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1.  Realization of a classical system within quantum 
mechanics

2. A model of (consistent) classical quantum 
dynamics



  

Part 1

Koopman von Neumann mechanics 



  

Koopman von Neumann 
mechanics 

● Classical  mechanics can be formulated in terms of Hilbert space

● In terms of states: one needs joint X and P eigenstates (they need to 
commute) 

● In terms of dynamics: to have an analogue of Heisenberg equation of 
motion there should be operators not commuting with X and P  



  

Koopman von Neumann 
mechanics 

● Minimal realization involves 4 operators with non-trivial commutators:

● Liouville operator governing evolution of classical wavefunction

● Standard  Liouville equation is recovered in XP representation, assuming 
that probability density is given by modulus squared of the wavefunction  

 



  

Koopman von Neumann 
mechanics 

● Minimal realization involves 4 operators with non-trivial commutators:

● Such a system can be realized within quantum mechanics

  

 



  

Koopman von Neumann 
mechanics 

● Minimal realization involves 4 operators with non-trivial commutators:

● Such a system can be realized within quantum mechanics

● These are EPR operators 

  

 



  

Koopman von Neumann 
mechanics 

● Liouville operator (note the minus):

● Eg. for a harmonic oscillator – the second system has a negative mass

  

 



  

Koopman von Neumann 
mechanics 

● One can realize classical systems within QM (free particle, particle in a 
linear potential, harmonic oscillator)

● To do so one needs: 

1) entanglement (EPR operators) 

2) (effective) negative mass

  

 



  

Koopman von Neumann 
mechanics 

● One can realize classical systems within QM (free particle, particle in a 
linear potential, harmonic oscillator)

● This is useful for increasing measurements precision (e.g. a wavepacket 
does not spread) 

  

 



  

Open problems
● Is there a similar trick for qubits (qudits)?   

  

 



  

Part 2

A model of classical-quantum dynamics



  

Motivation
● Why it is interesting to consider composite classical-quantum systems ?

– thermodynamics/chemistry: small molecules (quantum) interact with 
large reservoirs (classical)

– Measurement theory: quantum systems interact with macroscopic 
devices (classical)  

– Gravity: quantum fields interact with gravitational field (effectively? 
classical)  



  

Introduction
● Can one consistently couple classical and quantum systems?

– Many formulations e.g. :
● Koopman-von Neuman hybrid dynamics 

● Aleksandrov bracket  

● Many others



  

Introduction
● Can one consistently couple classical and quantum systems?

– Many formulations – many problems :
● No-go theorems

● Not completely positive dynamics (leading to “negative” probabilities)

● Non-linear formulations (density matrix looses its statistical 
interpretation)



  

Introduction
● Classical-quantum dynamics introduced in 

and further applied in different contexts.  



  

Introduction
● Main features of classical quantum coupling:

–  Decoherence of quantum systems

– “Collapse” of the wavefunction (quantum system jumps to a pure state 
that can be determined from classical dof)

– Diffusion in the classical phase space  

See: [A post-quantum theory of classical gravity?] J. Oppenheim  
[Objective trajectories in hybrid classical-quantum dynamics] J. Oppenheim et al.



  

Some details
● Object of study: hybrid density

●                - phase space variables

●                                     - distribution over z;                                - a valid 
quantum state.



  

Some details
● Object of study: hybrid density

● e.g. for a qubit



  

Some details
● Evolution equation (GKLS/Lindblad)

●              - Describes change in phase space and jump of the quantum 
system

●

Commutator



  

Some details
● How to include “free” classical evolution? 

● where

Poisson Bracket



  

Some details
● How to include “free” classical evolution? 

● First order: Poisson bracket

● Second order: diffusion

● ... 

Expansion



  

Some details
● Gravity (main features of the framework):

– Decomposition based on ADM Hamiltonian (Lindblad operators → field 
operators)

– Constraints implemented on the level of equations of motion → 
constrains possible realizations (see also “The constraints of post-
quantum classical gravity” J. Oppenheim et al. arXiv:2011.15112)



  

Open problems

– Characterization of decoherence/diffusion interplay 

– Weak-field limit of the framework 



  

–



  

Some details
● Evolution equation (expansion):



  

Some details
● Next term (diffusion) 
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