
2 (s,q2) =

i2κ4
Dγ

2(s)
√
π(m1 + m2)

(4π)
D
2
(
(k1k2)2 −m2

1m2
2

)
Γ
(5−D

2

)
Γ2 (D−3

2

)

~Γ(D − 4)
(
q2

~2 )
D−5

2

I It vanishes for D = 4.
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I In impact parameter space it becomes:

iÃ(2)
2 (s,b) =

iκ4
Dγ

2(s)(m1 + m2)

Ep((k1k2)2 −m2
1m2

2)

1

64πD− 3
2

Γ
(2D−7

2

)
Γ2 (D−3

2

)

~Γ(D − 4)

1
b2D−7

I We did not expect any big contribution from the subsubleading
term, but actually we found a large logarithmic term.

I In impact parameter space we get:

iÃ(3)
2 (s,b)

=
κ4

Dγ
2(s)

Ep
i

128πD−1 Γ2
(

D − 2
2

)
1

(b2)D−3

[
4(5− D)

(k1k2)2 −m2
1m2

2

×


1 +

2k1k2 arcsinh
(√

σ−1
2

)

√
(k1k2)2 −m2

1m2
2


+ i

π(D − 4)(k1 + k2)2

[(k1k2)2 −m2
1m2

2]3/2




+
κ4

Dψ(s)

Ep
i

8πD−1

arcsinh
(√

σ−1
2

)

√
(k1k2)2 −m2

1m2
2

Γ2
(

D − 2
2

)
1

(b2)D−3
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I No ~ in the denominator =⇒ it is a quantum contribution.
I By using arcsinh y = log(y +

√
y2 + 1) one can see that the terms

with arcsinh are log-divergent at large energies.
I The same arcsinh-function also appears in the recent 3PM result,

violating perturbative unitarity in the high-energy limit: s
m2

i
→∞

[ Z. Bern et al arXiv:1901.04424]
I Finally, one gets also a classical contribution from the triangular

diagrams.
I In impact parameter space one gets:

iÃ(2)
2 = i

κ4
D

64πD− 3
2 Ep

Γ
(2D−7

2

)
Γ2 (D−3

2

)

Γ(D − 3)

m1 + m2

~b2D−7

{
(s −m2

1 −m2
2)2

− 4m2
1m2

2
(D − 2)2 −

(D − 3)
(
(s −m2

1 −m2
2)2 − 4m2

1m2
2
)

4(D − 2)2

}
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The eikonal and the deflection angle
I

2δ0 = −
GNm1m2Γ(1− ε)(πb2)ε(2σ2 − 2

D−2)

ε~
√
σ2 − 1

; ε =
4− D

2
I The next to the leading eikonal is given by

2δ1(s,mi ,b) =
(8πGN)2(m1 + m2)

~Ep πD− 3
2

Γ(2D−7
2 )Γ2(D−3

2 )

16 b2D−7

×
{

γ2(s)

Γ(D − 4)
[
(s −m2

1 −m2
2)2 − 4m2

1m2
2

] +
1

4Γ(D − 3)

×
[

(s −m2
1 −m2

2)2 − 4m2
1m2

2
(D − 2)2

−(D − 3)
(
(s −m2

1 −m2
2)2 − 4m2

1m2
2
)

4(D − 2)2

]}

I The second line comes from the box diagrams and vanishes for
D = 4.
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I The rest comes from the triangular diagrams and coincides with
known results for D = 4.

I In D = 4 it can be written in a compact form:

2δ1 =
3πG2

Nm1m2(m1 + m2)

4~
√
σ2 − 1b

(5σ2 − 1)
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I The deflection angle is given by

χ = −~
p
∂

∂b
(2δ0 + 2δ1) + . . .

I The leading deflection angle is equal to

θ1PM = −~
p
∂

∂b
2δ0 =

2GNm1m2
√

s(2σ2 − 1)

b(σ2 − 1)
=

Gm1m2

J
2(2σ2 − 1)√

σ2 − 1

where J = pb.
I The subleading contribution is equal to

θ2PM = −~
p
∂

∂b
2δ1 =

3πG2
Nm1m2(m1 + m2)(5σ2 − 1)

4
√
σ2 − 1b2p

=

(
GNm1m2

J

)2 m1 + m2√
s

3π(5σ2 − 1)

4

I It vanishes for m1 = m2 = 0 in agreement with ACV90.
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I The subleading contribution to the deflection angle is equal

θ(2) =
(8πGN)2(m1 + m2)

Ep2πD− 3
2

2Γ(2D−5
2 )Γ2(D−3

2 )

16 b2D−6

×
{

γ2(s)

Γ(D − 4)
[
(s −m2

1 −m2
2)2 − 4m2

1m2
2

] +
1

4Γ(D − 3)

×
[

(s −m2
1 −m2

2)2 − 4m2
1m2

2
(D − 2)2

−(D − 3)
(
(s −m2

1 −m2
2)2 − 4m2

1m2
2
)

4(D − 2)2

]}

I It vanishes for m1 = m2 = 0 in agreement with ACV90.
I Both the leading and subleading angles agree with what is

obtained from alternative calculations (mostly for D = 4 where the
box diagram does not contribute).

I For instance, in the probe limit (one mass much larger than the
other and of the energy involved).
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