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A brief history of time crystals

• A brief look back at the origins of the idea. 

• As far as I know, the term “time crystal” 
originated in the 60’s with Dr. Who. 

• The term was first used scientifically in 
the 70’s by biologist Arthur Winfree to 

describe self-organizing oscillations and 
rhythms in biological systems.
– Circadian rhythms, cardiac arrhythmias

– Nonequilibrium, driven systems



A brief history of time crystals
• In physics, the concept of a time crystal was 

born in 2010.  Frank had been thinking about 
spontaneous synchronization of oscillators.  I 

came to visit him in Cambridge and we spent a 
long June afternoon trying to sharpen questions 
and come up with examples.   The key question 

became: “Can time translation symmetry be 
broken spontaneously?” 

• In other words, can the ground state of a 
system (classical or quantum) be time-
dependent? 
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How to realize a mechanical time crystal? 

• Planar particle in a nonuniform electromagnetic field

– magnetic field
– electric potential
– Bz constant in y-direction

• Equations of motion

• In limit               , get 
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ȧ

a

◆4

+ · · ·� 2⇤a4

⌫ / vcp
�E

� = g(x) + V (y)

5



How to realize a mechanical time crystal?

• Choose

• Then                         gives
• Plug into L to get

– our favorite Lagrangian.
• Turn µ back on:  a regulator, important near turning 

points…



Other regularizations
• Near turning points, the effective Lagrangian breaks down and 

addition info is required. 
• If instead we add a term 𝜇𝑦̈! as regulator to suppress sudden 

acceleration, we get very different behavior:

• Which regulator is preferred depends on microscopic 
properties of system, determines very different macroscopic 
behavior.



Cold atoms

• Nonlinear Schrodinger equation  (Gross-Pitaevskii)

g > 0 : repulsive

• With periodic (repulsive) KP potential

has swallowtail–shaped bands

– But these swallowtails are “upside-down”…. [Seaman, Carr, Holland 2005]

the potential effectively becomes a Kronig-Penney lattice.
However, we show that the Kronig-Penney potential serves
as a good model even for experiments with a single Fourier
component.
The article is organized as follows. In Sec. II, the Bloch-

wave solutions to the stationary NLS with a Kronig-Penney
potential are presented. The energy bands are detailed for
repulsive and attractive condensates in both the weakly and
strongly interacting regimes in Sec. III. In Sec. IV, the
changes in the density profile of the condensate are examined
as the quasimomentum changes. The stable and unstable re-
gimes of the bands are studied in detail for both repulsive
and attractive condensates in Sec. V. Finally, concluding re-
marks are made in Sec. VI.

II. NONLINEAR SCHRÖDINGER EQUATION AND
BLOCH WAVES

We consider the mean-field model of a quasi-one-
dimensional !quasi-1D" BEC in the presence of a Kronig-
Penney potential,

V!x" = V0 #
j=−!

+!

"!x − j" , !1"

where length has been rescaled by the lattice spacing d and
V0 is the strength of the potential. When the transverse di-
mensions of the BEC are on the order of its healing length
and its longitudinal dimension is much longer than its trans-
verse ones, the 1D NLS $50,51% which describes the station-
ary states of the mean field of a BEC is given by

−
1
2

#xx + g&#&2# + V!x"# = $# . !2"

Here $ is the eigenvalue, g characterizes the short-range
pairwise interaction, and V!x" is an external potential $52%. In
the case where the harmonic oscillator length approaches the
s-wave scattering length as%g, the 1D NLS no longer mod-
els the system and a one-dimensional field theory with the
appropriate effective coupling constant must be considered
instead $52%. Since as is on the scale of hundreds of ang-
stroms for typical BEC’s, this regime is not relevant to the
present study.
In Eqs. !1" and !2", the length is scaled according to the

lattice spacing d, and the energy has been rescaled by
&2 / !2E0", where

E0 '
'2&2

2md2
!3"

is the kinetic energy of a particle with a wave vector equal to
that at the boundary of the first Brillouin zone, where m is
the atomic mass. The variables in Eq. !2" are defined by

x =
1
d
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where the primed variables contain the physical units of the
system. The renormalized 1D coupling is g'as(md /',
where a harmonic oscillator confinement in the transverse
directions has been assumed with frequency (. Both attrac-
tive and repulsive atomic interactions, i.e., g)0 and g*0
shall be considered. The wave function or order parameter
#!x , t" has the physical meaning

#!x,t" = (+!x,t" exp$− i$t + i,!x,t"% , !8"

where +!x , t" is the line density and the local superfluid ve-
locity is given by v!x , t"=!,!x , t" /!x.
In addition to the NLS, Eq. !2", the normalization of the

wave function is given by

n = )
0

1

+!x"dx , !9"

where n is the number of atoms per lattice site. The boundary
conditions induced by the Kronig-Penney potential cause a
discontinuity in the derivative of the wave function across
each " function,

lim
-→0

$!x+!j + -" − !x+!j − -"% = 4V0+!0" , !10"

where j is an integer.
A brief review is now given of the general solution to Eq.

!2" with no external potential. We have previously presented
a proof that this represents the full set of solutions for a
constant potential $18%. Therefore, by using this complete set
of stationary state solutions to the constant potential case, we
can calculate the full set of Bloch solutions for a lattice.
The density + and the phase ,, which solve Eq. !2" for a

constant potential, are

+!x" = B +
k2b2

g
sn2!bx + x0,k" , !11"

,!x" = .)
0

x 1
+!x"

dx , !12"

where sn is a Jacobi elliptic function $53,54%. The density
offset B, the horizontal scaling b, the translational offset x0,
and the elliptic parameter k are free variables. The Jacobi
elliptic functions are generalized periodic functions charac-
terized by an additional parameter k! $0,1%. In the limit that
k→0 and k→1 the Jacobi elliptic functions become circular
and hyperbolic trigonometric functions, respectively. The pe-
riod of the square of the Jacobi elliptic functions is given by
K!k"-$& ,!", where 2K!k" is a complete elliptic integral of
the first kind $53,54%.
Substituting Eqs. !11" and !12" into Eqs. !8" and !2", with

V!x"=0, one finds that the eigenvalue $ and phase prefactor
. are given by
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Cold atoms
• For an attractive potential, the swallowtail turns right-side up:

• Swallowtail appears in third band.   
• Along lower branch of swallowtail, atoms clump into solitons. “Soliton

train” states – have been observed in cold atom experiments:

• Do these deserve to be called time crystals?  

[Strecker et al 2002]



Cosmology

• Lagrangians similar to ours have been proposed as a source 
of inflationary vacuum energy:  
– k-inflation [Armendariz-Picon, Damour, Mukhanov 99]

– ghost condensation [Arkani-Hamed, Cheng, Luty, Mukohyama 04]

• Funny kinetic terms for scalar field:  “wrong” sign quadratic term. 

– non-equilibrium, external t-dependent background 
– typically a potential for f is not considered, 

• but could be added to produce interesting cosmological bounce.

• A similar mechanism appears in Starobinsky’s original model…



Inflation

• Starobinsky’s inflation mechanism also involved a time-
crystal-like Lagrangian.  Highly constrained;  consistent with 
PLANCK data (but not BICEP2)

• A model of inflation involving only gravity

• Consider dynamics of scale factor

• Substitute in       …
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L = �6ȧ2 + 108�
✓
ȧ
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Inflation
• Substitute                               into  

– For flat homogeneous, isotropic metric get (in –+++ signature)

– First coefficient is negative.  

• For positive b get time crystals 
– Exponential inflation

– Cosmological term → a natural bounce scenario…

• Plausible that the Universe itself is a time crystal! 

u = ⇧⇠

V = �
0(x� a)

E2n = ((2n� 1)(@0�)
2 + (r�)2)((@0�)

2 � (r�)2)n�1 (4)

L =
p
�g

✓
1

�16⇡G
R+ ↵R

2 + · · ·
◆

gµ⌫ = a
2(x)⌘µ⌫

L =
p
�g

⇣
�R+ ↵R

2 + �R
3 + · · ·

⌘

L = (@a)2 + ↵(@a)4 + �(@a)6 + · · ·

References

5

E =
1

2

⇣
(@0�)

2 + (r�)2
⌘
+ 3�

⇣
(@0�)

2 + (r�)2
⌘ ⇣

(@0�)
2 � (r�)2

⌘

u = ⇧⇠

V = �
0(x� a)

E2n = ((2n� 1)(@0�)
2 + (r�)2)((@0�)

2 � (r�)2)n�1 (4)

L =
p
�g

✓
1

2
(R� 2⇤) + ↵R

2 + · · ·
◆

gµ⌫ = a
2(x)⌘µ⌫

L =
p
�g

⇣
R+ �R

2 + �R
3 + · · ·� 2⇤

⌘

L = +6(@a)2 + 108� a
�4(@a)4 + · · ·
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Who’s afraid of no-go theorems? 

• Driven, nonequilibrium systems, etc., but 
• Even in zero-temp, closed systems can have time-

crystal-like behavior
– Effective Lagrangians (higher derivatives)
– Metastable vacua (cold atoms)  
– Weird dynamical systems, e.g. with multivalued/singular H
– Spatially localized (Q-balls…)
– ….. 


