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A brief history of time crystals

* A brief look back at the origins of the idea.

* As far as | know, the term “time crystal”
originated in the 60’s with Dr. Who.

* The term was first used scientifically in
the 70’s by biologist Arthur Winfree to
describe self-organizing oscillations and

rhythms in biological systems.

— Circadian rhythms, cardiac arrhythmias

— Nonequilibrium, driven systems




A brief history of time crystals

In physics, the concept of a time crystal was
born in 2010. Frank had been thinking about
spontaneous synchronization of oscillators. |
came to visit him in Cambridge and we spent a
long June afternoon trying to sharpen questions
and come up with examples. The key question
became: “Can time translation symmetry be

broken spontaneously?”

In other words, can the ground state of a

system (classical or qguantum) be time-

dependent?
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Quantum Time Crystals
Frank Wilczek

Center for Theoretical Physics Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 29 March 2012; published 15 October 2012)
Some subtleties and apparent difficulties associated with the notion of spontaneous breaking of time-
translation symmetry in quantum mechanics are identified and resolved. A model exhibiting that

phenomenon is displayed. The possibility and significance of breaking of imaginary time-translation
symmetry is discussed.
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Classical Time Crystals
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We consider the possibility that classical dynamical systems display motion in their lowest-energy state,
forming a time analogue of crystalline spatial order. Challenges facing that idea are identified and
overcome. We display arbitrary orbits of an angular variable as lowest-energy trajectories for nonsingular
Lagrangian systems. Dynamics within orbits of broken symmetry provide a natural arena for formation of
time crystals. We exhibit models of that kind, including a model with traveling density waves.
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We consider the possibility that classical dynamical systems display motion in their lowest-energy state,
forming a time analogue of crystalline spatial order. Challenges facing that idea are identified and
overcome. We display arbitrary orbits of an angular variable as lowest-energy trajectories for nonsingular
Lagrangian systems. Dynamics within orbits of broken symmetry provide a natural arena for formation of
time crystals. We exhibit models of that kind, including a model with traveling density waves.
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Branched Quantization

Alfred Shapere' and Frank Wilczek?

'Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology,
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We propose a method for quantization of Lagrangians for which the Hamiltonian, as a function of
momentum, is a branched function, possibly with cusps. Appropriate boundary conditions, which we
identify, ensure unitary time evolution. In special cases a dual (canonical) transformation maps the
problem into a problem of quantum mechanics on singular spaces, which we also develop. Several
possible applications are indicated.
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Models of Topology Change

Alfred D. Shapere!, Frank Wilczek?3, and Zhaoxi Xiong?
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2Center for Theoretical Physics, °Department of Physics,
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We show how changes in unitarity-preserving boundary conditions allow continuous interpolation
among the Hilbert spaces of quantum mechanics on topologically distinct manifolds. We present
several examples, including a computation of entanglement entropy production. We discuss approx-
imate realization of boundary conditions through appropriate interactions, thus suggesting a route
to possible experimental realization. We give a theoretical application to quantization of singular
Hamiltonians, and give tangible form to the “many worlds” interpretation of wave functions.
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Regularizations of time-crystal dynamics
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Technology, Cambridge, MA 02139; “Tsung-Dao Lee Institute, Shanghai 200240, China; YWilczek Quantum Center, Department of Physics and Astronomy,
Shanghai Jiao Tong University, Shanghai 200240, China; ¢Department of Physics, Stockholm University, Stockholm SE-106 91 Sweden; and fDepartment of

Physics and Origins Project, Arizona State University, Tempe AZ 25287

Contributed by Frank Wilczek, July 19, 2019 (sent for review May 21, 2019; reviewed by Robert V. Kohn and Krzysztof Sacha)

We demonstrate that nonconvex Lagrangians, as contemplated
in the theory of time crystals, can arise in the effective descrip-
tion of conventional, physically realizable systems. Such embed-
dings resolve dynamical singularities which arise in the reduced
description. Microstructure featuring intervals of fixed velocity
interrupted by quick resets—"Sisyphus dynamics”—is a generic
consequence. In quantum mechanics, this microstructure can be
blurred, leaving entirely regular behavior.

time crystal | microstructure | Lagrangian
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rials (18, 19). Our treatment of the time-crystal problem suggests
opportunities in those areas, as we shall discuss further below.

We can gain a more general perspective by considering

not only the (problematic) ground state, but solutions of the
equations of motion more generally. In the equation of motion

(i = 1)i=—V"(y), [4]

we see that the effective mass, y2 — 1, can vanish and change sign.
Negative effective mass is unusual, though perhaps not problem-
atic in itself, at the level of differential equations. But vanish-
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How to realize a mechanical time crystal?

* Planar particle in a nonuniform electromagnetic field

L = &%+ f(z)y — g(z) — V(y)

— magneticfield B: = f'(x)
— electric potential ® = g(x) + V(y)

— B, constant in y-direction

5|
* Equations of motion a/

pi= fl(a)i—g'(x) | o—

zf'(z) = —V'(y).

* Inlimit  — 0, get

§=lg



How to realize a mechanical time crystal?
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Choose  f(x) = 2u3—ux, g(x) = 1t —

1
3 4

Then y=g'/f gives Yy =
Plug into L to get

1 1
= gt =
127 79

— our favorite Lagrangian.
Turn u back on: a regulator, important near turning

pOintS... w
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v —V(y).




Other regularizations

Near turning points, the effective Lagrangian breaks down and
addition info is required.

If instead we add a term uj? as regulator to suppress sudden
acceleration, we get very different behavior:

Which regulator is preferred depends on microscopic
properties of system, determines very different macroscopic
behavior.



Cold atoms

 Nonlinear Schrodinger equation (Gross-Pitaevskii)

1 2
- quxx +g| V"W + V(x)W = uW

g > 0: repulsive

* With periodic (repulsive) KP potential S
o | .
V) =Ve 3 80— j) >
= >
has swallowtail-shaped bands 0<__>
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— But these swallowtails are “upside-down”.... [Seaman, Carr, Holland 2005]



Cold atoms

For an attractive potential. the swallowtail turns right-side up:
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Swallowtail appears in third band.

Along lower branch of swallowtail, atoms clump into solitons. “Soliton
train” states — have been observed in cold atom experiments:

—

it s [Strecker et al 2002]

Do these deserve to be called time crystals?



Cosmology

Lagrangians similar to ours have been proposed as a source
of inflationary vacuum energy:

— k-inflation [Armendariz-Picon, Damour, Mukhanov 99]

— ghost condensation [Arkani-Hamed, Cheng, Luty, Mukohyama 04]

Funny kinetic terms for scalar field: “wrong” sign quadratic term.
— non-equilibrium, external t-dependent background

— typically a potential for ¢ is not considered,

* but could be added to produce interesting cosmological bounce.

A similar mechanism appears in Starobinsky’s original model...



Inflation

Starobinsky’s inflation mechanism also involved a time-
crystal-like Lagrangian. Highly constrained; consistent with
PLANCK data (but not BICEP2)

A model of inflation involving only gravity
L=y=g(R+BR*+ R+ —2A)

Consider dynamics of scale factor

Juv = a’ (w)nw/

Substitute in L ...



Inflation

. Substitute Jur = @*(T)Nu into

L=+—g (R+6R2+7R3+---—2A)
— For flat homogeneous, isotropic metric get (in —+++ signature)

-\ 4
L = —6a*+ 1085 (Z) + ..o — 2Aa*

— First coefficient is negative.

« For positive f get time crystals

— Exponential inflation

— Cosmological term — a natural bounce scenario...

« Plausible that the Universe itself is a time crystal!



Who's afraid of no-go theorems?

* Driven, nonequilibrium systems, etc., but

* Even in zero-temp, closed systems can have time-
crystal-like behavior
— Effective Lagrangians (higher derivatives)
— Metastable vacua (cold atoms)
— Weird dynamical systems, e.g. with multivalued/singular H
— Spatially localized (Q-balls...)



