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• Introduction to colliders

– LHC

– High-luminosity LHC

– Potential future colliders

• Results and prospects

– SM precision

measurements

– BSM searches
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The Standard Model
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Shortcomings of the Standard Model

• The Standard Model is exceptionally successful in the lab.

• But has clear limitations:

- Neutrinos are massless.

- Can only explain 5% of the energy

content of the universe.

- Cannot explain the matter-antimatter

asymmetry in the Universe.

- Does not include gravity.

• Also suffers from fine-tuning:

- Strong CP problem. Experiments suggest that CP is

conserved in strong interactions, but not required by SM.

- Hierarchy problem. No symmetry to protect the Higgs

mass. Need severe fine-tuning to keep it at EW scale.
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Why particle colliders?

• To study properties of short-lived particles we need to produce them.

• Heavy particles ↔ high energies.

• Small scales ↔ high energies.

• To reach required precision we

need a controlled environment.

• Also need large amounts of

data since particle interactions

are statistical processes.

• Total number of occurances of process p depends on cross section σp

and integrated luminosity
∫

Ldt (∼ total number of collisions) through

Np =
∫

Ldt · σp.
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How can they probe BSM physics?

• Direct search program

- If kinematically accessible, new

particles can be directly pro-

duced and discovered.

• Indirect search program

- Heavier new particles can still

appear as virtual particles in

loop diagrams and alter the

properties of known particles

and processes.
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Constraints on Higgs boson mass

SARA STRANDBERG 7 QUANTUM CONNECTIONS, 22/6 2021



Higgs discovery July 2012
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The Large Hadron Collider

• 27 km long tunnel

• Collides protons

– at 13 TeV

– 40 million times

per second

• 1232 dipole magnets

– cooled with liquid

helium to 1.9 K

– 8.4 T magnetic field

from 11 700 A current

• O(1500) quadru-, sextu-,

octupole magnets
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High-luminosity LHC

• To maximize physics output, a major upgrade to the accelerator

(HL-LHC) is planned.

• Aim is to increase the instantaneous luminosity and deliver 3000 fb−1.

• The LHC detectors will need be upgraded to cope with the

challenging environement induced by the higher data rates.
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Gazing into the future
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Gazing into the future
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The European Particle Physics Strategy Update
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The Physics Briefing Book

https://cds.cern.ch/record/2691414
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The starting lineup

• Lepton or hadron collider, linear or circular?
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The starting lineup
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The starting lineup

(For reference - LHC construction cost ≈ 4 GCHF, annual CERN budget ≈ 1 GCHF.)
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Higgs boson couplings

• The Higgs boson is the only fundamental

scalar in the SM.

• Its coupling to the other SM particles

is proportional to their masses:

- To bosons (V = W,Z) with strength

∼ m2
V /v, where v is the vacuum

expectation value v ≈ 246 GeV.

- To fermions (F ) with strength ∼ mF /v.

• Coupling modifier κ specifies how much

coupling deviates from SM expectation.

• Extensive program to test if its properties

are agreeing with SM predictions.

• No deviations from SM

observed, but uncertain-

ties still large.
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What precision is needed?

• BSM physics can modify Higgs couplings to SM particles.

• Several scenarios investigated in Higgs Wroking Group reports.

• Deviations typically well below 10%.

arXiv:1310.8361

• Target O(1%) precision.
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... at the HL-LHC

• Uncertainty assumptions:

- Statistical uncertainty ∼
√

∫

Ldt.

- Theory uncertainties ×0.5.

- Detector performance same.

• Expect O(few %) precision on the

most accessible Higgs couplings.

• Precision often limited by uncer-

tainty on theory predictions.

arXiv:1902.00134
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... and at future colliders
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The Higgs potential

• Higgs boson mass determines position of

the ground state.

• Not enough to define shape of the Higgs

potential.

• Shape of the Higgs potential controls the dynamics of the

electroweak phase transition.

• SM predicts shape of the Higgs potential:

V (φ) = −µ2φ2 + λφ4

• But Higgs self-coupling parameter λ not measured yet.

• First-order EW phase transition needed for electroweak baryogenesis.

• Not possible in SM.
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Di-Higgs boson production

• Di-Higgs production gives access to trilinear Higgs self-coupling λhhh

and thus information about the shape of the Higgs potential.

V (h) =
1

2
m2

hh
2 + (1 + κ3)λ

SM
hhhvh

3 +
1

4
(1 + κ4)λ

SM
hhhhh

4 +O(h5)

• Small cross section because of destructive

interference between diagrams.

• Potential enhancement of cross section e.g.

from decays of a new spin-0 or spin-2 particle.
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... at the HL-LHC and beyond

• Observing di-Higgs production is

a key deliverable at HL-LHC, ∼
4σ significance expected with

3000 fb−1.

• Expected κλ(=κ3) sensitivity is

0.1 < κλ < 2.3 at 95% C.L.

• CLIC at
√
s = 3 TeV and ILC at√

s = 1 TeV can constrain trilinear

self-coupling to O10% while FCC-

hh can reach 5% precision.

• 2σ sensitivity to the quartic self-

coupling expected at FCC-hh.

arXiv:1902.00134
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Protecting the Higgs mass with Supersymmetry

• In SUSY, the Higgs boson mass is protected by chiral symmetry.

δm2
h ∼ −|λf |2

16π2

(

Λ2
UV + ...

)

+
λS

16π2

(

Λ2
UV + ...

)

+ · · ·

• Cancellation if λS = |λf |2.

• Supersymmetric top partner (stop) cannot be

too heavy.

• Gluino affects running of stop mass so must also

be light.
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Gluinos and stops

• Limits on masses of gluinos and 1st/2nd genera-

tion squarks is ∼2 TeV.

• Limits on masses of stops is ∼1 TeV.

• Derived assuming simplified models with light χ0
1.

• Limits can be considerably weaker in other parts

of SUSY parameter space.
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... at the HL-LHC and future colliders
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Dark matter searches

• Compelling evidence that DM exists. Detecting it in the laboratory is

one of the greatest challenges for particle physics.

• If the dark matter is made of a weakly interacting particle at the

electroweak scale, it could be produced at the LHC.

• DM particles leave no trace in the detector.

→ can only be inferred from the 6ET.

• Look for DM particles recoiling off visible objects.

q

q̄
Z

′
h

A

χ

χ̄
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Dark matter mediator searches

• Search for resonances that can

decay to two jets.

• Model-independent bump-hunter

algorithm used.

• Also model-dependent limits on DM,

if assuming the same resonance also

decays to DM particles.
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... at the HL-LHC and future colliders

Expected 2σ sensitivity to axial-

vector simplified models at future

colliders for a DM mass of 1 GeV.

Comparison of the reach of DD, ID

and future hadron colliders for

the benchmark model of a scalar

mediator decaying into Dirac DM.
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Axion-like particles

• Light-by-light scattering in Pb-Pb collisions.

• Two photons and no more activity in detector.

• Diphoton invariant mass distribution is used to set limits on the

production of axion-like particles.
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What have we learned?

• The best way to go to energy frontier is to start with an e+e− Higgs

factory.

• CLIC and FCC-ee are competing with the ILC and CEPC.

• Some important measurements, like Higgs self-couplings and probing

BSM physics at high eneries, clearly benefit from a hadron collider.

• Contenders are SppC and FCC-hh.
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(Selected) recommendations

https://cds.cern.ch/record/2721370

• Successful completion of the high-luminosity upgrade of the machine

and detectors plus continued innovation in experimental techniques.

• Support long baseline experiments in Japan and the United States.

• Ramp up R&D effort focused on advanced accelerator technologies,

in particular that for high-field superconducting magnets, including

high-temperature superconductors.
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(Selected) recommendations

• Investigate the technical and financial feasibility of a future hadron

collider at CERN with a centre-of-mass energy of at least 100 TeV and

with an electron-positron Higgs and electroweak factory as a possible

first stage. Such a feasibility study of the colliders and related

infrastructure should be established as a global endeavour and be

completed on the timescale of the next Strategy update.

• The timely realisation of the electron-positron International Linear

Collider (ILC) in Japan would be compatible with this strategy and, in

that case, the European particle physics community would wish to

collaborate.
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Stop eternal growth?

• RF cavities can reach acceleration gradients of 10 MeV/m.

• Plasma-wakefield acceleration could reach several hundred GeV/m.

• Both laser-driven and particle-driven accelerators exist.

• Easier to accelerate electrons than positrons (since positrons attract

the plasma electrons).

• Electron record: 42 GeV in 85 cm.

• Positron record: 5 GeV in 1 meter.
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Summary and Outlook

• Run 2 of the LHC was a big success. Stable operations with

instantaneous luminosity well beyond design value.

• Paved the way for a vast physics program to test the Standard Model.

- accurate measurement of known processes.

- direct searches for BSM physics in a variety of final states.

• So far remarkable agreement with the Standard Model predictions.

• HL-LHC will greatly improve precision in many measurements and also

establish di-Higgs production.

• According to the European Particle Physics Strategy Update the

community should (i) fully exploit HL-LHC; (ii) investigate the technical

and financial feasibility of FCC-ee + FCC-hh at CERN; (iii) prioritize R&D

in accelerator technology.

• Will seriously challenge the SM!
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Final word

“The discovery of the Higgs particle – especially with nothing else accompanying it so far – is

unlike anything we have seen in any state of nature, and is profoundly “new physics” in this

sense....theoretical attempts to compute the vacuum energy and the scale of the Higgs

mass pose gigantic, and perhaps interrelated, theoretical challenges. While we continue to

scratch our heads as theorists, the most important path forward for experimentalists is

completely clear: measure the hell out of these crazy phenomena!”
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THANK YOU!

Thank you!

And have a wonderful
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BACKUP

Backup
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The starting lineup

• ILC (Japan)

- Linear collider e+e− with high-gradient superconducting acceleration.

- Ultimately: 0.5-1 TeV.

- Reduce cost by starting at 250 GeV (Higgs factory)

• CLIC (CERN)

- Linear e+e− collider with high gradient normal-conducting

acceleration.

- Ultimately: multi-TeV (3) collisions.

- Staged for physics and funding.

• FCC-ee & FCC-hh (CERN).

- 100 km circular collider with 16 T magnets.

- Use tunnel first for e+e− collider.
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The starting lineup

- Technology for e+e− rather standard.

- Magnet development for FCC-hh challenging.

• CEPC & SppC (China)

- Similar to FCC-ee/hh but more conservative luminosity estimates.
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Higgs self-coupling at future colliders
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The data

• Number of pp collisions per second is called luminosity.

• The LHC performance in Run 2 was amazing, with lots of luminosity

delivered to the experiments (Np =
∫

Ldt · σp).

• Size of Run 2 dataset is 139 fb−1 (σh ≈ 55 pb−1 → 8 · 106 Higgs bosons).

• Instantaneous luminosity well above design value of 1·1034 cm2/s.
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• But a very challenging experimental environment.
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Operational challenges

• Large instantaneous luminosity means

many (up to 70) simultaneous pp collisions

in the same bunch crossing.

• Leads to:

– contamination of particles from

additional (pileup) interactions to

measurement of hard-scatter

process.

– degraded detector performance

(e.g. from large occupancy).

– increased pressure on trigger and

data acquisition systems.

• Lots of sucessful work done to retain

good detector performance.
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Top and Higgs masses
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Observation of ttH production

• ATLAS recently announced evidence for

ttH production. 4.2 σ significance.

• Higgs couples to fermions proportionally

to their masses. Important to verify!

• Top quark is the heaviest particle in the SM

→ top-Higgs coupling expected to be large.

• Cross section sensitive to BSM physics

(e.g. exotic top partners).
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Planned ATLAS upgrades for HL-LHC

• Completely new

inner tracking

system, extend-

ing

to |η| < 4.

• Upgrades to

trigger and

computing.

• Possibly new

forward timing

detector.
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People in - physics out

• 3000 scientific authors (1200 PhD students)

from 38 countries.

• To date 885 submitted papers (853 published)

and 988 conference notes.
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• Even split searches and measurements.

• Will highlight small fraction of these results today.

SARA STRANDBERG 48 QUANTUM CONNECTIONS, 22/6 2021



Standard Model measurements
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Higgs as portal to new physics

• Search for models where the Higgs boson

mediates the connections to a dark sector.

• E.g. new BSM dark vector boson (Zd)

or a new light pseudoscalar boson (a),

H → Z(d)Zd → 4ℓ, H → aa → 4ℓ

• Search for invisible Higgs decays

(to e.g. dark matter).

• Most recent search in ZH → ℓℓ+ 6ET.

• Best constraint when combining

with VBF H → jj + 6ET.
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Beyond SM searches
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ADD non-resonant γγ 2 γ − − 36.7 n = 3 HLZ NLO 1707.041478.6 TeVMS

ADD QBH − 2 j − 37.0 n = 6 1703.091278.9 TeVMth

ADD BH high
∑
pT ≥ 1 e, µ ≥ 2 j − 3.2 n = 6, MD = 3 TeV, rot BH 1606.022658.2 TeVMth

ADD BH multijet − ≥ 3 j − 3.6 n = 6, MD = 3 TeV, rot BH 1512.025869.55 TeVMth

RS1 GKK → γγ 2 γ − − 36.7 k/MPl = 0.1 1707.041474.1 TeVGKK mass

Bulk RS GKK →WW /ZZ multi-channel 36.1 k/MPl = 1.0 1808.023802.3 TeVGKK mass

Bulk RS GKK →WW → qqqq 0 e, µ 2 J − 139 k/MPl = 1.0 ATLAS-CONF-2019-0031.6 TeVGKK mass

Bulk RS gKK → tt 1 e, µ ≥ 1 b, ≥ 1J/2j Yes 36.1 Γ/m = 15% 1804.108233.8 TeVgKK mass

2UED / RPP 1 e, µ ≥ 2 b, ≥ 3 j Yes 36.1 Tier (1,1), B(A(1,1) → tt) = 1 1803.096781.8 TeVKK mass

SSM Z ′ → ℓℓ 2 e, µ − − 139 1903.062485.1 TeVZ′ mass

SSM Z ′ → ττ 2 τ − − 36.1 1709.072422.42 TeVZ′ mass

Leptophobic Z ′ → bb − 2 b − 36.1 1805.092992.1 TeVZ′ mass

Leptophobic Z ′ → tt 1 e, µ ≥ 1 b, ≥ 1J/2j Yes 36.1 Γ/m = 1% 1804.108233.0 TeVZ′ mass

SSM W ′ → ℓν 1 e, µ − Yes 139 CERN-EP-2019-1006.0 TeVW′ mass

SSM W ′ → τν 1 τ − Yes 36.1 1801.069923.7 TeVW′ mass

HVT V ′ →WZ → qqqq model B 0 e, µ 2 J − 139 gV = 3 ATLAS-CONF-2019-0033.6 TeVV′ mass

HVT V ′ →WH/ZH model B multi-channel 36.1 gV = 3 1712.065182.93 TeVV′ mass

LRSM WR → tb multi-channel 36.1 1807.104733.25 TeVWR mass

LRSM WR → µNR 2 µ 1 J − 80 m(NR) = 0.5 TeV, gL = gR 1904.126795.0 TeVWR mass

CI qqqq − 2 j − 37.0 η−
LL 1703.0912721.8 TeVΛ

CI ℓℓqq 2 e, µ − − 36.1 η−
LL 1707.0242440.0 TeVΛ

CI tttt ≥1 e,µ ≥1 b, ≥1 j Yes 36.1 |C4t | = 4π 1811.023052.57 TeVΛ

Axial-vector mediator (Dirac DM) 0 e, µ 1 − 4 j Yes 36.1 gq=0.25, gχ=1.0, m(χ) = 1 GeV 1711.033011.55 TeVmmed

Colored scalar mediator (Dirac DM) 0 e, µ 1 − 4 j Yes 36.1 g=1.0, m(χ) = 1 GeV 1711.033011.67 TeVmmed

VVχχ EFT (Dirac DM) 0 e, µ 1 J, ≤ 1 j Yes 3.2 m(χ) < 150 GeV 1608.02372700 GeVM∗

Scalar reson. φ→ tχ (Dirac DM) 0-1 e, µ 1 b, 0-1 J Yes 36.1 y = 0.4, λ = 0.2, m(χ) = 10 GeV 1812.097433.4 TeVmφ

Scalar LQ 1st gen 1,2 e ≥ 2 j Yes 36.1 β = 1 1902.003771.4 TeVLQ mass

Scalar LQ 2nd gen 1,2 µ ≥ 2 j Yes 36.1 β = 1 1902.003771.56 TeVLQ mass

Scalar LQ 3rd gen 2 τ 2 b − 36.1 B(LQu
3 → bτ) = 1 1902.081031.03 TeVLQu

3
mass

Scalar LQ 3rd gen 0-1 e, µ 2 b Yes 36.1 B(LQd
3 → tτ) = 0 1902.08103970 GeVLQd

3
mass

VLQ TT → Ht/Zt/Wb + X multi-channel 36.1 SU(2) doublet 1808.023431.37 TeVT mass

VLQ BB →Wt/Zb + X multi-channel 36.1 SU(2) doublet 1808.023431.34 TeVB mass

VLQ T5/3T5/3 |T5/3 →Wt + X 2(SS)/≥3 e,µ ≥1 b, ≥1 j Yes 36.1 B(T5/3 →Wt)= 1, c(T5/3Wt)= 1 1807.118831.64 TeVT5/3 mass

VLQ Y →Wb + X 1 e, µ ≥ 1 b, ≥ 1j Yes 36.1 B(Y →Wb)= 1, cR (Wb)= 1 1812.073431.85 TeVY mass

VLQ B → Hb + X 0 e,µ, 2 γ ≥ 1 b, ≥ 1j Yes 79.8 κB= 0.5 ATLAS-CONF-2018-0241.21 TeVB mass

VLQ QQ →WqWq 1 e, µ ≥ 4 j Yes 20.3 1509.04261690 GeVQ mass

Excited quark q∗ → qg − 2 j − 139 only u∗ and d∗, Λ = m(q∗) ATLAS-CONF-2019-0076.7 TeVq∗ mass

Excited quark q∗ → qγ 1 γ 1 j − 36.7 only u∗ and d∗, Λ = m(q∗) 1709.104405.3 TeVq∗ mass

Excited quark b∗ → bg − 1 b, 1 j − 36.1 1805.092992.6 TeVb∗ mass

Excited lepton ℓ∗ 3 e, µ − − 20.3 Λ = 3.0 TeV 1411.29213.0 TeVℓ∗ mass

Excited lepton ν∗ 3 e,µ, τ − − 20.3 Λ = 1.6 TeV 1411.29211.6 TeVν∗ mass

Type III Seesaw 1 e, µ ≥ 2 j Yes 79.8 ATLAS-CONF-2018-020560 GeVN0 mass

LRSM Majorana ν 2 µ 2 j − 36.1 m(WR ) = 4.1 TeV, gL = gR 1809.111053.2 TeVNR mass

Higgs triplet H±± → ℓℓ 2,3,4 e,µ (SS) − − 36.1 DY production 1710.09748870 GeVH±± mass

Higgs triplet H±± → ℓτ 3 e,µ, τ − − 20.3 DY production, B(H±±
L
→ ℓτ) = 1 1411.2921400 GeVH±± mass

Multi-charged particles − − − 36.1 DY production, |q| = 5e 1812.036731.22 TeVmulti-charged particle mass

Magnetic monopoles − − − 34.4 DY production, |g | = 1gD , spin 1/2 1905.101302.37 TeVmonopole mass

Mass scale [TeV]10−1 1 10
√
s = 8 TeV

√
s = 13 TeV

partial data

√
s = 13 TeV

full data

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits
Status: May 2019

ATLAS Preliminary∫
L dt = (3.2 – 139) fb−1

√
s = 8, 13 TeV

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).
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Heavy resonances

• Search for resonances in many other final states.

• Limits on the mass of these resonances is in many cases several TeV,

e.g. Z ′ mass (Z ′ → ℓℓ) > 4.5 TeV, W ′ mass (W ′ → ℓν) > 5.1 TeV.
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Electroweakinos and sleptons

• Limits weaker than for strongly produced SUSY

particles since cross sections are lower.

• Final state generally contains several leptons,

and 6ET.
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RPV SUSY and long-lived particles

• R-parity conservation is required for SUSY to

provide a dark matter candidate.

• If lifted, the lightest SUSY particle will decay

to SM particles → much less 6ET.

• SUSY particles can have long lifetimes e.g. in

case of degenerate mass spectra.

• Signature strongly depend on where in the

detector the decay happens.
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Beyond SM searches

• Increase mass reach for resonant states

• e.g. Z ′ → tt̄ reach increases from 2 TeV (2015) to 4 TeV (HL-LHC).

• Large dataset increase sensitivity to rare processes

• EWK SUSY partners reach extends from few hundreds of GeV to above

1 TeV in standard simplified models.
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Latest W, t, and H mass measurements

• Impressive mW measurement using

low pile-up data at
√
s =7 TeV.

• Huge amount of work in improved

calibration of detector response.

• Percent-level precision on mt and mH .

mW = 80370 ± 19 MeV (0.02%)

EPJC 78 (2018) 110

mt = 172.69 ± 0.48 GeV (0.3%)

EPJC 79 (2019) 290

mH = 124.97 ± 0.24 GeV (0.2%)

PLB 784 (2018) 345
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Evidence for triboson production

• A W boson is produced in every 1/106 pp collisions.

• In every 1/1011 pp collisions three W or Z bosons are produced.

• Recently observed WVV production with 4σ significance.

• Sensitivity to triple and quartic gauge couplings.
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Top quark production and decay

• Heaviest fundamental particle known

→ strong indirect probe for BSM physics.

• Cross sections and BRs can be altered

by new particles in production or decay.

Top production probability vs collision energy Limits on anomalous top decays
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Searches beyond colliders

• Light (keV-GeV) DM allowed if neutral under all SM gauge interactions.

• Non-collider program with intense beams needed.

Reach for searches with dark photon mediator decaying to light DM particles

(ǫ is the mixing between the photon mediator and the SM photon, αD is the

mediator-DM coupling, mχ is the DM mass and mA′ is the mediator mass).
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