A giant artificial atom: Nonexponential decay

A driven resonator in the quantum regime: Period multiplication

G. Andersson et al., Nature Physics 15, 1123 (2019)

I.-M. Svensson *et al.* Phys. Rev. B **96**, 174503 (2017) I.-M. Svensson *et al.* Appl. Phys. Lett. **113**, 022602 (2018)

Per Delsing

A giant artificial atom: Nonexponential decay

Outline

- Atoms coupling to sound
- \succ The size of an atom

Small, Large, or Giant atoms

- > Experiments on a giant atom
 - Atom emission
 - Nonexponential decay

SAWtrain

Conclusions

Vetenskapsrådet

Knut and Alice Wallenberg

Foundation

G. Andersson et al., Nature Physics 15, 1123 (2019)

Per Delsing

Qubit coupling to propagating surface acoustic waves

 \mathcal{M}

Nonlinear reflection Qubit decay by emitting phonons

M. V. Gustafsson et al. Nature Physics **8**, 338 (2012) M. V. Gustafsson et al. *Science* **346**, 207 (2014)

MC2

Per Delsing

Coupling qubits to mechanical resonators

UChicago Qubit+SAW resonator

K. Satzinger et al. Nature 563 (2018)

Y. Chu *et al*. Science **358**, 199–202 (2017) Y. Chu *et al*. Nature **563**, 666-670 (2018)

Phonon Fock states

Per Delsing

SQUID AIN (piezoelectric) phonon mode $\lambda \sim 1.7 \,\mu\text{m}$ Al₂O₃ h = 420 μm qubit electric field

Yale: Qubit+Bulk acoustic wave resonator

Surface Acoustic Waves (SAW)

SAW exist at different length scales, from earthquakes to filters in cell phones Exited either mechanically or electrically using the piezoelectric effect Confined to the surface within approximately λ GHz frequencies

Rayleigh, Proc. London Math. Soc., 1885 Animation by L. Braile

Per Delsing

Generating and detecting SAW with an IDT

- Piezoelectric substrate (GaAs, quartz, LiNbO₃...)
- Propagation speed: $v \approx 2900$ m/s
- $f \approx 2.3 \text{ GHz}, \lambda \approx 1.25 \,\mu\text{m}$
- Generator and receiver:

The Interdigital Transducer (IDT)

Datta, Surface Acoustic Wave devices, 1986

Photon to phonon converter

 $b^{\dagger}a$

anihilates a photon and creates a phonon

 $a^{\dagger}b$

anihilates a phonon and creates a photon

Morgan, Surface acoustic wave filters, 2007

Per Delsing

Superconducting qubits

- Quantized electrical circuit
- Harmonic oscillator is not an atom
- Nonlinearity makes the circuit anharmonic and addressable
- Small JJ is a good nonlinear inductor

Koch *et al*. PRA (2007)

MC2

Per Delsing

The transmon qubit as an artificial atom

A capacitively shunted Cooper-pair box

Atom frequency is flux tunable

 $f_{01} \approx 4-8 \text{ GHz}$ Anharmonicity $\approx E_{\text{C}} \approx 0.1-0.5 \text{ GHz}$

$$H = 4E_C (n - n_g)^2 - E_J \left| \cos\left(\pi \frac{\Phi}{\Phi_0}\right) \right| \cos\theta$$
$$E_C = \frac{e^2}{2C}, n = \frac{Q}{2e}, n_g = \frac{C_g V_g}{2e}$$

Jens Koch et al. PRA (2007)

Per Delsing

A large SAW-coupled transmon qubit

Per Delsing

Q

The size of an atom

Atoms are normally small compared to the wavelength, $d << \lambda$

Atomic physics $\lambda \sim 10^{-6} \text{ m}$ $d \sim 10^{-10} \text{ m}$

Cavity QED $\lambda \sim 10^{-3} \text{ m}$ $d \sim 10^{-7} \text{ m}$

Circuit QED $\lambda \sim 10^{-2} \text{ m}$ $d \sim 10^{-4} \text{ m}$

Per Delsing

SAW coupled atoms are larger than the wavelength of SAWs

Atoms coupled to sound are big

Normally, the size of an atom is much smaller than the wavelength of the bosonic field that the atom interacts with. $d << \lambda$

Large atoms

Atom larger than the wavelength

 $d = N_p \lambda > \lambda$ $N_p > 1$

Dipolar approximation breaks down

This allows to put an "antenna" on the atom

Coupling can be tailored both in space and frequency

Giant atoms

Atom is long compared to the distance that the wave propagates during one lifetime

$$d = N_p \lambda > v \tau$$

$$V_p > \frac{1}{\sqrt{\pi K^2}}$$

a stronger requirement than $N_p > 1$ since K^2 is small

Emitted phonons can be reabsorbed. Non-Markovian behavior, nonexponential decay

MC2

Per Delsing

A.F. Kockum, Proceedings of MQC 2019, pp.125 (2017)P. Delsing and A. Cleland, J. Phys. D: Appl. Phys. 52 353001 (2019)

Large atom in circuit QED setting without sound: B. Kannan et al, Nature **583**, 775 (2020)

Per Delsing

L Guo, et al., Physical Review A 95, 053821 (2017)

MC2

Per Delsing

 \mathbf{N}

Type B samples

Measured samples

Qubit, IDT and resonators made from Aluminum on GaAs

Type A samples

Per Delsing

Sample parameters

M

Acoustic transmission

Per Delsing

Acoustic transmission is probed at low power $P < \hbar \omega \Gamma$

A small atom would reflect on resonance, resulting in a Lorentzian line shape

We observe interference fringes in the acoustic transmission with a period of \sim 5MHz agreeing well with 1/190 ns.

Limited bandwidth due to IDTs, 14 MHz

M

SAW emission from the giant atom

SAW emission probed by measuring the reflection from the gate (larger bandwidth)

Reflectance from sample A3

Maximal emission (minimal reflection) when $\omega_0 = \omega_d - \gamma \sin \omega_d T$

 $T = L/v_{\rm SAW} \approx 190 \,\mathrm{ns}$

Quantum Technology Laboratory

Per Delsing

Experiment

Reflectance depending on atom size

Theory

Sample A1, L = 55 μ m, T = 19 ns - 1

ample A2, L = 125
$$\mu$$
m, T = 46 ns

Sample A3, L = 550 μ m, T = 190 ns

Measuring the giant atom via the mw-resonator

A superconducting cavity is dispersively coupled to the atom

 $f_{01} = 2.29 \text{ GHz}$ $f_{cavity} = 2.77 \text{ GHz}$ $\Delta = 480 \text{ MHz}$ g = 15 MHz

Dispersive regime

$$|\Delta| = |\omega_{01} - \omega_r| \gg g$$
$$\omega'_r = \omega_r + \frac{g^2}{\Delta}\sigma_z$$

Quantum Technology Laboratory

Per Delsing

Spectroscopy of the giant atom

Spectrum of sample B1

Two tone spectroscopy

- Fixed readout at f_{cavity}
- Sweep drive frequency close to f_{01}

Small atom gives Lorentzian

Giant atom gives multi peaked structure with Lorentzian envelope

Peak distance depends on 1/T Lorentzian width depends on γ # of peeks $\approx \gamma$ T

Red curve is theory L. Guo et al. PRA 95, 053821 (2017)

Quantum Technology Laboratory

Per Delsing

Pupulation during decay

Per Delsing

We apply a π -pulse and do a weak continuous measurement of the population in the qubit.

Averaging a large number (10^7) of weak measurements, we observe revivals in the population at times that agree well with the distance between the coupling points. T = 160 ns

G. Andersson et al., Nature Physics 15, 1123 (2019)

Summary I: Giant atoms

- Artificial atoms in a new regime: Large atoms and Giant atoms
- Non-Markovian dynamics
- Nonexponential decay with revivals

Gustav Andersson

on Baladitya Suri

Lingzhen Guo

Thomas Aref

G. Andersson et al., Nature Physics 15, 1123 (2019)

Per Delsing

Period-tripling in a superconducting resonator

> Further multiples

Generating three photons from one, $a_1^{\dagger 3}a_2$

[arb. units]

 \circ

I [arb. units]

I.-M- Svensson *et al.*, Phys. Rev. B **96**, 174503 (2017) I.-M- Svensson et al., Appl. Phys. Lett. **113**, 022602 (2018)

Svenssopet Der Xiv:1802.09259

A flux tunable resonator

 $\lambda/4$ Coplanar Waveguide terminated by a Josephson inductance of a SQUID

Resonance frequency, *f*

$$L_{\rm SQ}(\Phi) = \frac{\hbar}{2e \, I_C \cos(\pi \frac{\Phi}{\Phi_0})}$$

 $\Phi = \Phi_{dc} + \Phi_A \sin(2\pi f_D t)$

Time varying flux gives time varying resonance frequency Resonance frequency can be varied faster than the oscillation period _{M. Sandberg et al. APL **92**, 203501 2008}

MC2

Per Delsing

Parametric oscillations: Flux pumping at twice the resonance frequency

Pumping at $f_D \approx 2f_0$, vary amplitude and frequency we observe photons coming out at f_0 Note $\lambda/4$: no mode at $2f_0$ Quadrature histogram

Theory:M. I. Dykman, et al. Phys. Rev. E 57, 5202 (1998)M. Faraday, Phil. Trans. Roy. Soc. (London), 121, 299 (1831)

Flux pumping at $3f_0$, nothing should happen

Experiement: C.M. Wilson et al. Phys. Rev. Lett **105**, 233907 (2010)

Per Delsing

MC2

Sample and Measurement configuration $L_{SQ,0}$ $L_{SQ}(t) =$ $cos(\pi \frac{\Phi}{4\pi})$ Flux pump Current drive **Aluminum SQUID** Niobium resonator

 $(t)^{2}$

Sapphire substrate

Per Delsing

The current pumped resonator

λ /4-cavity with a SQUID at the end

Per Delsing

Current driving at \Phi=0: Observation of period-tripling

MC2

Per Delsing

Current driving: Theory comparison

Model with two coupled modes, Vitaly Shumeiko

Per Delsing

Quantum description Y. Zhang et al. *Physical Review A* **96**, 052124 (2017)

Experiment and theory: Svensson et al. *Physical Review B* **96**(17):174503, 2017

Quan

Current driving: Theory comparison

Svensson et al. Physical Review B 96 174503, 2017

MC2

Per Delsing

MC2

More properties of period-tripling subharmonic oscillations

Increasing intensity with δ_1 Decreasing intensity with flux

What about higher order pumping

- $f_{\text{pump}} = n f_0$,
- n=2 flux pumping, n=3 Current pumping
- Good agreement with theory
- Pumping at higher order multiples can also generate subharmonic states
- n = 4 and 5 also observed (no theory yet)
- Phase space crystals
 - Gou et al. Phys. Rev. Lett. **111**, 205303 (2013)
- Similar to time crystals
 - F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012)

I.-M- Svensson et al., Appl. Phys. Lett. 113, 022602 (2018)

C2

Per Delsing

Summary II: Period tripling

- Current pumping a multimode nonlinear oscillator close to a higher mode can generate oscillations at the fundamental mode which have an n-fold phase symmetry.
- The oscillations in the higher mode act as a parametric pump for the fundamental mode.
- Observation of period tripling, n=3, good agreement with theory. n = 4, 5 also observed.
- Hamiltonians of the type $a_1^{\dagger n}a_2$ implemented.

Ida-Maria SvenssonAndreas BengtssonPhilip KrantzJonas BylanderVitaly ShumeikoI.-M- Svensson et al. Phys. Rev. B 96, 174503 (2017)I.-M- Svensson et al. Appl. Phys. Lett. 113, 022602 (2018)

MC2

Per Delsing